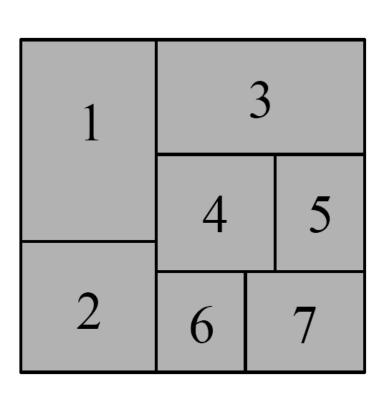
VLSI Fixed-Outline Floorplanning using Convex/Nonconvex Model

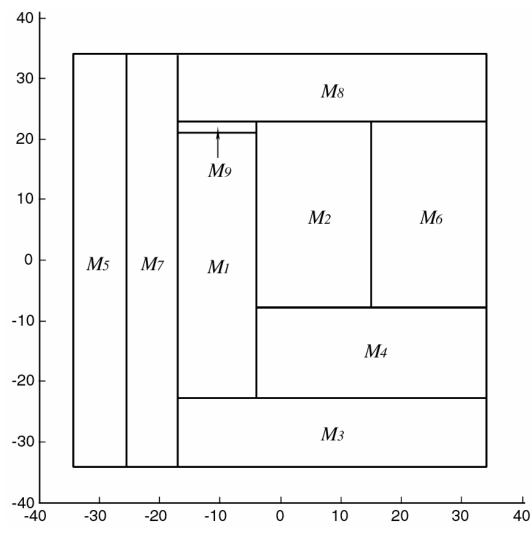
Anthony Vannelli
School of Engineering
College of Physical and Engineering
Science
University of Guelph, Canada
(joint work with C. Luo and M. Anjos)

Outline

- **S** Introduction
- **S** Background
 - **S Classical (outline-free) floorplanning**
 - **S Fixed-outline floorplanning**
- **S Mathematical Programming Model**
 - **S** Convex version Attractor-Repeller model
 - **S** A two-stage optimization methodology
- **S Implementation and Experiments**
- **S** Conclusions

Circuit Layout Cycle




Floorplanning

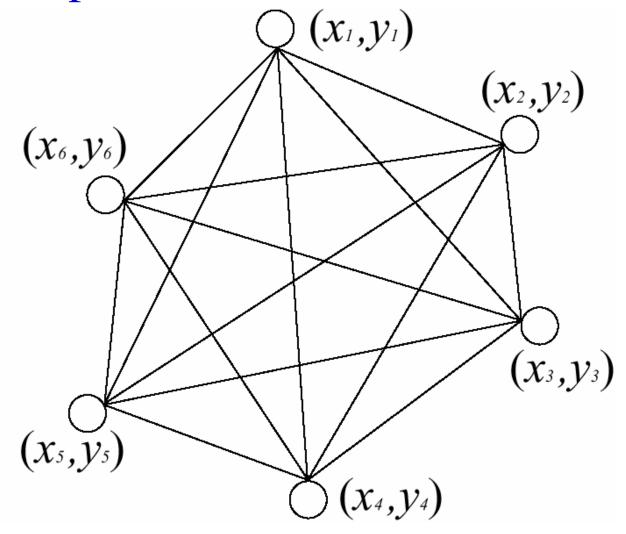
Floorplanning

- S Floorplanning is the placement of soft modules, which have fixed areas but unknown dimensions.
- § Floorplanning determines module positions to optimize the circuit performance by minimizing wire length.

Floorplanning

Convex Optimization Model

- **S** Clique model
- **S** Target distance
- **S** Convex AR model
- **A two-stage optimization methodology**
- S Proposed by *Etawil et. al, 1999* and improved by *Anjos and Vannelli, 2004*.


Clique Model

S Circuit hypergraphs corresponding to netlists are typically transformed into graphs.

S In the clique model, a k-pin net with the weight W is typically transformed into k(k-1)/2 two-pin nets with certain weights, W/(k-1).

