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Presentation Topics

• The Relevance of Nonlinear and Global Optimization
• General CGO Model and Some Examples 
• Model Development Environments
• GO Software Implementations (LGO and others)
• Illustrative Applications and Case Studies
• Illustrative References
• Software Demonstrations (as time allows, or after talk)

Acknowledgements to all developer partners, clients,  
and interested colleagues for cooperation, support and 
feedback 
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• Decision making under resource constraints is a key 
paradigm in strategic planning, design and operations 
by government and private organizations 
• Examples: environmental management; healthcare;  
industrial design and production; inventory planning; 
scheduling, transportation and distribution, and great 
many others
• Quantitative decision support systems (DSS) tools -
i.e., models and solvers - effectively assist decision 
makers and analysts in finding better solutions

Decision Models and Optimization
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A KISS* Model Classification 
Convex (Continuous) Deterministic Models
Linear Programming, Convex Nonlinear Programming, and their 
numerous special cases

Non-Convex Deterministic Models
Continuous Global Optimization, Combinatorial Optimization, 
Mixed Integer/Continuous Optimization, and special cases

Stochastic Models
General Stochastic Optimization model; special cases that lead to 
LP, CP, and general NLP equivalents; and “black box” models 

Formally, both the convex and stochastic model-classes can be 
considered as subsets of the non-convex model class  

Combinatorial models can also be formulated as continuous GO 
models; however, added specifications and insight are helpful

* Keep it Simple, Stupid…
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Nonlinear Systems Modeling & Optimization 

• As the previous slide indicates, nonlinear systems are 
more of the norm than the exception…
• Nonlinearity is found literally everywhere: in natural 
formations, objects, organisms, processes, and in their 
complex interactions
• This fact is reflected by descriptive models in applied 
mathematics, physics, chemistry, biology, engineering,  
and economics 
• Some of the most frequently used nonlinear function 
forms: exponential (growth or decay processes,...); 
logarithmic (growth,…), trigonometric (periodicities,…) 
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Nonlinear Systems Modeling & Optimization
(continued)

• Composite and more complicated nonlinear functions: 
special functions, integral equations, linear system of 
ordinary differential equations, partial differential 
equations, and so on

• Statistical models: probability distributions, stochastic 
processes

• “Black box” (deterministic or stochastic) simulation 
models, closed (confidential) modules, and others, 
including models with expensive functions 
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Examples of Basic Nonlinear Functions

A huge variety of such functions 
exists: many of these are used to 
describe objects, and processes
of practical relevance
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Nonlinearity in Nature
[A small collection of great photos from the Web]

Nature is clearly the most successful of all artists.
Alvar Aalto, Finnish architect and designer (1898-1976)
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Nonlinear Universe: Further Examples
Credits: Scientific Computing & Instrumentation, 2004
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Nonlinearity in Man-Made Systems
Example: Audio Speaker Design

Credits: “How Stuff Works” Website, 2005
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Nonlinearity in Man-Made Systems
Example: Automotive Engine Design

Credits: “How Stuff Works” Website & Daimler-Chrysler, 2005 
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Discovery Spaceship
A Man-Made System with Many Nonlinear Components

Credits: Robert Sullivan, 
New York Times, 2006

Need for descriptive system models in combination with control (optimization) methods
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NB: Many of these uses need NLP/GO solvers!

NAG Survey on Technical Computing Needs
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The Relevance of Global Optimization

“Theorists interested in optimization have been too  
willing to accept the legacy of the great eighteenth and 
nineteenth century mathematicians who painted a clean 
world of [linear, or convex] quadratic objective functions, 
ideal constraints and ever present derivatives. 

The real world of search is fraught with discontinuities, 
and vast multi-modal, noisy search spaces...”

