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Mathematical Programming and Biomedicine

In recent years, there has been a steady growth of interest in
applications of optimization in biological and medical sciences.

In many areas of biomedicine, optimization has become an
indispensable tool (e.g. X-ray crystallograpgy, protein folding,
etc.)

Optimization is also frequently used for designing and
modeling complex systems, which are abundant in biology.
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Mathematical Programming and Biomedicine

The types of optimization models utilized in biomedicine
comprise a broad range of areas of mathematical
programming, including linear programming, quadratic
programming, general nonlinear programming, discrete
optimization, etc.

In particular, multi-quadratic 0–1 programming finds an
important application in epilepsy research and fractional 0–1
programming is used to formulate the consistent biclustering
problem in data mining.
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Epilepsy

A symptom of a brain disorder distinguished by recurring
seizures.

Can begin at any age.

Affects 1% of the population. World Health Organization
estimates 50 million cases worldwide.

Quality of Life: Affects self-esteem, career, social
opportunities, restricted driving privileges.
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Epileptic Seizure Prediction

Epilepsy consists of more than 40 clinical syndromes affecting
50 million people worldwide. At least 30% of patients with
epilepsy continue to have seizures despite treatment with
antiepileptic drugs.

Epileptic seizure occurrences seem to be random and
unpredictable. However, recent studies in epileptic patients
suggest that seizures are deterministic rather than random.
Subsequently, studies of the spatiotemporal dynamics in
electroencephalograms (EEG’s), from patients with temporal
lobe epilepsy, demonstrated a preictal transition of
approximately 1

2 to 1 hour duration before the ictal onset
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Epileptic Seizure Prediction

The enormous number of neurons and dynamic nature of
connections between them makes the analysis of brain
function especially challenging.

In order to perform a quantitative analysis of brain, one can
treat certain groups of neurons (functional units of the brain)
as vertices of a graph and investigate the connections between
these functional units.
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Epileptic Seizure Prediction
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Lyapunov Exponents: what is it and why?

Important measure that characterizes chaotic behavior of
nonlinear system.

Global Lyapunov Exponent: how fast nearby orbits of the
system converge or diverge in infinitely large time interval.

Local Lyapunov exponent characterize local predictability
around a point x0 in phase space

Lyapunov Exponent has proven its efficiency in EEG analysis
for predicting epileptic seizures

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Formal Definition

Let a system be set by

Ẋ (t) = F (X ), where X : R 7→ Rn, F : Rn 7→ Rn

The maximal Lyapunov Exponent λ can be defined as follows:

λ = lim
t→∞

lim
δX (0)→0

1

t
log2

δX (t)

δX (0)

For short term maximal Lyapunov Exponent (STLmax) we can
take “reasonable” t instead of external limit.
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Estimation from Time Series

In real life we often deal with one dimensional time series of
noisy data (such as EEG signal) instead of explicit system of
equations

Wolf et al suggested algorithm for Lyapunov Exponent
calculation from time series

A Wolf, J B Swift, H L Swinney, J A Vastano, Determining Lyapunov Expononets from a Time

Series, Phisica 16D (1985), pp. 285 - 317.

We used Sackellares et al modification of Wolf’s algorithm for
STLmax calculation that handles noisy non-stationary data

L D Iasemidis, J C Principe, J C Sackellares, Measurement and Quantification of Spatiotemporal

Dynamics of Human Epilepic Seizures. Nonlinear Signal Processing in Medicine, Ed. M. Akay,

IEEE Press, 1999
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Approach to Estimation
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Figure: Evolution in phase space and replacement procedure used to
estimate Lyapunov Exponents from experimental data

STLmax =
1

tM − t0

M∑
k=1

log2
L′(tk)

L(tk−1)
.
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Short Term Largest Lyapunov Exponents

Since the brain is a nonstationary system, algorithms used
to estimate measures of the brain dynamics should be capable
of automatically identifying and appropriately weighing
existing transients in the data. In a chaotic system, orbits
originating from similar initial conditions (nearby points in the
state space) diverge exponentially (expansion process). The
rate of divergence is an important aspect of the system
dynamics and is reflected in the value of Lyapunov
exponents.

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Spatiotemporal Dynamical Analysis

During the last decade, the advances in studying brain are
associated with the extensive use of electroencephalograms
(EEG) which can be treated as the quantitative representation
of the brain function.

