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INnfroduction

v Many real-world optimization problems are nonconvex
s Have multiple local optima
s Hard to converge to global optimum

Examples: Water Networks and Crude Oil Scheduling
v Many of these models have decomposable structures
s  2-stage stochastic programming problems

s  Planning and Scheduling models
s  Engineering design models

v Models are large in size and hard to solve to global optimality

scaling issue

GOAL: Develop an algorithm to globally optimize large-scale models by
exploiting decomposable structure
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‘ Problem Descripfion

min z=s(x,y)+ Z

MINLP

Non-convex
model

Linking constraints

gy R 5 R | Link together

BRIy R sub-models
Linking Variables

x=[x;] i=1...,1

y=ly;l1 j=1....J——— Binary variables «——

>z = 2

(P)

Non-Linking Constraints

Constraints for
separate
sub-models

g, R™ " — R
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hy i R™ T — R

Non-Linking Variables
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ul’l
Vn }n=1,... N
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Optimization of MINLP model

Models are large and often difficult to solve to global optimality

Direct application of deterministic global optimization Computationally
algorithms (spatial branch and bound) not effective inefficient

|

Major reason:

Weak lower bounds from MI(N)LP relaxation of (P) constructed with convex envelopes

Alternative approach: Lagrangean Decomposition
s Exploit decomposable structure of the large-scale model
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‘ Model Reformulation

How to bring (P) to decomposable form ?

v Create N 1dentical copies of the linking variables
2 N

(xx%,. . . .
(2 vy ‘ Duplicate variables
YLy

v Write linking constraints in (P) in terms of Duplicate Variables

v Introduce Coupling constraints into model (P)

X =x=.=

New coupling
constraints

(RP)
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Lagrangean Decomposition

v Dualize Coupling constraints

S Multiply coupling constraints with Lagrange multipliers, transfer them to

—x" 4 @v (y" =y
n=1 n=l1
N

objective function

N N N-1
min zRF Zans(x",y")+ Zrn(un,vn)+ ZT(x”
n=1

n=1

Lagrange Multipliers

v Obtain decomposable LLagrangean relaxation

N N V=1
min zXRF = ans(x”, Y+ Zrn (u,,v{)+ Z(ﬂﬁ)T (x" -
=1 n=1 u=l

st h,(u,,v,)=0 n=1,.,N
g,(u,,v,)<0 n=1,...N
W y"u,,v,)=0  n=L..,N
g, (", y"u,,v,)<0 n=1...N

xE<xt <Y n=1,...N
y e {0,1}) n=1..,N
ub <u, <ul n=1,...,N
v, e{0.}™  n=1..,N

I m,
x"eR ,u,e R™
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Model Decomposition

v Decomposed sub-problems (fixed multipliers) - Smaller and easier to solve

min 2, =w, s,y + 1, ,59,) + (o= An)| () + (G =) (77
st. h,(u,,v,)=0

g, (u,,v,)<0

(X" "ty v,) =0

Globally Optimize
g, (x",y" u,,v,) <0 LN each sub-model
K <at<aY M= N to get solution
%k
y"e{0,1} zZ,

L U
u, <u,<u,

v, €{0,1}"™

I m,
x"eR ,u,e R™

A=0 Ay =0 Any=0 An=0 (SP,)
N

Lower bound (Lagrangean Decomposition) : Z z, =z
n=1

Could use as a basis for B&B (Caroe and Schultz, 99)
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Basic |deas of Proposed Algorithm

v Combine Spatial branch and bound with Lagrangean decomposition

v Strengthen MI(N)LP relaxation of (P) with Lagrangean cuts

Branch and Cut Algorithm

At each node of search tree:

Cut Generation : Solve to global optimality dual subproblems for
one or more sets of multiplier values

Lower Bound : Solve MIL(N)P relaxation with convexified Lagrangean cuts

Upper Bound : Feasible solution to nonconvex model which is obtained by
globally solving NLP with fixed integer variables