D. E. Goldberg, genetic algorithms pioneer
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The Relevance of Global Optimization
• Optimization in these (and similar) cases is often 
based on highly nonlinear descriptive models 
• Several important and very general model-classes:

Provably non-convex models
Black box systems design and operations
Decision-making under uncertainty
Dynamic optimization models

• Nonlinear models frequently possess multiple 
optima: hence, their solution requires a suitable global 
scope search approach
• The objective of global optimization is to find the 
absolutely best solution, in the possible presence of a 
multitude of local sub-optima
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min f(x) f:  Rn� R1

g(x) ≤≤≤≤ 0 g: Rn� Rm

l ≤≤≤≤ x ≤≤≤≤ u l, x, u, (l < u) are real n-vectors

Key (‘minimal’) analytical assumptions: 
• l, u finite
• feasible set D={xl ≤≤≤≤ x ≤≤≤≤ xu: g(x) ≤≤≤≤ 0} non-empty 
• f, g continuous functions (component-wise)
These assumptions are sufficient to guarantee the 
existence of the global solution set X*; also support the 
application of theoretically rigorous, globally 
convergent methods 
The CGO model covers a very general class of models

Continuous Global Optimization Model
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GO models can be difficult...

Obviously, a restricted local view of such a model is 
not sufficient: truly global scope search is needed

Source: Handbook of Global   
Optimization, Vol 2, Ch 15.
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GO models can be arbitrarily difficult to solve, even 
in (very) low-dimensions…

200 400 600 800 1000

-1000

-500

500

1000

f(x)=x·sin(ππππx) 0≤x≤1000

A “Monster” Example
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“Curse of Dimensionality” in GO
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Shubert’s one-dimensional box-constrained optimization model, 
and its simplest two-dimensional extension
Computational complexity could (and often will) increase 
exponentially as model size (n, m) grows

minâ

�k=1,…,5 k sin(k+(k+1)x)

–10≤x≤10.

�k=1,…,5 k sin(k+(k+1)x) + �k=1,…,5 k sin(k+(k+1)y) 

–10≤x≤10, –10≤y≤10..
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Parameterized Test Functions

Example:
x2+y2+c⋅⋅⋅⋅sin2(x2+x+y2-y)
x=-8..1, y=-3..10;      c=1, 10, 100

Note: easy to modify in order to generate 
randomized solution points (as instances)
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Example: Feasible set in R3 defined by the constraints

x⋅⋅⋅⋅y⋅⋅⋅⋅z≤≤≤≤1,   x2+2y2+z2+x⋅⋅⋅⋅z≤≤≤≤2,   3x2+2y2–(1–z)2 ≤≤≤≤0

A Tricky Feasible Set
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The Mixed Integer Global Optimization Challenge

Each binary variable selection (combination) induces a CGO sub-model 

The overall complexity is characterized by the combined complexity of 
combinatorial optimization and continuous global optimization… Hence, 
massively exponential as model size (n=nB+nC, m) grows

→→→→
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Global Optimization: A Historical Perspective
An approximate timeline

Theory (beginnings: 1950’s, foundations: 1970’s)
↓↑↓↑↓↑↓↑

Methods (beginnings: 1960’s, key results: 1980’s)
↓↑↓↑↓↑↓↑

Software (beginnings: 1980’s, professional: ~2000+)
↓↑↓↑↓↑↓↑

Applications   (needed since ages; only recently  
tackled by suitable GO tools)

Ideally, all key components of knowledge are 
developed in close interaction



25

Global Optimization
Software Development

“Those who say it cannot be done should not 
interrupt those who are busy doing it.”
Chinese proverb

"It does not matter whether a cat is black or white, as 
long as it catches mice."
Deng Xiaoping

“I don't want it perfect, I want it Tuesday.”
J.P. Morgan
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GO Software Development Environments
• General purpose, “low level” programming languages: 
C, Fortran, Pascal, …  and their modern extensions 

• Business analysis and modeling: Excel and its various 
extensions and add-ons (Excel PSP, @RISK,…)

• Specialized algebraic modeling languages with a focus 
on optimization: AIMMS, AMPL, GAMS, LINDO/LINGO, 
LPL, MPL,…

• Integrated scientific and technical computing systems: 
Maple, Mathematica, MATLAB,…

• Relative pros and cons: instead of “dogmatism”, select 
the most appropriate platform considering user needs, 
requirements, and possible options
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GO Software: State-of-Art in a Nutshell   1

• Websites (e.g., by Fourer, Mittelmann and Spelucci, 
Neumaier, NEOS, and others) list discuss dozens of 
research and commercial codes: examples below