EEG data essentially represent time series recorded from the
electrodes located in different functional units of brain. We
utilize the concept of T-index to measure the entrainment of
two brain sites at a time moment.
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Spatiotemporal Dynamical Analysis

The T -index at time t between electrode sites i and j is
defined as:

Ti ,j(t) =
√

N × |E{STLmax ,i − STLmax ,j}|/σi ,j(t)

where E{·} is the sample average difference for the
STLmax ,i − STLmax ,j estimated over a moving window wt(λ).

At the moment of a seizure some brain sites exhibit the
convergence of their EEG signals, which is characterized by
the drop of the corresponding T-index below Tcritical .
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Spatiotemporal Dynamical Analysis

A natural graph representing the brain: each vertex
corresponds to a functional unit/electrode, and there is a edge
between two of them if T-index is below Tcritical .

The number of edges in this graph dramatically increases at
seizure points, and it decreases immediately after seizures.
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Epileptic Seizure Prediction
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Epileptic Seizure Prediction

One aspect of the analysis of the epileptic brain is finding a
maximum clique in this graph. It provides us with the largest
set of “critical” elecrode sites most entrained during the
seizure.

If the number of critical sites is set equal to k, we can
formulate the problem of selecting the optimal group of
critical site as a multi-quadratic 0–1 programming.
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Electrode Selection Problem

Let xi ∈ {0, 1} denote if site i is selected:

min xTAx

s.t.
∑n

i=1 xi = k

xTBx ≥ Tcriticalk(k − 1)

x ∈ {0, 1}n

aij is the T-index between sites i and j during the seizure
point.

bij is the T-index between sites i and j 10 min after the onset
of seizure.
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Multi-Quadratic 0–1 Programming

min
x∈{0,1}n

f (x) = xTAx ,

s.t. Bx ≥ b,
f1(x) = xTQ1x ≥ α1,
f2(x) = xTQ2x ≥ α2,

· · ·
fk(x) = xTQkx ≥ αk .

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Applications

Theoretical physics (spin glass models)

Graph and network problems

Engineering applications

Medical applications

Finance and economics

Chemical applications
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Conventional Linearization

For each product xixj , introduce a new variable xij = xixj

(notice that xii = x2
i = xi for xi ∈ {0, 1}.)

The relation between new and old variables is defined by

xij ≤ xi ,

xij ≤ xj ,

xij ≥ xi + xj − 1.

The number of variables increases as O(n2). This is very
inefficient from the computational viewpoint.
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Improved Linearization

min eT s

s.t. Qx − y − s = 0, (1)∑n
i=1 xi = k, (2)

y ≤ M(1− x), (3)

Bx − z ≥ 0, (4)

eT z ≥ Tαk(k − 1), (5)

z ≤ M ′x , (6)

s, y , z ≥ 0, x ∈ {0, 1}n, (7)

where M = maxi
∑n

j=1 qij and M ′ = maxi
∑n

j=1 bij .
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Seizure Warning Algorithm
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Epileptic Seizure Prediction

P.M. Pardalos, W. Chaovalitwongse, L.D. Iasemidis,
J.C. Sackellares, D.-S. Shiau, P.R. Carney, O.A. Prokopyev,
V.A. Yatsenko, Seizure Warning Algorithm Based on
Optimization and Nonlinear Dynamics, Mathematical
Programming, Vol. 101/2 (2004), pp. 365–385.

W. Chaovalitwongse, O.A. Prokopyev, P.M. Pardalos,
Electroencephalogram (EEG) Time Series Classification:
Applications in Epilepsy, Annals of OR, Vol. 148/1 (2006), pp.
227–250.
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Massive Datasets

The proliferation of massive datasets brings with it a series
of special computational challenges. This data avalanche
arises in a wide range of scientific and commercial
applications.

In particular, microarray technology allows one to grasp
simultaneously thousands of gene expressions throughout the
entire genome. To extract useful information from such
datasets a sophisticated data mining algorithm is required.
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Massive Datasets

Abello, J.; Pardalos, P.M.; Resende, M.G. (Eds.), Handbook of
Massive Data Sets, Series: Massive Computing, Vol. 4,
Kluwer, 2002.
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Major Data Mining Problems

Clustering (Unsupervised): Given a set of samples partition
them into groups of similar samples according to some
similarity criteria.

Classification (Supervised Clustering): Determine classes of
the test samples using known classification of training data set.