‘ Guaranteed to converge to global optimum given a tolerance € between
lower and upper bounds
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Optimality based Cutting Planes

v Combine convex relaxations and Lagrangean decomposition

v Using solution Z: (Globally optimal solution of subproblem (SP )) derive cuts:

z, Sw,s(x, )+ r,(u,,v, )+ An = An-D)F )+ A = A=) () (C,)

Note: nonconvex cut written in terms of original coupling variables

v Update Lagrange multipliers (Fisher, 1981) and generate more cuts

cign
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Incorporation of Cutting Planes

v Add bound strengthening cuts to (P) and convexify resulting problem to get
MI(N)LP relaxation (R)
min z% =5(x, y)+ i?n(un,vn)
n=l1
st. l_zn(un,vn)=0 n=1,..,N
g,u,,v,)<0 n=1....N
E’l(x,y,un,vn)zO n=1,..,N
2 (x,y,u,,v.)<0 n=1...N
@) + (A= An)T (0 + (A —1@
xF<x<x
ve {01
uk<u, <u’ n=1..,N
v, e{o,}™  n=1..,N
xXe Rl,un e R™ (R)
h()=0 8,000 WO)=0 Z,()<0 () 7,0 - Convexified functions
Y4

Solve model (R) to get a valid lower bound on the global optimum of (P)
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Properties of Lagrangean Cuts

Theorem 1. The Lagrangean cuts

4y SW,s(X,Y) + 1, (1, v,) + (An = An-)T (0) + (An = A1) () (C)
are valid, and do not cut off any portion of the MIP feasible region of MINLP model (P)

Proposition 1. The lower bound obtained by solving MI(N)LP with cuts is at least as strong

as the one obtained by solving the MILP relaxation (CR) obtained by convexifying the
nonconvex terms

Proposition 2. The lower bound obtained by solving MI(N)LLP with cuts is at least as strong

as the lower bound obtained from Lagrangean decomposition when all N sub-models
are solved to global optimality.

Remarks

1. Cuts can be generated by solving subproblems in parallel
2. Update Lagrange multipliers: extension of method by Fisher (1981)

3. Global solution of subproblems can be obtained with standard solvers (BARON)

CHPD
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Constructing a Relaxation

Upper bound

»
»

(Feasible solution)

Lower bound

(Infeasible solution)

McCormick, 1976
Tawarmalani and Sahinidis, 2002

v Linearize nonlinear terms and use convex envelopes

MINLP model ) MIN)LP
relaxation

v Usually weak relaxations | » Upper and Lower bounds are far apart %
CHPD
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Geometric Interpretation

Incorporate cutting planes to tighten relaxation

Upper bound

»

(Feasible solution)

Initial Lower bound

(Infeasible solution)

New Lower bound
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Branch and Cut Algorithm

At each node of the branch and bound tree

Step 1. Initialization: Setting of variable bounds

Step 2. Bound contraction (Optional)

Step 3. Formulation of [Lagrangean relaxation and decomposition:

a. Derive model (LRP) and decompose into separate sub-problems
b. Solve each smaller sub-problem to global optimality

c. Generate cutting planes and add to (P) to get model (P’)

Step 4. Lower bound: Convexify model (P') to get model (R) and solve (R)
to obtain a lower bound on the solution

d\“lj\[;
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Branch and Cut Algorithm

At each node of the branch and bound tree

Step 5. Upper bound: Fix binary variables in (P) to the values obtained by solving (R) and
globally optimize the resulting nonconvex NLP

Step 6. Termination: Fathom node —
a. If LB>UB

b. Optimality gap <&

c. Solution of sub-problems is feasible for model (RP) i.e.
non-anticipativity constraints hold in relaxation (LRP)

Step 7. Branching: Similar to technique by Caroe and Schultz (1999)
§ Branch on linking variables following heuristics