• Excel Premium Solver Platform: Evolutionary, Interval, 
MS-GRG, MS-KNITRO, MS-SQP, OptQuest solver engines 

• Modeling languages and related solver options 
AIMMS: BARON, LGO
AMPL: LGO
GAMS:  BARON, DICOPT, LGO, OQNLP
LINGO: built-in global solver by the developers; also: 

What’sBest! for spreadsheets
MPL: LGO
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GO Software: State-of-Art in a Nutshell   2

• Integrated scientific-technical computing environments 
Maple: Global Optimization Toolbox
Mathematica: Global Optimization (package), 
MathOptimizer, MathOptimizer Professional, NMinimize
Matlab: GADS Toolbox  
TOMLAB solvers for MATLAB: CGO, LGO, OQNLP 

• Detailed information and references 
• Developer websites
• Handbook of GO, Vol. 2, Chapter 15
• Neumaier’s GO website, with discussions and links

Further information welcome
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• LGO can analyze and solve complex nonlinear models, 
under minimal analytical assumptions: computable 
values of continuous or Lipschitz functions are needed

• LGO can be applied even to completely “black box” 
system models (defined by continuous functions)

• Globally convergent methods (LGO solver components): 
continuous branch-and-bound 
adaptive random search (single-start)
adaptive random search (multi-start)
exact penalty function applied in global search phase

LGO (Lipschitz Global Optimizer) 
Solver Suite: Summary of Key Features
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• Locally convergent method: exact constrained local 
search (generalized reduced gradient method)

• User Guide(s): mathematical background, detailed 
description of solver usage, modeling and solver tips

• Tractable model sizes depend only on hardware + time

• LGO reviews in ORMS Today, Opt. Methods and 
Software; various other LGO implementations 
reviewed in ORMS Today, Scientific Computing, 
Scientific Computing World, IEEE Control Systems 
Magazine, Int. J. of Modeling, Identification and Control

• MPL/LGO demo accompanies Hillier & Lieberman OR 
textbook (2005 edition)

LGO: Summary of Key Features (continued)
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A Simple-to-Use Interactive LGO Demo (C, C#)
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Interactive LGO Demo: Example
(Refer to previous slide where this model is solved)

Model formulation and bounds given in text files *.mod and *.bds

Example 1 

Model: cited from poly+trig.mod

0.1*x[0]*x[0] + Math.Sin(x[0]) * Math.Sin(100*x[0])  objective fct

Bounds: cited from poly+trig.bds

0                                                               lower bound
3                                                               nominal value
5                                                               upper bound
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Interactive LGO Demo: Example

Global solution argument found ~1.30376; optimum value ~-0.79458

Notice the many suboptimal solutions, including several
that are close to the globally optimal solution value
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LGO IDE
works in conjunction with C and Fortran compilers
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Model Development & Solution by AIMMS/LGO
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AIMMS /LGO Solver Link Options
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An AMPL Model
Solved by LGO
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GAMS Preprocessing Step

LGO Solver Result Summary
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MPL/LGO Model and its Solution
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Integrated Scientific and Technical 
Computing Systems
• Maple, Mathematica, Matlab (and some others; the 
latter are more specific to certain engineering or scientific 
fields)
• Model prototyping and development: simple and 
advanced calculations, programming, documentation, 
visualization,… supported in ‘live’ interactive documents
• Data import and export features
• Links to external software products, and converters
• Portability across hardware and OS platforms
• ‘One-stop tools’ for interdisciplinary development
• ISTCs are particularly suitable for developing complex, 
advanced nonlinear models
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MathOptimizer Model

Note that dense nonlinear models (including many GO 
models) are similarly formulated across platforms: 
relatively easy model conversions, converters available 
in several cases (example: GAMS CONVERT utility)
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An example from the MathOptimizer User Guide:
Surface and contour plot of randomly generated test function
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User Guide can  
be invoked from 
Mathematica’s
online Help menu



44



45

Model setup, solution 
and visualization in 
Matlab

TOMLAB /LGO solver



46

Maple GO Toolbox: Optimization Assistant

Optimization Methods and Software (2006)
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Maple GO Toolbox: Optimization Plotter
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Illustrative Case Studies 
A (Very) Concise Review