Feature Selection: For each of the classes, select a subset of
features responsible for creating the condition corresponding to
the class (it’s also a specific type of dimensionality
reduction).

Outlier Detection: Some of the samples are not good
representative of any of the classes. Therefore, it is better to
disregard them while preforming data mining.
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Major challenges in Data Mining

Typical noisiness of data arising in many data mining
applications complicates solution of data mining problems.

High-dimensionality of data makes complete search in most of
data mining problems computationally infeasible.

Some data values may be inaccurate or missing.

The available data may be not sufficient to obtain statistically
significant conclusions.
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Biclustering

Biclustering is a methodology allowing for feature set and test
set clustering (supervised or unsupervised) simultaneously.

It finds clusters of samples possessing similar characteristics
together with features creating these similarities.

The required consistency of sample and feature classification
gives biclustering an advantage over other methodologies
treating samples and features of a dataset separately of each
other.
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Biclustering

Figure: Partitioning of samples and features into 3 classes.
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Survey on Biclustering Methodologies

“Direct Clustering” (Hartigan)

The algorithm begins with the entire data as a single block
and then iteratively finds the row and column split of every
block into two pieces. The splits are made so that the total
variance in the blocks is minimized.

The whole partitioning procedure can be represented in a
hierarchical manner by trees.

Drawback: this method does NOT optimize a global objective
function.

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Introduction
Formal Setup
Consistent Biclustering
Supervised Biclustering
Application to EEG Data

Survey on Biclustering Methodologies

Cheng & Church’s algorithm

The algorithm constructs one bicluster at a time using a
statistical criterion – a low mean squared resedue (the
variance of the set of all elements in the bicluster, plus the
mean row variance and the mean column variance).

Once a bicluster is created, its entries are replaced by random
numbers, and the procedure is repeated iteratively.
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Survey on Biclustering Methodologies

Graph Bipartitioning

Define a bipartite graph G (F ,S ,E ), where F is the set of
data set features, S is the set of data set samples, and E are
weighted edges such that the weight Eij = aij for the edge
connecting i ∈ F with j ∈ S . The biclustering corresponds to
partitioning of the graph into bicliques.
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Survey on Biclustering Methodologies

Given vertex subsets V1 and V2, define

cut(V1,V2) =
∑
i∈V1

∑
j∈V2

aij

and for k vertex subsets V1,V2, . . . ,Vk ,

cut(V1,V2, . . . ,Vk) =
∑
i<j

cut(Vi ,Vj)
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Survey on Biclustering Methodologies

Biclustering may be performed as

min
V1,V2,...,Vk

cut(V1,V2, . . . ,Vk),

on G or with some modification of the definition of cut to
favor balanced clusters.

This problem is NP-hard, but spectral heuristics show good
performance [Dhillon]
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Biclustering: Applications

Biological and Medical:

Microarray data analysis

Analysis of drug activity, Liu and Wang (2003)

Analysis of nutritional data, Lazzeroni et al. (2000)
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Biclustering: Applications

Text Mining: Dhillon (2001, 2003)

Marketing: Gaul and Schader (1996)

Dimensionality Reduction in Databases: Agrawal et al.
(1998)

Others:

electoral data - Hartigan (1972)
currency exchange - Lazzeroni et al. (2000)
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Biclustering: Surveys

S. Madeira, A.L. Oliveira, Biclustering Algorithms for
Biological Data Analysis: A Survey, 2004.

A. Tanay, R. Sharan, R. Shamir, Biclustering Algorithms: A
Survey, 2004.

S. Busygin, O.A. Prokopyev, and P.M. Pardalos, Biclustering
in Data Mining, to appear in C&OR, 2007.
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Data Representation

A dataset (e.g., from microarray experiments) is normally
given as a rectangular m × n matrix A, where each column
represents a data sample (e.g., patient) and each row
represents a feature (e.g., gene):

A = (aij)m×n,

where the value aij is the expression of i-th feature in j-th
sample.
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Definitions

Data set of n samples and m features is a matrix

A = (aij)m×n,

where the value aij is the expression of i-th feature in j-th
sample.