Convergence: Guaranteed for € - convergence

Feasible region is continuously partitioned into sub-regions with non-decreasing lower
bounds obtained over each sub-region

cign
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Remark: Lower Bounding Problem in Reduced Space

v Combine proposed algorithm (involving cutting planes) with conventional
Lagrangean decomposition

Example : Problem (P) contains 10 sub-models

1 2 3 4 5 6 7 8 9 10
®s) -
A i ¥ * * * ¥
- D 26 27 <8 29 210
| | | | | | | | || | | | | |
1 2 3 4 5 6 7 8 0 10

1. Decompose (P) into only 6 sub-problems as opposed to 10 sub-problems
- Sub-problem (P5) (collection of 5 sub-problems) , and 6, 7, 8, 9, 10

2. Solve (P5) using proposed algorithm (cutting plane technique) and 6, 7, 8, 9, 10
using BARON

3. Add global optima of sub-problems to obtain valid lower bound on solution

* * *k * *k *
Lower bound = zps+ zg+ 27+ 23+ 29+ 299

v In this way lower bounding problem at any node does not have to be solved in full sp
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lllustrative Problem

min 2 EP

Uyt g = 3uypltys +dugzin +4=0
upju;3—5=0

o Sty gy —Uplys —Unling +5=0 |

Unylys + Uyl = 2Uystlyg =5 =0

Usjlizy +usplzy —4=0

Non — linking equations ~ Bilinear

Linking variables ‘ X,y

X 2uy

X2 Uy C . Uy, Uyl
> Linking constraints o _ R

X 2 Uz Non-linking variables ‘ Uiy sy s

3y<x<5y)] Uy3,Unz,Us3

0<x<5

ye{0,1}

1.5<u;, <3 0.5<u, <45 1.5<u; <35

1.3<u, <11 0.2<u,, <05 0.5<us <13

1<u;;<25 0<u,; <5 1<u3;,<19

2<u, <4 0.25<u,, <5 0.5<uy, <2.5 (EP)

O0<u;<3 32<u,5 <8.7 2<u35 <72

0<u,, <10 0.15<u,, <7.8 1.5< U <9

Upg s Upq s U3y
Uys s Uos 5 Uss

Ure>Ur s U3g

1 binary variable, 19 continuous variables, 10 constraints, 15 nonconvex terms Q_%
CENTER
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Numerical Results

v Formulate Lagrangean relaxation and decompose into 3 sub-models and solve each
sub-model with 2 sets of Lagrange multipliers

s  Generate 6 cutting planes

Root node results

Lower bound (LB) using algorithm = 64.01
Upper bound (UB) obtained = 64.499

Lower and Upper bounds converge within 1 % tolerance at root node of Branch and Bound tree

Comparison with standard relaxations

LB (using Lagrangean decomposition) = 63.33
LB (from MI(N)LP relaxation) = 61.63

d\“lj\[;
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Branch and Bound Tree

Relaxation gap reduced to 0.1 %

0<x<5 Zf = 64.01
= 64.499

3.6666 < x<5

zh = 64.1563 = 67.48973
2UB = 64.499 - 67.832
< <
= 64.36722 = 65.36749
ZUB = 64.499 UB = 65.61

= 64.7746
zVB = 64.869

PRUNED PRUNED

d\“lj\lg
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Test Examples

6 test examples

Original MINLP model (P)
Example Number of Number of Number of
Binary Variables Continuous Variables Constraints
1 1 19 10 Illustrative problem
2 48 300 946
3 42 330 994 Scheduling problems
4 57 381 1167
5 24 764 928 } Process synthesis
6 77 1222 1377 problems
Comparison of relaxations
Relaxation at root Relaxation at root
Example Global optimum node (with proposed node (without
cuts) proposed cuts)
1 64.499 64.01 61.63 2 cuts
2 281.14 68.45 55.24 A
MILP 3 351.32 133.80 113.35
4 383.69 189.19 147.24 > 10 cuts
5 651,653.65 645,951.64 610,092.61
6 1,369,067.5 1,347,297.36 1,319,882.36 J
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Synthesis of Integrated Process Water Systems