• Many of the actual client case studies reviewed here 
are based on advanced multi-disciplinary research, in 
addition to the optimization (solver) component
• All detailed case studies could be presented in full 
detail, each in a separate lecture… we shall briefly 
review only a selection of these 
• References, demo software examples, publications, 
and additional details are all available upon request  
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Illustrative Case Studies reviewed in this talk (as time allows)

• GAMS model libraries: comparative assessment of GAMS/LGO vs. 
state-of-art local solvers based on hundreds of models
• A “black box” client model (code generated automatically by 
MathOptimizer Professional)
• Trefethen’s HDHD problem 4, solved by LGO implementations
• Systems of nonlinear equations (Maple GOT)
• Nonlinear model fitting examples (MathOptimizer, Maple GOT)
• Maxi-min experimental design (LGO stand-alone implementation)
• Non-uniform circle packings (MOP)
• Computational chemistry (potential energy) models (MOP)
• Portfolio selection, with a non-convex transfer cost (Maple GOT)



50

Illustrative Case Studies reviewed in this talk (as time allows)

• Solving differential equations by the shooting method (MOP)  
• Data classification and visualization (MOP)
• Circuit design model (Excel PSP/LGO)
• Rocket trajectory optimization (Excel PSP/LGO)
• Industrial design model examples (MO, MOP, Maple GOT)
• Robotics design optimization (LGO stand-alone implementation)
• Laser design (LGO stand-alone implementation)
• Cancer therapy planning (LGO stand-alone implementation)
• Sonar equipment design (MathOptimizer)
• Oil field production optimization (LGO)

• In addition, thousands of standard NLP/GO and other test 
problems have been used to evaluate solver performance across 
the various modeling environments reviewed here
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“Black Box” Model Received from (MOP) Client…
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Find the global minimum of the two-variable real function f(x,y) defined below as

1
4
Hx2 + y2L+ãsinH50 xL- sinH10Hx+ yLL+sinH60ãyL+sinH70sinHxLL+
sinHsinH80 yLL

No explicit variable bounds are provided. 

Trefethen’s HDHD Challenge, Problem 4 (SIAM News, 2002)
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HDHD Challenge, Problem 4 (cont’d)

• This model has been numerically solved by LGO, 
MathOptimizer, MathOptimizer Pro, TOMLAB /LGO, and 
the Maple GOT

• The solution found is identical to more than 10 
decimals to the announced solution (the latter was 
originally based on an enormous grid sampling effort 
combined with local search) 

x*~ (-0.024627…, 0.211789…)
f*~-3.30687…
Close-up picture near to global
solution: still looks difficult... -1
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Maple GO Toolbox Example

x-y+sin(2*x)-cos(y)=0
4*x-exp(-y)+5*sin(6*x-y)+3*cos(3*y)=0

Solving Systems of Nonlinear Equations

Error function plot

A numerical solution: 
x = 0.0147589760525313926,   y = -0.712474169476650099
l2-norm error ~ 1.22136735435643598 ×××× 10-16

Note:  there could be other solutions; systematic search is possible

Equivalent GO model 
formulation (assuming 
that solution exists)

F(x)=0 ÛÛÛÛ min ||F(x)||

Optimization Methods and Software (2006)
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Nonlinear Model Calibration in Presence of Noise

An example model (in Mathematica notation):

a+Sin[b*(Pi*t)+c]+Cos[d*(3Pi*t)+e]+Sin[f*(5Pi*t)+g]+ξξξξ

The parameters a,b,c,d,e,f,g are randomly generated from 
interval [0,1]; ξξξξ is a stochastic noise term from U[-0.1,0.1]

Subsequently, the optimal parameterization is recovered 
by using MathOptimizer: superior results, in comparison 
with Mathematica’s corresponding built-in local solver 
functionality

Optimization Methods and Software (2003)
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a+Sin[b*(Pi*t)+c]+Cos[d*(3Pi*t)+e]+Sin[f*(5Pi*t)+g] +ξξξξ

Calibration of Nonlinear Model in Presence of Noise (cont.)
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Arrhenius Probe Model Calibration
Credits: Grigoris Pantoleontos et al., Chemical Engineering Department, Aristotle University of Thessaloniki, Greece

ln(y) = A-Ea /RT Arrhenius formula
temperature dependence of reaction rate coefficient y 

A multi-component version of the formula is

Here Ri[j] is calculated from another fairly complicated 
expression.