We consider classification of the samples into classes

S1,S2, . . . ,Sr , Sk ⊆ {1 . . . n}, k = 1 . . . r ,

S1 ∪ S2 ∪ . . . ∪ Sr = {1 . . . n},

Sk ∩ S` = ∅, k, ` = 1 . . . r , k 6= `.
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Definitions

This classification should be done so that samples from the
same class share certain common properties. Correpondingly,
a feature i may be assigned to one of the feature classes

F1,F2, . . . ,Fr , Fk ⊆ {1 . . .m}, k = 1 . . . r ,

F1 ∪ F2 ∪ . . . ∪ Fr = {1 . . .m},

Fk ∩ F` = ∅, k, ` = 1 . . . r , k 6= `,

in such a way that features of the class Fk are “responsible”
for creating the class of samples Sk .
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Definitions

This may mean for microarray data, for example, strong
up-regulation of certain genes under a cancer condition of a
particular type (whose samples constitute one class of the
data set). Such a simultaneous classification of samples and
features is called biclustering (or co-clustering).
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Definitions

Definition

A biclustering of a data set is a collection of pairs of sample and
feature subsets

B = ((S1,F1), (S2,F2), . . . , (Sr ,Fr ))

such that the collection (S1,S2, . . . ,Sr ) forms a partition of the
set of samples, and the collection (F1,F2, . . . ,Fr ) forms a
partition of the set of features.
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Our Approach: Intuition

Let us distribute features among the classes of training set
such that each feature belongs to the class where its average
expression among the training samples is highest.(

S0
1 ,S0

2 , ...,S0
r

)
→ (F1,F2, ...,Fr )

Now, if we transpose the matrix, take the feature classification
as given, and re-classify the training samples according to
highest average expression values in feature classes...

(F1,F2, ...,Fr ) →
(
S1

1 ,S1
2 , ...,S1

r

)
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Intuition Behind Biclustering

Will we obtain the same training set classification?

?
(
S0

1 ,S0
2 , ...,S0

r

)
=

(
S1

1 ,S1
2 , ...,S1

r

)
?

If yes, we will say that we obtained a consistent biclustering.
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Consistent Biclustering

Let each sample be already assigned somehow to one of the
classes S1,S2, . . . ,Sr . Introduce a 0–1 matrix S = (sjk)n×r

such that sjk = 1 if j ∈ Sk , and sjk = 0 otherwise.

The sample class centroids can be computed as the matrix
C = (cik)m×r :

C = AS(STS)−1,

(
cik =

∑
j∈Sk

aij

|Sk |

)
whose k-th column represents the centroid of the class Sk .
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Consistent Biclustering

Consider a row i of the matrix C . Each value in it gives us the
average expression of the i-th feature in one of the sample
classes. As we want to identify the checkerboard pattern in
the data, we have to assign the feature to the class where it is
most expressed. So, let us classify the i-th feature to the class
k̂ with the maximal value ci k̂ :

i ∈ Fk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : ci k̂ > cik
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Consistent Biclustering

Using the classification of all features into classes F1, F2, . . .,
Fr , let us construct a classification of samples using the same
principle of maximal average expression. We construct a 0–1
matrix F = (fik)m×r such that fik = 1 if i ∈ Fk and fik = 0
otherwise. Then, the feature class centroids can be computed
in form of matrix D = (djk)n×r :

D = ATF (FTF )−1,

(
djk =

∑
i∈Fk

aij

|Fk |

)
whose k-th column represents the centroid of the class Fk .

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Introduction
Formal Setup
Consistent Biclustering
Supervised Biclustering
Application to EEG Data

Consistent Biclustering

The condition on sample classification we need to verify is

j ∈ Sk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : dj k̂ > djk

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Introduction
Formal Setup
Consistent Biclustering
Supervised Biclustering
Application to EEG Data

Consistent Biclustering

Definition

A biclustering B will be called consistent if the following relations
hold:

i ∈ Fk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : ci k̂ > cik

j ∈ Sk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : dj k̂ > djk
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Consistent Biclustering

Definition

A data set is biclustering-admitting if some consistent
biclustering for it exists.

Definition

The data set will be called conditionally biclustering-admitting
with respect to a given (partial) classification of some samples
and/or features if there exists a consistent biclustering preserving
the given (partial) classification.
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Consistent Biclustering

A consistent biclustering implies separability of the
classes by convex cones.