Karuppiah, Grossmann (2006)
WATER — One of MOST IMPORTANT resources used in process industry

Conventional water network: centralized

Freshwater
——40 ton/hr—m] PU1

Freshwater 150 ton/hr
——50 ton/hr—m] PU2 > TU1 —150 ton/hr-m| TU2 —150 ton/hr-m»
(1 ppm A,
1.16 ppm B)
Freshwater Treatment units
——60 ton/hr—m PU3

i Freshwater consumed: 150 ton/hr
Process units

How to synthesize a network involving water reuse and
decentralized water treatment that will:
a) Reduce consumption of freshwater
b) Minimize cost
=> Global Optimization Problem

Carnegie Mellon



Superstructure for integrating Water Using/Treating Units

Integrated Water Network with reuse and recycle flows is proposed

Feshwate \ / \'/ \/ _I\
Fresfiwier ‘\\‘\/\ {///\’\\ fge

TU2 4 S5

1 PU1 o 52 nli \= TU @

v Superstructure consists of 1. Mixers (MU)@

2. Splitters (SU)

3. Process Units (PU) U

4. Treatment Units (TU) K

Carnegie Mellon Ecsmeu




‘ Design under Uncertainty
Superstructure of an Integrated Water Network

Contaminants Contaminants Karuppiah ( 2006, )
in out
A

Discharge

Freshwater i : >

Contaminants l Contaminants
in out
Take on
§ Uncertain Parameters (i) Contaminant loads in each Process unit different
values at
different

(i) Contaminant removal ratios in each Treatment unit , :
points of time

S Uncertainty has to be handled at the Design Stage

Superstructure optimization is formulated as an Mixed Integer Non-linear
Programming Problem

Carnegie Mellon Ecsmeu




Multiscenario MINLP Model

S Uncertainty in the system modeled using a finite set of scenarios denoted by N

§ Uncertain parameters assume different values in each scenarion € N

Objective Function Concave

Min AR[Z(C;}," +1+ AR 21 HY p, > PM'F/+HY p,CryFW, +HY p, > OC'F] 1)
i teTU n i n n teTU
\

i€1 e / \ €1y /
e e

1% stage costs 2M gtage costs

= First stage design variable pertaining to maximum flow in the pipe i
= Design variable pertaining to existence of pipe i

= Second stage state variable corresponding to flow in pipe i in scenario n
= Cost coefficient corresponding to existence of pipe i

= Investment cost of pipe i ($)

= Cost of pumping water in pipe i in scenario 1 (3$)

= Hours of operation of plant per annum (hrs)

= Cost of freshwater ($/ ton)

= Investment cost of a treatment unit ¢ ($)

= Operating cost of a treatment unit f in scenario n ($)

= Annualized factor for investment

Carnegie Mellon



MINLP Model

Mixer Units Splitter Units
Overall Material Balance Overall Material Balance
Ff=>F  VmeMU, kem,,,Vne N Ff=>Fl VseSU,kes,,vneN

iemy, 1€ S oyt

out in >

aminant Balance Contaminant Balance

i k . .
7j, Vme MU, ke m,,,,Vne N Cin=Cjy  Vj.VseSUVi€s,  kes,,Vne N

b
out? n

Bilinear

Process Units Treatment Units
Flow Balance Total Flow Balance
FY=F' =P’ pePU, icp,, kep,,neN F¥=F! VieTU,iet,,, ket, . Vne N

Contaminant Balance Contaminant Balance
PG, +15,X10=P"C}, . W& PU i€ pjke p,,e TN Ch=B,Ch, V) VteTU, iet

jn~jn out’

ket, ,Nne N

mn’
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MINLP Model (cont.)