The study by GP et al. is aimed at the determination 
of the parameters ci, Ai and Ei i=1,2,3 by comparing the 
computed model output values to the experimental ones.

The figure shows the initially given data points (red 
circles), the component curves (green, blue, yellow), 
and the resulting curve (bold blue). 
The solution of this computationally intensive example
(9 variables to calibrate, very large search region, 
hundreds of data points, rather difficult interim model 
functions to compute) took about an hour on a desktop PC.

[ ]( )( ) [ ]( )jR1jRTemp/EexpAcy iiiii −⋅−=
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Data Classification (Clustering) by Global Optimization
Example developed and solved using MathOptimizer Professional 

I
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Maxi-Min and Related Point Arrangements

In a large variety of applications, one is interested in the 
‘best possible covering’ arrangement of points in a set 
• numerical approximation methods
• design of experiments for expensive ‘black box’ models
• potential energy models (physics, chemistry,…)
• crystallography, viral morphology,...

For illustration, consider a maxi-min model instance
max { min ||xi - xk || } xl££££ xi££££ xu xi eeee Rd

i=1,…,m
{ xi }     1££££ i<k££££ m

Additional restrictions, alternative feasible sets, and other 
quality criteria can also be considered

Permutations ���� lexicographic point arrangements 
Non-convex models
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LGO IDE: model visualization (m=13, d=2)

MaxiMin Point Arrangement Problem
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Example: 40 circles; optimized radius of circles r~0.787391…
Solution time using MOP: less than 5 minutes (3 GHz PC)
No postulated structural info is exploited: LGO used ‘blindly’ 

Packing Uniform Size Circles in the Unit Square
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In this example, we study the packing of different size circles in an 
embedding circle. Since this model formulation typically has 
infinitely many solutions per se, we will additionally try to bring the 
circles as close together as possible. 

The primary objective (obj1) is to find the circumscribed circle with 
the smallest radius; the secondary objective (obj2) brings the circles 
close together (min. average distance among all circle centers).

A scaled linear combination of these two objectives is used. Note 
that alternative formulations are also possible, and that rotational 
symmetries of solutions can also be avoided (by added constraints), 
thereby making the solution of a specific model formulation 
essentially unique. 
Applications: wires packed together in a cable, dashboard design…

Mathematica in Education and Research (2005), The Mathematica
Journal (2006) Co-author: Frank J. Kampas

Non-Uniform Size Circle Packings in a Circle
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Non-Uniform Size Circle Packings

Optimized Circle Packing for n=25

Embedding circle contains circles with radii rk =k-0.5   k=1,…,25
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General Circle Packings in Minimal 
Volume (Length) Container

Example: given 30 circles with radii below ; given height of container; find minimal container width 

rlist = {1.275, 1.67, 2.05, 1.739, 1.399, 1.18, 0.564, 1.374, 1.237, 0.845, 1.484, 0.868, 0.807, 1.551, 1.274, 
0.855, 1.493, 1.281, 1.491, 0.747, 1.085, 1.044, 0.955, 1.404, 1.292, 0.853, 0.76, 0.527, 0.592, 0.887};
best known radius 17.291; MOP default option based radius 18.915 in ~ 20 secs; relative quality ~ 91%
Further structure based refinements possible and recommended

See Pintér and Kampas (2005), Castillo, Kampas, and Pintér (2007), Kampas and Pintér (2006)
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Sphere Packings in Optimized Sphere

Example: 15 spheres with radii ri=i-1/3  solved numerically by MOP
Radius of embedding sphere: ~1.96308, 1.5 sec runtime (vs. ~10 min
when using the built-in Mathematica function NMinimize) 

More details: Frank Kampas and JDP talk + several articles
Joint work also with Ignacio Castillo on industrial applications