Clique Model

A six-pin net

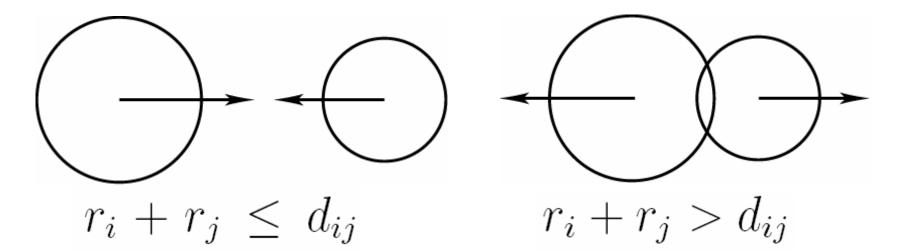
Target Distance

$$\min_{(x_i, y_j)} \sum_{1 \le i < j \le N} c_{ij} d_{ij}$$

s.t.
$$r_i + r_j - d_{ij} \le 0$$

S The objective function attempts to make distance as short as possible.

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$


S The target distance between circles *i* and *j* is defined as

$$t_{ij} := \alpha (r_i + r_j)^2$$

Attractor-Repeller Mechanism

$$\min_{(x_i, y_j), w_F, h_F} \sum_{i, j \in M \cup P} c_{ij} D_{ij} + \sum_{i, j \in M} f(\frac{D_{ij}}{t_{ij}})$$

$$f(z) = \frac{1}{z} - 1$$
 $D_{ij} = d_{ij}^2 = (x_i - x_j)^2 + (y_i - y_j)^2$

Attractive force

Repulsive force

Convex AR Model

Define a convex function

$$F_{ij}(x_i, x_j, y_i, y_j) = \begin{cases} c_{ij}z + \frac{t_{ij}}{z} - 1, & z \ge T_{ij} \\ 2\sqrt{c_{ij}t_{ij}} - 1, & 0 \le z < T_{ij} \end{cases}$$

$$T_{ij} = \sqrt{\frac{t_{ij}}{c_{ij} + \varepsilon}} \qquad z = (x_i - x_j)^2 + (y_i - y_j)^2$$

Model for the First Stage

$$\min_{(x_i, y_j), w_F, h_F} \sum_{i, j \in M \cup P} F_{ij}(x_i, x_j, y_i, y_j) - K \ln(\frac{D_{ij}}{T_{ij}})$$

s.t.

$$x_i + r_i \le \frac{1}{2}w_F$$
 and $r_i - x_i \le \frac{1}{2}w_F$, for all $i \in M$, $y_i + r_i \le \frac{1}{2}h_F$ and $r_i - y_i \le \frac{1}{2}h_F$, for all $i \in M$, $w_F^{low} \le w_F \le w_F^{up}$, $h_F^{low} \le h_F \le h_F^{up}$.

The Second Stage

Non-overlap constraints

$$\frac{1}{2}(w_i + w_j) \le |x_i - x_j| \quad \text{if } |y_i - y_j| \le \frac{1}{2}(h_i + h_j)$$

$$\frac{1}{2}(h_i + h_j) \le |y_i - y_j| \quad \text{if } |x_i - x_j| \le \frac{1}{2}(w_i + w_j)$$

Then

$$\frac{1}{2}(w_i + w_j) \le |x_i - x_j| \text{ or } \frac{1}{2}(h_i + h_j) \le |y_i - y_j|$$

The Second Stage

$$\begin{cases} X_{ij} \ge \frac{1}{2}(w_i + w_j) - |x_i - x_j|, & X_{ij} \ge 0, \\ Y_{ij} \ge \frac{1}{2}(h_i + h_j) - |y_i - y_j|, & Y_{ij} \ge 0. \end{cases}$$

Then

$$\frac{1}{2}(w_i + w_j) \le |x_i - x_j| \text{ or } \frac{1}{2}(h_i + h_j) \le |y_i - y_j|$$

is equivalent to

$$X_{ij}Y_{ij}=0$$

Model for the Second Stage

Deadspace-free and overlap-free model

$$\min_{\substack{(x_i, y_i), w_i, h_i}} \quad \sum_{1 \le i < j \le n} c_{ij} L(x_i, x_j, y_i, y_j) + \gamma K X_{ij} Y_{ij}$$

s.t.