Bound Strengthening Cuts

S 12 x10° = Y (1= B FECH +EMC™ Wi Vne N (10) Redundant overall mass

peU &T0 balance each component

ket,,

Design Constraints , ‘
Gy g pig fiUL i If y' = 0, then stream i
yeroeny l does not exist

and so Fiis 0

Linking Constraints ( “Hard Constraints” )
@ > @ Vi,Vne N _

Design Variable

Flow variable in scenario n

Carnegie Mellon Ecsmeu




Relaxation of Nonconvex NLP

v Bilinear terms F'C’ (in contaminant balance for mixers ) are replaced by another variable

fF=>f VjiVme MU,Vkem,, (10)

v Concave cost functions (F'J' (in the objective function ) are replaced by another variable (Fi)
to get a relaxed objective function

O, = HCHFW+ARYIC'(F')+HY OC'F (11)
1eTU 1eTU

v We construct Convex and Concave Envelopes for the Bilinear terms and the

Concave functions

Linear Programming Relaxation

:

Very large gap between the Lower and Upper bounds

Carnegie Mellon Ecsmeu




‘ Convexification of Nonconvex Functions

Concave and Convex Envelopes for Bilinear Terms

i Bilinear term , o o o
o | fi2F"C;+C{F - F"CY .
T | Overestimators flzFYCi+C/F —F"CY? D TTTTITTrS McCormick (1976 )
// fISF*Ci+CYF —F"Cy Under- and over-estimators
/ fiSFYCi+CYF -FUCY (12)  (Linear Inequalities )
CL
/ . FL < FI < FiU CiL<Ci <ClU
Ft FY J J J
F »
Underestimators
Underestimation of Concave functions
Concave term
U“ —i iL ¥ Fiua—FiLa i i .
T(F ) (F ) > (r*) +((Fi)u_£¢m)}x( - ) Cennenaes ( Secant line )

o

-
T~ FL < Fi < FU

(FY’ Underestimator

F—» % i
Carnegie Mellon CENTER




[1lustrative Example

Optimization of 2 Process Unit - 2 Treatment Unit network operating under uncertainty

Process Unit data Scenario Probabilities
. Maximum . Probablity
. Flow Discharge load Inlet Conc. Scenario (P.)
Unit (ton/hr) (Kg/hr) (ppm) P
nl n2 n3 nd n5 n6 n7 n8 n9 nl0 PP
A B nl 0.2
A 2 1 0.5 1 1 2 0.5 1 0.5 2
PU1 40 0 0 n2 0.3
B 2.5 1.5 1 1.5 1.5 2.5 1 1.5 1 2.5
n3 0.15
A 2 1 0.5 2 1 1 1 0.5 2 0.5
PuU2 50 50 50 4 0.1
B 2 1 0.5 2 1 1 1 0.5 2 0.5 n :
. n5 0.05
Treatment Unit data
né 0.05
. Removal ratio (%)
Unit nl n2 n3 1nd n5 n6 n7 n8 n9 nl0 IC oc | o
n7 0.03
A 90 95 99 95 99 95 95 99 95 90
TU1 16800 1 0.7 n8 0.02
B 0 0 0 0 0 0 0 0 0 0
Al o 0 0 0 0 0 0 0 0 0 nd 0.05
TU2 12600 0.0067 0.7
B 90 95 99 95 95 95 90 90 95 95 nl0 0.05
Environmental discharge limit for both contaminants = 10 ppm
Cost coefficient for plpe connection (Cp) = 6 Annualized factor for investment (AR) = 0.1
Investment cost coefficient for pipe (IP) = 100 Hours of operation of plant per annum (H) = 8000 hrs
Operating cost coefficient for pumping water (PM) = 0.006 Cost of Freshwater (Cpy ) = 1%/ ton

CHPD
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‘ Optimal Network Topology

10 scenarios for uncertain contaminant loads (A,B) in process units,
and uncertain recovery in treatment units

( Maximum flows to be handled in the pipes are shown ) MINLP 24 0-1 var

764 cont. var
928 constr.