Given a collection of spheres, find
the minimal size sphere that includes
all of these, in a non-overlapping 
arrangement   
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Potential Energy Models
Point arrangements on the surface of unit sphere
xi=(xi1,xi2,xi3) ||xi||=1
x(m)={x1,…,xm} m-tuple (point configuration)
djk=d(xj,xk) 1££££ j<k££££ m Euclidean distance

Model versions considered

max åååå 1££££ j<k££££ m log(djk)         Fekete (log-potential)
min åååå 1££££ j<k££££ m 1/djk (djk>0)     Coulomb-Fekete
max åååå 1££££ j<k££££ m djk

a Power sum, 0<a<2
max {min 1££££ j<k££££ m djk} Tammes (hard sphere)

In all cases, the objective function is multi-extremal; 
GO (+ expert knowledge) is a valid solution approach 
Applications: math, physics, chemistry, biology,...
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Elliptic Fekete model (m=25 points)
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Coulomb-Fekete model (m=25 points)
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Powersum model (m=25 points)
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Tammes model (m=25 points)
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Financial Modeling and Optimization

Example:
Model development, solution, 
and visualization in Maple 
(Castillo, Lee, Pintér, 2006)
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Portfolio Optimization with Transaction Costs

Objective: minimize portfolio variance; Q cov. matrix xTQx
Constraints: expected return (ER) xTr‡‡‡‡ ER

asset allocation (of capital C) SSSSxi+SSSS it(xi)≤C

Note: other considerations may (will) make model more complex… GOT 
can be applied to such more realistic models

Credits: Jason Schattman, Maplesoft Inc., Waterloo, ON, Canada
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Portfolio Optimization under Concave Transaction Costs

Castillo-Lee-Pintér, Integrated Software Tools for the OR/MS Classroom, AlgOR (2007)

The figure shows the location of the optimal budget allocation point 
(in green) on the boundary of the feasible region 

The surfaces representing the active budget constraint (blue) and the 
growth constraint (grey) are also shown (recall KKT theory)

(continued)
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Supply Chain Management: 
Reliability Optimization

Cited from Hum and Parlar (2006); numerical example in Maple e-book
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Solving a System of ODEs
by the ‘Shooting Method’

The SM consists of adjusting 
the initial conditions of the 
solution until the boundary 
conditions are met. Unless the 
initial conditions are very 
close to the correct value, 
singularities are frequently  
encountered. 

Therefore one can use a finite 
difference approach and solve 
the resulting system of 
equations with MathOptimizer
Professional. Then, based on 
the initial condition values 
found, one can find a more 
precise solution by the SM.

Note: the model shown is 
received from a user 
(confidential background).

Tech details in 

MOP User Guide
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Circuit Design

NLEQ System
Solved by 
Excel/LGO
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A Time-Discretized
Control Model
Solved by Excel/LGO
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A Time-Discretized Control Model
continued; the full formulation is displayed above

Credits: Frontline Systems
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Industrial Design Problems

An illustrative application: 

Designing an “optimized” 
parfume bottle using the 
Maple GOT 

Objective:                          
minimize package volume

Constraints:                      
Bottle volume ≥≥≥≥ required  
Width of the base ≥≥≥≥ required 
Aesthetic proportions     

Example by Maplesoft
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Credits: Yisheng Guan and Hong Zhang, University of Alberta, Edmonton, Canada

Kinetic Grasp Feasibility Analysis in Robotics Design
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Laser Design
Optimization and Engineering (2003); with G. Isenor & M. Cada

Basic Concepts

The laser is a device that produces a beam of light that 
is coherent. The beam is produced by a process known 
as stimulated emission.

The word laser is an acronym for the phrase “Light 
Amplification by Stimulated Emission of Radiation”.

The idea of stimulated emission was proposed by Albert 
Einstein in 1916. It took another four decades to build 
the first lasers as a scientific research tool; soon they 
found numerous significant applications. 
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n2

n4

n1

Bragg Grating

n1,2,3,4,5 = Index of Refraction     n5  < n1  <  n4  < n2 < n3      

Active Layer

Light Light

Injection Current

Length 

Waveguide Layer

Buffer Layer

Substrate Layer

Buffer Layern3

n5

Index-coupled distributed feedback laser
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Various laser design issues can be analyzed in the 
framework of global optimization

Example:

min f(x) field flatness function

g(x) = 0 RBC error (boundary condition)

xl ≤≤≤≤ x ≤≤≤≤ xu explicit, finite parameter bounds

x = (KL1, KL2, KL3, �, Co)   laser design parameters

Essential difficulty: f and g are complicated “black box” 
functions. The LGO IDE software has been used to 
analyze and solve this model (in several variants). 