Theorem

Let B be a consistent biclustering. Then there exist convex cones
P1,P2, . . . ,Pr ⊆ Rm such that all samples from Sk belong to the
cone Pk and no other sample belongs to it, k = 1 . . . r . Similarly,
there exist convex cones Q1,Q2, . . . ,Qr ⊆ Rn such that all
features from Fk belong to the cone Qk and no other feature
belongs to it, k = 1 . . . r .
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Separation by Cones

1x

2x
3x

0

Figure: 3 classes are separated in 3D-space
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Conic Separability

Proof

Let Pk be the conic hull of the samples of Sk . Suppose ĵ ∈ S`,
` 6= k, belongs to Pk . Then

a.̂j =
∑
j∈Sk

γja.̂j ,

where γj ≥ 0. Biclustering consistency implies that dĵ` > dĵk , that
is ∑

i∈F`
ai ĵ

|F`|
>

∑
i∈Fk

ai ĵ

|Fk |
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Conic Separability

Proof (cont’d)

Plugging the conic representation of ai ĵ , we can obtain∑
j∈Sk

γjdj` >
∑
j∈Sk

γjdjk ,

that contradicts to dj` < djk (also implied by biclustering
consistency).
Similarly, we can show that the formulated conic separability holds
for feature classes.
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α- and β-Consistent Biclustering

Definition

A biclustering B will be called α-consistent if the following
relations hold:

i ∈ Fk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : ci k̂ > αF
i + cik

j ∈ Sk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : dj k̂ > αS
j + djk

where α is a vector of αS
j ≥ 0 and αF

i ≥ 0.
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α- and β-Consistent Biclustering

Definition

A biclustering B will be called β-consistent if the following
relations hold:

i ∈ Fk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : ci k̂ > βF
i cik

j ∈ Sk̂ ⇒ ∀k = 1 . . . r , k 6= k̂ : dj k̂ > βS
j djk

where β is a vector of βF
i ≥ 1 and βS

j ≥ 1.
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α- and β-Consistent Biclustering

If a biclustering B is α-consistent then it is consistent.

If a biclustering B is β-consistent and cik ≥ 0 and djk ≥ 0,
∀i , j , k, then it is consistent.

Both allow selecting the most representative subset of features
and/or samples.
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Supervised Biclustering

One of the most important problems for real-life data mining
applications is supervised classification of test samples on
the basis of information provided by training data.

A supervised classification method consists of two routines,
first of which derives classification criteria while processing the
training samples, and the second one applies these criteria to
the test samples.
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Supervised Biclustering

In genomic and proteomic data analysis, as well as in other
data mining applications, where only a small subset of
features is expected to be relevant to the classification of
interest, the classification criteria should involve
dimensionality reduction and feature selection.

We handle such a task utilizing the notion of consistent
biclustering. Namely, we select a subset of features of the
original data set in such a way that the obtained subset of
data becomes conditionally biclustering-admitting with
respect to the given classification of training samples.
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Fractional 0–1 Programming Formulation

Formally, let us introduce a vector of 0–1 variables
x = (xi )i=1...m and consider the i-th feature selected if xi = 1.

The condition of biclustering consistency, when only the
selected features are used, becomes∑m

i=1 aij fi k̂xi∑m
i=1 fi k̂xi

>

∑m
i=1 aij fikxi∑m
i=1 fikxi

, ∀j ∈ Sk̂ , k̂, k = 1 . . . r , k̂ 6= k.
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Fractional 0–1 Programming Formulation

We will use the fractional relations as constraints of an
optimization problem selecting the feature set. It may
incorporate various objective functions over x , depending on
the desirable properties of the selected features, but one
general choice is to select the maximal possible number of
features in order to lose minimal amount of information
provided by the training set. In this case, the objective
function is

max
m∑

i=1

xi

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Introduction
Formal Setup
Consistent Biclustering
Supervised Biclustering
Application to EEG Data

Fractional 0–1 Programming Formulation

One of the possible fractional 0–1 formulations based on
β-consistent biclustering criterion (suitable for microarrays):

max
x∈Bn

m∑
i=1

xi ,

s.t.∑m
i=1 aij fi k̂xi∑m
i=1 fi k̂xi

≥ βS
j

∑m
i=1 aij fikxi∑m
i=1 fikxi

, ∀j ∈ Sk̂ , k̂, k = 1 . . . r , k̂ 6= k.
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Fractional 0–1 Programming Formulation

Generally, in the framework of fractional 0–1 programming we
consider problems, where we optimize a multiple-ratio
fractional 0–1 function subject to a set of linear constraints.

We have a new class of fractional 0–1 programming
problems, where fractional terms are not in the objective
function, but in constraints, i.e. we optimize a linear objective
function subject to fractional constraints.