Global minimum of Network Capital Cost and Expected Operating Cost = $651,653.1/yr

— Lower bound (LB) generated using proposed algorithm = $645,951.64/yr
— Upper bound (UB) obtained = $651,653.1/yr

Lower and Upper bounds converge within 1 % tolerance at root node of Branch and Bound tree

— Total time = 62.8 secs (GAMS/CPLEX, CONOPT, BARON)

Carnegie Mellon Ecsmeu
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Scheduling Problem

Crude Tanks Distillation
REFINERY Schematic Columns

Products

Products

Crude Arrivals

Given: Determine:

1. Scheduling Horizon 1. When to order crudes

2. Tank inventory (rni'n,.rpax, Optimizatio 2. How much of each crude to order
initial levels) 3. Operating flows of crude
3. Available crude types and their - between tanks

properties 4. Charges to Pipestills
4. Product property specifications and demands 5. How much of each product to produce

5. Bounds on crude and product flows -
Carnegie Mellon Eﬂﬁmu




Scheduling Model

v Continuous time formulation by Furman et al. (2006)

v

Scheduling problem modeled as a Mixed Integer Nonlinear Program (MINLP)

§ Discrete variables used to determine which flows should exist and when
§ Model is non-linear and non-convex

Optimization model

Minimize rotal cost = waiting cost for supply streams

+ unloading cost of supply streams
+ inventory cost for each tank over scheduling horizon

+ setup cost for charging CDUs with different charging tanks
s.t. Tank constraints  (Bilinear)

Distillation unit (CDU) constraints

Supply stream constraints

Variable bounds (P)

Carnegie Mellon EcsEmeu




Global Optimization of MINLP

v Large-scale non-convex MINLPs such as (P) are very difficult to solve

N

Commercial global optimization solvers fail to converge to solution in tractable

computational times

v Special Outer-Approximation algorithm proposed to solve problem to global optimality

™| NLP fixed 0-1

\ 4

Master MILP

Upper Bound

4 Solving this convex relaxation
is time consuming!

Lower Boun

s Guaranteed to converge to global optimum given certain tolerance between

lower and upper bounds

Upper Bound : Feasible solution of (P)

Lower Bound : Obtained by solving a MILP relaxation (R) of the non-convex
MINLP model with Lagrangean Decomposition based cuts added to it

Carnegie Mellon
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Spatial Decomposition of the Network

How to derive the Lagrangean cuts ?

Crude Crude
Supply . Distillation
Streams Storage Charging Units

Tanks Tanks .

) \(

v Network is split into two decoupled sub-structures D1 and D2
s Physically interpreted as cutting some pipelines (Here a, b and c)
s Set of split streams denoted by p {a,b,c}

d\“lj\lg
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Decomposed Sub-models

min z, = waiting cost for supply streams + unloading
cost of supply streams + inventory cost for
tanks in D1 over scheduling horizon + setup
costs for charging CDUs in D1 with different

Sub-problem charging tanks + Optimize to

corresponding to

sub-structure D1 ZZ Aoy +ZZZ A Vi +ZZ AT +ZZ 272l A, get solution
p 1 jop ot p ot p ot p ot z ;k
S.t. Tank constraints
Distillation unit constraints
Supply stream constraints (LD1)

Variable bounds

min z, = inventory cost for tanks in D2 over scheduling
horizon + setup costs for charging CDUs in D2
with different charging tanks +
Sub-problem

corresponding to _Zzﬂg?rvﬁ’z _ZZZ/%;, piVor —Zzﬂ,T,ﬂT,}f —Zzﬂf,iT,i 7 —ZZAITJ Wy, Optimize to
Pt p 1 p ot

jopt p 1t .
sub-structure D2 get solution

S.t. Tank constraints 2,
Distillation unit constraints

Variable bounds (LD2) g%\[,z
Carnegie Mellon CENTER



Cut Generation

v Using solutions z and z, we develop the following cuts :

z, < waiting cost for supply streams + unloading cost of supply streams +
inventory cost for tanks in DI over scheduling horizon + setup costs
for charging CDUs in DI with diﬁ‘erent charging tanks +