A very significant improvement (over 90% reduction) of 
the field flatness function has been attained. 
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Radiotherapy Planning Annals of OR, 2003
Significance of the problem: world-wide interest and R&D 
activities devoted to cancer therapy by irradiation
Specific area of our research: intensity modulated 
radiation therapy planning, delivered to cure individual 
patients 
Objective: determine the operations (trajectories) of the 
leafs in an MLC equipment, to optimally approximate the 
prescribed dose intensity distribution (in 3 dimensions), 
thereby
• to provide prescribed radiation intensity to target area 
or volume (body parts affected by cancer)
• to avoid unwanted radiation as much as possible 
(especially of organs at risk, as well as other body parts)

For details, cf. our paper (Tervo et al., Annals of Operations Research, 2003)
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Dose Delivery and Effect Modeling
Sophisticated, computationally intensive mathematical 
models of dose delivery by MLC equipment have been 
developed in several versions by researchers at the 
University of Kuopio, Finland. The key novel feature of 
this approach is to optimize  dose distribution directly 
via adjusting MLC parameters. Our therapy optimization 
models are all characterized by 
• tens or hundreds of variables (leaf positions and their 
coordinated movements, to describe MLC operations), 
• a large number of relatively simple constraints 
(feasible leaf positions), 
• a few significant complex ‘black box’ constraints; 
complex objective function (target dose, and  limits on 
unwanted dose in OAR and body tissue).
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Leaf positions

Radiation intensity

A resulting radiation profile
(based on all leaf positions
that determine total exposure)

Superposition of overall irradiation effect,                    
as a function of leaf positions and radiation intensity

Joint operation of leafs in MLC equipment 
(simplified scheme)
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A Numerical Test Example

Illustrative model (2D phantom) used in optimized radiation 
dose distribution test calculations: overall  irradiation area, 
hypothetical target area, and an organ at risk are shown
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Dose distribution found by local optimization of nominal solution
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Globally optimized dose distribution
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Modeling and Optimization of Transducers

MathOptimizer User Guide, joint presentations with C.J. Purcell

• Traditional engineering design often based on 
experimental studies: change key parameters and 
then trace their effect (e.g. by physical experiments 
and their graphical summaries) – as a rule, expensive 
and time consuming…
• Parametric studies are ideal tasks for computers: 
numerical models can (partially) replace experiments
• Parametric models can be directly optimized
• In our study, a combination of detailed system 
modeling and optimization has been applied; this has 
resulted in improved (in some cases “surprising” and 
entirely new) designs
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Engineering Design Optimization by Trial and Error

Expensive and time-consuming...
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ModelMaker

• Mathematica package for developing         
advanced finite element models (FEM)

• Numeric and symbolic parameterized 
models can be developed

• Models and results presented in 
interactive Mathematica document 
(notebook) format

• Built-in, extensible documentation 
• Supports other FEM packages (such as 

Mavart, Mavart3D, MavartMag, Atila,…)
• Developed since 1994 by C. Purcell, DRDC
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Example: Folded Shell Projector

FSP is a sonar projector (or in-air loudspeaker) with 
overall cylinder shape with corrugations on the sides
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Experimental Design
Three FSPs with varying transformer ratio 
(a key design parameter): optimization needed...

Curves generated experimentally
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The optimization problem consists of finding circuit design 
parameters such that the sonar projector gives a broad 
efficiency vs. frequency. This model has been solved using 
MathOptimizer. The results have been applied to the actual 
design of sonar equipment, leading to improved designs.