$$x_{i} + \frac{1}{2}w_{i} \leq \frac{1}{2}w_{F} \quad \forall i,$$

$$y_{i} + \frac{1}{2}h_{i} \leq \frac{1}{2}h_{F} \quad \forall i,$$

$$\frac{1}{2}w_{i} - x_{i} \leq \frac{1}{2}w_{F} \quad \forall i,$$

$$\frac{1}{2}h_{i} - y_{i} \leq \frac{1}{2}h_{F} \quad \forall i,$$

Plus...

Model for the Second Stage

$$w_{i}h_{i} = a_{i} \quad \forall i,$$

$$w_{i}^{low} \leq w_{i} \leq w_{i}^{up} \quad \forall i,$$

$$h_{i}^{low} \leq h_{i} \leq h_{i}^{up} \quad \forall i,$$

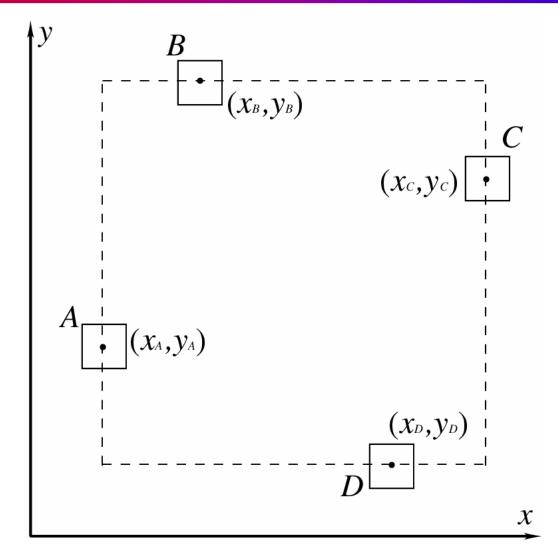
$$\delta\left(\frac{1}{2}(w_{i} + w_{j}) - |x_{i} - x_{j}|\right) \leq X_{ij} \quad \forall 1 \leq i < j \leq n$$

$$X_{ij} \geq 0 \quad \forall 1 \leq i < j \leq n,$$

$$\delta\left(\frac{1}{2}(h_{i} + h_{j}) - |y_{i} - y_{j}|\right) \leq Y_{ij} \quad \forall 1 \leq i < j \leq n,$$

$$Y_{ij} \geq 0 \quad \forall 1 \leq i < j \leq n$$

Minimization of Total Wire Length


§ To min *rectilinear* wire length (*Method A*)

$$\sum_{\substack{i,j \in M \cup P \\ 1 \le i < j \le N}} c_{ij} (|x_i - x_j| + |y_i - y_j|) + KX_{ij}Y_{ij}$$

§ To min *quadratic* wire length (*Method B*)

$$\sum_{\substack{i,j \in M \cup P \\ 1 \le i < j \le N}} c_{ij} [(x_i - x_j)^2 + (y_i - y_j)^2] + KX_{ij}Y_{ij}$$

Minimization of the HPWL

An example of four-module nets with bounding box

Minimization of the HPWL

$$\min \sum_{n=1}^{\#nets} c_n[(wl_x)_n + (wl_y)_n] + \sum_{\substack{i,j \in M \\ 1 \le i \le j < N}} KX_{ij}Y_{ij}$$

s.t.

$$(wl_x)_n \ge x_{m_1} - x_{m_2},$$

$$(wl_x)_n \ge x_{m_2} - x_{m_1},$$

:

$$(wl_x)_n \ge x_{m_{t-1}} - x_{m_t},$$

$$(wl_x)_n \ge x_{m_t} - x_{m_{t-1}},$$

and

Minimization of the HPWL

$$(wl_y)_n \ge y_{m_1} - y_{m_2},$$

$$(wl_y)_n \ge y_{m_2} - y_{m_1},$$

$$\vdots$$

$$(wl_y)_n \ge y_{m_{t-1}} - y_{m_t},$$

$$(wl_y)_n \ge y_{m_t} - y_{m_{t-1}},$$
and
$$X_{ij} \ge 0 \quad \forall 1 \le i < j \le N,$$