VIUZJ“ZZZ. pr+z m+Z P

Lagrange Multlphers

z, < Inventory cost for tanks in D2 over scheduling horizon + setup costs
for charging CDUs in D2 with different charging tanks +

DIVAED IV RIS VAT WY WIS
p p t p t

jop ot

v Add above cuts to (R) to get (RP) which is solved to obtain a valid lower bound on
global optimum of (P)

Remark: Update Lagrange multipliers and generate more cuts to add to (R)

d\“lj\[;
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Computational Results

3 Supply streams — 3 Storage tanks — 3 Charging tanks — 2 Distillation units

3 Supply streams — 3 Storage tanks — 3 Charging tanks — 2 Distillation units

3 Supply streams — 6 Storage tanks — 4 Charging tanks — 3 Distillation units

Solvers : MILP =» CPLEX 9.0,

Original MINLP model (P)
Example Number of Number of Number of
Binary Variables Continuous Variables Constraints
1 48 300 946
2 42 330 994

Lower bound L[ngzroll)‘?il:lzd Total time
[obtained by . taken for .
Example solving relaxation (P-NLB) Relaxation one iteration Lo_cal optimum
using gap (%) . (using DICOPT)
(RP) ] BARON | of algorithm*

(2RP) (ZP-NLPY (CPUsecs)

1 281.14 282.19 0.37 827.7 291.93

2 351.32 359.48 2.27 6913.9 361.63

BARON could not guarantee global optimality in more than 10 hours*

NLP==) BARON 7.2.5 (Sahinidis, 1996)

. Solving MILP model (RP)
Solving MILP model (R) (including proposed cuts)
Example : :
Solution | LP relaxation No. of Time taken Solution LP relaxation No. of Time taken
R to solve (R)* R to solve (RP)*
) at root node nodes (CPUsegs) (ZRP) at root node nodes cs)
1 281.14 -55.24 940800 / 1953.3 \ 281.14 68.45 334300 / 758.8 \
351.32 113.35 931700 14481.7 351.32 133.80 310600

Carnegie Mellon
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Summary

1. Proposed a novel branch-and-cut algorithm for global optimization of large-scale
nonconvex MINLP models with decomposable structures

- Orders of magnitude reduction in solution time can be obtained compared
to standard solvers

2. Presented a technique to combine the concepts of Lagrangean decomposition
and convex relaxations to generate tight relaxations of nonconvex models

3. Successful applications in integrated water systems and crude oil scheduling

cign
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lliustrative Example

Superstructure optimization problem

Contaminants Contaminants
n A out

Discharge

Freshwater( >

Contaminants Contaminants
in v out

. . . . . Take on
v Uncertain Parameters (i) Contaminant loads in each Process unit different values
- . . . at different
(i1) Contaminant removals in each Treatment unit points of time

Design problem formulated using a two-stage stochastic programming framework

Objective: minimize 1" Stage capital  y 2% stage expected operating

COSsts COsts n
Carnegie Mellon CENTER




Numerical Data

Optimization of 2 Process Unit - 2 Treatment Unit network operating under uncertainty
Process Unit data

. Maximum
) Flowrate Discharge load Inlet Conc.
Unit (ton/hr) (Kg/hr) (ppm)
nl n2 n3 n4 nS no6 n7 n8 n9 nl0 App B
A 2 1 0.5 1 1 2 0.5 1 0.5 2
PU1 40 0 0
B 2.5 1.5 1 1.5 15| 25 1 1.5 1 2.5
A 2 1 0.5 2 1 1 1 0.5 2 0.5
PU2 50 50 50
B 2 1 0.5 2 1 1 1 0.5 2 0.5
Treatment Unit data
. Removal ratio (%)
Unit nl n2 n3 n4 ns n6 n7 n8 n9 nl0 IC oC o
A 90 95 99 95 99 95 95 99 95 90
TU1 16800 1 0.7
B 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0
TU2 12600 0.0067 0.7
B 90 95 99 95 95 95 90 90 95 95