Sonar Transducer Design: Numerical Model

This electric circuit simulates a piezoelectric sonar projector
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Oil Field Production Analysis and Optimization

Credits: T. Mason, P. Zwietering, C. Emelle, et al. Shell R&D, Rijswijk, The Netherlands
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Source: Mason et al. EURO 2006 presentation and JIMO 07 joint paper
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Oil Field Production Analysis and Optimization: 
The Global Optimization Advantage

Improved gas lift (production) using HFTP/LGO at Shell IEP 

EURO 2006 talk, JIMO 2007 paper by T. Mason, C. Emelle, J. van Berkel, A. Bagirov, F. Kampas, and JDP
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Global Optimization Software Users

• Universities

• Research organizations

• Advanced industries, R&D departments

• Scientific, engineering, econometrist and financial 
modelers

• Consulting organizations

• GO software is used worldwide
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Authors/Editors Application Areas, with Information on  
Software (in works denoted by +S)

Grossmann, 1996 Chemical Engineering Design + S
Pardalos, Shalloway & Xue, 1996 Computational Chemistry and Biology
Pintér, 1996 Environmental Modeling/Mgmt, and others + S
Corliss and Kearfott, 1999 Rigorous Optimization in Industry + S
Floudas et al., 1999 Handbook of Test Problems 
Papalambros and Wilde (2000) Engineering Design 
Edgar, Himmelblau & Lasdon, 2001 Chemical Engineering Design/Operations+ S
Gao, Ogden & Stavroulakis, 2001 Physics (Mechanics) 
Pardalos and Resende, 2002 Topical chapter by Floudas (Chem. Engrg)
Schittkowski, 2002 Model Fitting (Calibration) + S
Tawarmalani and Sahinidis (2002) Chemical Engineering Design/Operations+ S
Diwekar (2003) Environmental Modeling/Mgmt + S

Global Optimization Applications and 
Perspectives: Illustrative References
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Authors/Editors Application Areas, with Details on  
Software (in works denoted by +S)

Locatelli, Schoen et al. 2000+ Computational Chemistry and Biology + S
Stojanovic, 2003 Financial Modeling + S
Zabinsky, 2003 Engineering Design + S
Neumaier, 2004 See topical review sections + S
Bartholomew-Biggs, 2005 Financial Modeling and Optimization
Liberti & Maculan, 2005 Chapters on Software Implementations + S
Nowak, 2005 MINLP Software Devpt & Tests + S
Pintér, 2006 Global Optimization with Maple + S
Pintér, 2006 GO: Sci & Engrg Case Studies + S
Pintér, 2007 Applied NLO in Modeling Environments + S
Kampas & Pintér, 2007 Modeling & Opt. Using Mathematica + S

Further information is welcome

Note: Keep an eye also on other literature not written by GO researchers �
numerous examples discussed by engineers and scientists who need GO…

Global Optimization Applications and 
Perspectives: Illustrative References
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This e-book includes hands-on demos of the LGO IDE
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(forthcoming)
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Frank J. Kampas and János D. Pintér
ELSEVIER SCIENCE (forthcoming)

Advanced Optimization 
Scientific, Engineering, and Economic Applications

with Mathematica Examples
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Conclusions
• Global optimization is a subject of growing importance: 
it is relevant in many areas in the sciences, engineering, 
and economics 

• Development and application of sophisticated, complex 
numerical models: the use of global scope optimization 
methodology is often essential

• Professionally developed and supported GO solver 
options are available for a growing number of platforms

• Further developments of modeling tools, algorithms, 
and software in progress
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Some Key Challenges and Future Work
• Integrate exact and heuristic methods
• Handle problems with (very) costly functions
• Handle problems w/o an exploitable structure
• Stochastic optimization: simulation and optimization
• Dynamic models: d.e. solvers and optimization

Several Key Application Areas of GO  
• Advanced engineering 
• Chemical and process industries
• Defense, security
• Econometrics and finance
• Math/physics/chemistry/biology 
• Medical and pharmaceutical R&D

Conclusions
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• Customized model, algorithm, software, DSS 
development and related consulting services 
• Workshops and tutorials 
• Demonstration software, reports, and articles 
available

• Further information: www.pinterconsulting.com
• Comments and questions: jdpinter@hfx.eastlink.ca

Interest in R&D and Business Cooperation



114

Thanks for your attention!