$$Y_{ij} \ge 0 \quad \forall 1 \le i < j \le N.$$

		Our Methodology							
MCNC	Total								
circuit	area	Our		Runtime		HPWL			
		area	Method A Method B Method C			Method A	Method B	Method C	
			min/avg min/avg min/avg			\min/avg	\min/avg	min/avg	
	(mm^2)	(mm^2)	(s) (s) (s)			(mm)	(mm)	(mm)	
apte	46.56	46.56	0.093/0.69	0.084/1.04	0.11/0.94	384.30/425.09	386.81/436.59	397.70/438.82	
xerox	19.35	19.35	0.34/1.23	0.33/2.03	0.25/0.98	420.11/462.12	433.27/475.87	427.61/469.75	
hp	8.30	8.30	0.37/1.17	0.21/1.65	0.42/1.72	131.83/154.84	139.80/149.64	130.50/151.28	
ami33	1.16	1.16	8.11/14.16	7.41/10.03	7.53/9.51	60.36/65.31	60.25/62.37	61.40/62.83	
ami49	35.4	35.4	37.91/66.09	38.78/55.53	38.90/56.46	684.62/720.65	681.72/706.06	681.70/709.46	

Experimental results with our methodology

Comparison with MK model

MCNC	Total	MK [31]					
circuit	area	Area Runtime		HPWL			
	(mm^2)	(mm^2)	(s)	(mm)			
apte	46.56	46.55	789	344.36			
xerox	19.35	19.50	1198	401.25			
hp	8.30	8.83	1346	118.82			
ami33	1.16	1.16	75684	53.39			
ami49	35.4	35.58	612103	775.10			

Results reported by MK (Murata and Kuh,1998)

Comparison with MK model

	Our Methodology vs MK							
MCNC								
		$\operatorname{Speed-up}$		WL				
circuit	Method A	Method B	Method C	Method A	Method B	Method C		
	\min	min	\min	min	\min	\min		
apte	8483.87	9392.86	7172.73	-11.60%	-12.33%	-15.49%		
xerox	3523.53	3630.30	4792.00	-4.70%	-7.98%	-6.57%		
hp	3637.84	6409.52	3204.76	-10.95%	-17.66%	-9.83%		
ami33	9332.18	10213.77	10051.00	-13.05%	-12.85%	-15.00%		
ami49	16146.21	15783.99	15735.30	+11.67%	+12.05%	+12.05%		
Average	8224.73	9086.09	8191.16	-5.73%	-7.75%	-6.97%		

Improvements in Runtime and Wire Length Compared with *MK*

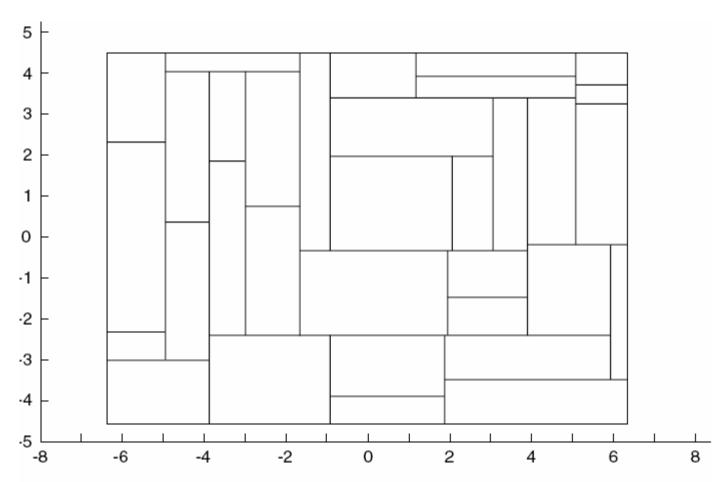
Comparison with AM model

MCNC	Total	AM [1]					
circuit	area	Area	Runtime	WL			
		\min/avg	avg	min/avg			
	(mm^2)	(mm^2)	(s)	(mm)			
apte	46.56	46.97/48.95	15.4	464/560			
xerox	19.35	19.51/20.62	20.1	373/468			
hp	8.30	8.96/9.72	15.3	177/214			
ami33	1.16	1.18/1.24	31.0	62.5/75.4			
ami49	35.4	36.07/37.8	31.9	673/812			