Environmental discharge limit for both contaminants = 10 ppm

Cost coefficient for pipe connection (C,)

Investment cost coefficient for pipe (IP )

6
100

Operating cost coefficient for pumping water (PM ) = 0.006

Carnegie Mellon

Scenario Probabilities

Annualized factor for investment (AR)
Hours of operation of plant per annum (H)
Cost of Freshwater ( Cry )

, Probablity
Scenario

(Py)

ni 0.2

n2 0.3

n3 0.15

n4 0.1

n5 0.05

n6 0.05

n7 0.03

n8 0.02

n9 0.05

n10 0.05
= 0.1
= 8000 hrs
= 1$/ton

CHPD




Computational Results

v Proposed Algorithm
Solvers Used : LP / MILP ==) CPLEX 9.0,

MINLP Model :
S Number of Binary Variables
S Number of Continuous Variables = 764
S Number of Constraints
S Number of Non-convexities

=928
= 406

=24

20 cutting planes used at each node

NLP ==)> CONOPT3

. Best bound from Lower bound Total time taken at
Lower bound using .. from Upper Bound
Node # . R Lagrangean Decomposition UB node
proposed algorithm (z%) (2L8) MILP (zVB) (CPUsecs*)
Relaxation (z¢K)

(L(()rc;)e(;t 645,951.64 644,856.82 610,092.61 651,653.65 19.33

1 648,566.716 647,496.24 610,115.37 672,971.83 4.1

2 648,828.60 648,073.24 610,109.06 661,439.35 61.83

Lower and Upper bounds converge within 1 % tolerance at root node of Branch and Bound tree

Total time taken in solving problem to global optimality = 85.6 sec*

v BARON (Global Optimization MINLP Solver, Sahinidis (1996) )

— Could not guarantee global optimality in more than 10 hours*

Carnegie Mellon

* Pentium IV, 3.2 GHz , 1024 MB
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Geometric Interpretation

Objective
function
Gap<e
bound \4
]
2
Relaxation 3
gap =
© — Relaxation
Lower
bound
Flo Flo F » Fw
F —»

Tree DD

Representation
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‘ Optimal Network Topology

Integrated network operating under uncertainty

Global minimum sum of Network Design Cost and Expected Operating Cost = $ 651,653.1

Freshwater

Freshwater

15.78
@ 39.08

( Maximum flows to be handled in the pipes are shown )

Vs

Conventional Network

40———p

PUA1

50—

PU2

Carnegie Mellon

Objective Function value for the Conventional Network = $ 1,568,286.7 g_%
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Relaxation (using . Lagrangean
. Convex Relaxation - .
Example Global optimum proposed decomposition at
. at root node

algorithm) root node
1
2 281.14 68.45 -55.24 201.335
3 351.32 133.80 113.35 276.582
4 383.69 189.19 147.24 344.267
5
6

CHPD
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Problem Statement

Crude Crude
Supply . Distillation
Streams Storage Charging Units
Tanks Tanks

-

-

-

-

Given:

(a) Maximum and minimum inventory levels for a tank

(b) Initial total and component inventories in a tank

(c) Upper and lower bounds on the fraction of key components in the crude inside a tank
(d) Times of arrival of crude oil in the supply streams

(e) Amount of crude arriving in the supply streams

(f) Fractions of various components in the supply streams

(g) Bounds on the flowrates of the streams in the network

(h) Time horizon for scheduling

Determine:

(i) Inventory levels in the tanks at various points of time

(ii) Flow volumes from one unit to another in a certain time interval
(iii) Start and end times of the flows in the network

Objective: Minimize Cost

CHPD
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