How to solve fractionally constrained 0–1 programming
problem?
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Linear Mixed 0–1 Formulation

We can reduce our problem to a linear mixed 0–1
programming problem applying the approach similar to the
one used to linearize problems with fractional 0–1 objective
function.

T.-H. Wu, A note on a global approach for general 0–1
fractional programming, European J. Oper. Res. 101
(1997) 220–223.
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Linear Mixed 0–1 Formulation

Theorem

A polynomial mixed 0–1 term z = xy, where x is a 0–1 variable,
and y is a continuous variable, can be represented by the following
linear inequalities:
(1) z ≤ Ux;
(2) z ≤ y + L(x − 1);
(3) z ≥ y + U(x − 1);
(4) z ≥ Lx,
where U and L are upper and lower bounds of variable y , i.e.
L ≤ y ≤ U.
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Linear Mixed 0–1 Formulation

To linearize the fractional 0–1 program we need to introduce
new variable yk

yk =
1∑m

`=1 f`kx`
, k = 1, . . . , r .
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Linear Mixed 0–1 Formulation

In terms of the new variables fractional constraints are
replaced by

m∑
i=1

aij fi k̂xiyk̂ ≥ βS
j

m∑
i=1

aij fikxiyk
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Linear Mixed 0–1 Formulation

Next, observe that the term xiyk is present if and only if
fik = 1, i.e., i ∈ Fk . So, there are totally only m of such
products, and hence we can introduce m variables zi = xiyk ,
i ∈ Fk :

zi =
xi∑m

`=1 f`kx`
, i ∈ Fk .
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Linear Mixed 0–1 Formulation

In terms of zi we have the following constraints:

m∑
i=1

fikzi = 1, k = 1 . . . r .

m∑
i=1

aij fi k̂zi ≥ βS
j

m∑
i=1

aij fikzi ∀j ∈ Sk̂ , k̂, k = 1 . . . r , k̂ 6= k.

yk − zi ≤ 1− xi , zi ≤ yk , zi ≤ xi , zi ≥ 0, i ∈ Fk .
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Supervised Biclustering

Unfortunately, while the linearization works nicely for
small-size problems, it often creates instances, where the gap
between the integer programming and the linear programming
relaxation optimum solutions is very big for larger problems.
As a consequence, the instance can not be solved in a
reasonable time even with the best techniques implemented
in modern integer programming solvers.

HuGE Index Data set: about 7000 features

ALL vs. AML Data Set: about 7000 features

GBM vs. AO data set: about 12000 features
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Heuristic

If we know that no more than mk features can be selected for
class Fk , then we can impose

xi ≤ mkzi , xi ≥ zi , i ∈ Fk .
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Heuristic

Algorithm

1. Assign mk := |Fk |, k = 1 . . . r .
2. Solve the mixed 0–1 programming formulation using the
inequalities

xi ≤ mkzi , xi ≥ zi , i ∈ Fk .

instead of

yk − zi ≤ 1− xi , zi ≤ yk , zi ≤ xi , zi ≥ 0, i ∈ Fk .

3. If mk =
∑m

i=1 fikxi for all k = 1 . . . r , go to 6.
4. Assign mk :=

∑m
i=1 fikxi for all k = 1 . . . r .

5. Go to 2.
6. STOP.
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Supervised Biclustering

After the feature selection is done, we perform classification of
test samples according to the following procedure.

If b = (bi )i=1...m is a test sample, we assign it to the class Fk̂
satisfying∑m

i=1 bi fi k̂xi∑m
i=1 fi k̂xi

>

∑m
i=1 bi fikxi∑m
i=1 fikxi

, k = 1 . . . r , k̂ 6= k.
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HuGE index data set: Feature Selection

A computational experiment that we conducted was on
feature selection for consistent biclustering of the Human
Gene Expression (HuGE) Index data set. The purpose of the
HuGE project is to provide a comprehensive database of gene
expressions in normal tissues of different parts of human body
and to highlight similarities and differences among the organ
systems.

The number of selected features (genes) is 6889 (out of 7070).
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HuGE index data set: Feature Selection

Figure: HuGE Index heatmap.

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Introduction
Formal Setup
Consistent Biclustering
Supervised Biclustering
Application to EEG Data

ALL vs. AML data set

T. Golub at al. (1999) considered a dataset containing 47
samples from ALL patients and 25 samples from AML
patients. The dataset was obtained with Affymetrix
GeneChips.