Results reported by AM (Adya and Markov, 2003)

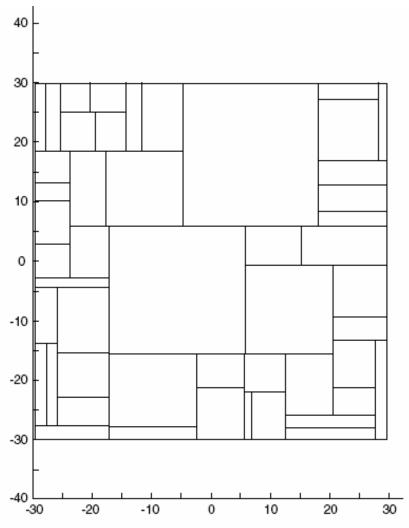
Comparison with AM model

MCNC	Our Methodology vs AM							
		Speed-up		WL				
circuit	Method A Method B Metho			Method A	Method B	Method C		
	avg	avg	avg	min/avg	min/avg	\min/avg		
apte	22.32	14.81	16.38	+17.18/+24.09%	+16.64/+22.04%	+14.29/+21.64%		
xerox	16.34	9.90	20.51	-12.63/+1.26%	-16.16/-1.68%	-14.64/-0.37%		
hp	13.08	9.27	8.90	+25.52/+27.65%	+21.02/+30.07%	+26.27/+29.31%		
ami33	2.19	3.09	3.26	+3.42/+12.48%	+3.60/+17.28%	+1.76/+16.67%		
ami49	0.48	0.57	0.57	-1.73/+9.22%	-1.29/+13.05%	-1.29/+12.63%		
Average	10.88	7.53	9.92	+6.35/+14.94%	+4.76/+16.15%	+5.28/+15.97%		


Improvements in Runtime and Wire Length Compared with AM

Deadspace in Layouts

MCNC	Total	MK [31]		AM [1]		Our Methodology			
circuit	area	Area	Deadspace	Area	Deadspace	Area	Deadspace		
				min/avg	min/avg		\min/avg		
	(mm^2)	(mm^2)		(mm^2)		(mm^2)	Method A	Method B	Method C
apte	46.56	46.55	-0.02%	46.97/48.95	0.87%/4.88%	46.56	0%/0%	0%/0%	0%/0%
xerox	19.35	19.50	0.77%	19.51/20.62	0.82%/6.16%	19.35	0%/0%	0%/0%	0%/0%
hp	8.30	8.83	6.0%	8.96/9.72	7.40%/14.60%	8.30	0%/0%	0%/0%	0%/0%
ami33	1.16	1.16	0%	1.18/1.24	1.70%/6.45%	1.16	/	0%/0.034%	/
ami49	35.4	35.58	0.5%	36.07/37.8	1.86%/6.35%	35.4	0%/0.11%	0%/0.063%	0%/0.094%


Deadspace comparisons with MK and AM

MCNC ami33 Layout

Floorplan for ami33 with HPWL = 62.65 $(\alpha = 1.02, \beta = 10, \gamma = 1.08, \delta = 1)$

MCNC ami49 Layout

Floorplan for ami49 with HPWL = 716.74 $(\alpha = 0.15, \beta = 10, \gamma = 1, \delta = 0.128)$

Summary of Results

ü The **zero deadspace** constraint is enforced (unlike *MK* and *AM*)

ü The **running time** is significantly faster than *MK*

ü The best achieved HPWL **total wire length** is (on average) better than *AM* model.

Conclusions

- § The convex model is applied to *circuit* floorplanning.
- S This is the *first time* that *fixed-outline* floorplanning is solved by using a convex optimization model.
- S The results show very promising floorplanning quality (deadspace, running time and total wire length).

Thank you!