Our biclustering algorithm selected 3439 features for class
ALL and 3242 features for class AML. The subsequent
classification contained only one error: the AML-sample 66
was classified into the ALL class.

The SVM approach delivers up to 5 classification errors
depending on how the parameters of the method are tuned.
The perfect classification was obtained only with one specific
set of values of the parameters.
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ALL vs. AML data set

Figure: ALL vs. AML heatmap.
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GBM vs. AO data set

The algorithm selected 3875 features for the class GBM and
2398 features for the class AO. The obtained classification
contained only 4 errors: two GBM samples (Brain NG 1 and
Brain NG 2) were classified into the AO class and two AO
samples (Brain NO 14 and Brain NO 8) were classified into
the GBM class.
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GBM vs. AO data set

Figure: GBM vs. AO heatmap.
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Epilepsy Treatment

Treatment: Drugs, Surgery, Electrical and Magnetic
Stimulation.

Vagus Nerve Stimulation

Electric stimulator implanted subcutaneously in the chest
Connected, via subcutaneous electrical wires, to the cervical
left vagus nerve.
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Vagus Nerve Stimulation parameters

The VNS is programmed to deliver electrical stimulation at a
set intensity, duration, pulse width, and frequency.

Optimal parameters are presently determined on a case by
case basis, depending on clinical efficacy (seizure frequency)
and tolerability.

Such parameter adjustment is time consuming and costly.

There is a need to develop a reliable, objective and rapid
method of determining the optimal stimulation parameters for
each patient
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EEG Data

General Clinical Research Center in Shands Hospital at The
University of Florida.

Two patients A and B.

25 scalp-EEG channels

Sampling rate 512 Hz
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Figure: Montage for scalp electrode placement (10-20)
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VNS Stimulation Settings

Parameter Patient A Patient B

Recorded time ≈ 24 hours

Signal duration 30 sec

Rest duration 5 min

Pulse width 500 µsec 250 µsec

Output current 1.75 mA 1.5 mA

Frequency 30 Hz 20 Hz

# of VNS cycles 255 237
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Manually Activated Stimulation

Stimulation may be activated manually, for example in case of
seizure.

During EEG recording session

Patient A did not undergo seizures.
Patient B experienced 14 seizures (manual stimulation was
activated 14 times)

Parameters for patient B’s manual simulation

stimulation activated after 19-37 sec after seizure, output
current 1.75 mA, signal frequency 20 Hz, pulse width 500
µsec, duration 60 sec.

Manual stimulation is not included
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Lyapunov Exponents Estimation: Parameters

Input: EEG signal recorded with 512Hz (∆t = 1.95msec)

Output: STLmax series computed for every 4sec window of
the source data

Algorithm parameters: reconstructed dimension p = 7, lag
step τ = 7 (14 msec), evolution time ∆ = 21 (41 msec)

25 channels for patients A and B are processed
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Figure: Building dataset for biclustering: STLmax points that are
included for the analysis for each channel.
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Biclustering Experiment

Positive (stimulation) class: Each 30 sec stimulation provided
7 data points (STLmax that each correspond to a four
seconds window)

Negative (non-stimulation) class: 10 consecutive Lyapunov
Exponents 250 sec after stimulation

We averaged corresponding data points across all stimulation
cases

Thus, we obtained a 17× 25 matrix. 17 samples (7
stimulation + 10 non-stimulation) and 25 features (channels)
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Figure: Heatmaps for patients A and B
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Results

Patient A

No features were excluded,i.e. patient’s data were
conditionally biclustering-admitting
STLmax data were consistently decreasing during the
simulation except for channel p3
All samples and all classes are confirmed by cross-validation

Patient B

five features selected
The leave-one-out cross-validation was passed for all but four
samples

Optimization and Data Mining in Biomedicine



Introduction
Multi-Quadratic 0–1 Programming in Epilepsy Research

Fractional 0–1 Programming in Data Mining

Introduction
Formal Setup
Consistent Biclustering
Supervised Biclustering
Application to EEG Data

Thank You!

Questions?

Optimization and Data Mining in Biomedicine


	Main Talk
	Introduction
	Multi-Quadratic 0--1 Programming in Epilepsy Research
	Fractional 0--1 Programming in Data Mining
	Introduction
	Formal Setup
	Consistent Biclustering
	Supervised Biclustering
	Application to EEG Data



