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v Many real-world optimization problems are nonconvex
§ Have multiple local optima
§ Hard to converge to global optimum

v Many of these models  have decomposable structures
§ 2-stage stochastic programming problems
§ Planning and Scheduling models
§ Engineering design models

v Models are large in size and hard to solve to global optimality
scaling issue

GOAL:    GOAL:    Develop an algorithm to globally optimize large-scale models by 
exploiting decomposable structure

Introduction

Examples: Water Networks and Crude Oil Scheduling
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(P)
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Linking Variables Non-Linking Variables

Iixx i ,,1][ �==
Jjyy j ,,1][ �==

Linking constraints Non-Linking Constraints

Link together 
sub-models

Binary variables

Constraints for 
separate 
sub-models

MINLP       

Non-convex 
model

Problem Description
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Models are large and often difficult to solve to global optimality 

§ Exploit decomposable structure of the large-scale model

Direct application of deterministic global optimization
algorithms (spatial branch and bound) not effective

Computationally 
inefficient

Major reason: 
Weak lower bounds from MI(N)LP relaxation of (P) constructed with convex envelopes

Alternative approach: Lagrangean Decomposition

Optimization of MINLP model
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v Introduce Coupling constraints into model (P) 

v Create N identical copies of the linking variables

Duplicate variables

New coupling 
constraints

How to bring (P) to decomposable form ?

},,,{ 21 Nxxx �

},,,{ 21 Nyyy �

v Write linking constraints in (P) in terms of Duplicate Variables

Nxxx === �
21

Nyyy === �
21
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v Dualize Coupling constraints

§ Multiply coupling constraints with Lagrange multipliers, transfer them to   
objective function

v Obtain decomposable Lagrangean relaxation
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v Decomposed sub-problems (fixed multipliers)            Smaller and easier to solve
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Globally Optimize 
each sub-model 
to get solution 

Model Decomposition

Could use as a basis for B&B (Caroe and Schultz, 99)
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Branch and Cut Algorithm

Lower Bound : Solve MIL(N)P relaxation with convexified Lagrangean cuts

Guaranteed to converge to global optimum given a tolerance ε between 
lower and upper bounds

Upper Bound : Feasible solution to nonconvex model which is obtained by 
globally solving NLP with fixed integer variables

v Strengthen MI(N)LP relaxation of (P) with Lagrangean cuts

v Combine Spatial branch and bound with Lagrangean decomposition

At each node of search tree:

Cut Generation : Solve to global optimality dual subproblems for 
one or more sets of multiplier values

Basic Ideas of Proposed Algorithm
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v Using solution      (Globally optimal solution of subproblem (SPn)) derive cuts:

v Combine convex relaxations and Lagrangean decomposition

*
nz

)()()()(),(),( 11
* yxvuryxswz Ty

n
y
n

Tx
n

x
nnnnnn −− −+−++≤ λλλλ (Cn)

v Update Lagrange multipliers (Fisher, 1981) and generate more cuts

Optimality based Cutting Planes

Note: nonconvex cut written in terms of original coupling variables
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v Add bound strengthening cuts to (P) and convexify resulting problem to get 
MI(N)LP relaxation (R)

(R)

v Solve model (R) to get a valid lower bound on the global optimum of (P) 
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Incorporation of Cutting Planes
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Theorem 1. The Lagrangean cuts

are valid, and do not cut off any portion of the MIP feasible region of MINLP model (P)

Proposition 1. The lower bound obtained by solving MI(N)LP with cuts is at least as strong
as the one obtained by solving the MILP relaxation (CR) obtained by convexifying the 
nonconvex terms

Proposition 2. The lower bound obtained by solving MI(N)LP with cuts is at least as strong
as the lower bound obtained from Lagrangean decomposition when all N sub-models
are solved to global optimality.

Remarks

1. Cuts can be generated by solving subproblems in parallel

2. Update Lagrange multipliers: extension of method by Fisher (1981)

3.    Global solution of subproblems can be obtained with standard solvers (BARON)

)()()()(),(),( 11
* yxvuryxswz Ty

n
y
n

Tx
n

x
nnnnnn −− −+−++≤ λλλλ (Cn)

Properties of Lagrangean Cuts
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v Usually weak relaxations Upper and Lower bounds are far apart

v Linearize nonlinear terms and use convex envelopes

Upper bound 

(Feasible solution)

McCormick, 1976
Tawarmalani and Sahinidis, 2002

Lower bound

(Infeasible solution)

MINLP model MI(N)LP 
relaxation

Constructing a Relaxation
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Upper bound 

(Feasible solution)

Initial Lower bound

(Infeasible solution)

New Lower bound

Incorporate cutting planes to tighten relaxation

Geometric Interpretation
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Step 1. Initialization: Setting of variable bounds

At each node of the branch and bound tree

Step 2. Bound contraction (Optional)

Step 3. Formulation of Lagrangean relaxation and decomposition:

a. Derive model (LRP) and decompose into separate sub-problems

b. Solve each smaller sub-problem to global optimality

c. Generate cutting planes and add to (P) to get model (P')

Step 4. Lower bound: Convexify model (P') to get model (R) and solve (R) 
to obtain a lower bound on the solution

Branch and Cut Algorithm
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Step 5. Upper bound: Fix binary variables in (P) to the values obtained by solving (R) and 
globally optimize the resulting nonconvex NLP

At each node of the branch and bound tree

Step 6. Termination: Fathom node –

Convergence: Guaranteed for ε - convergence
Feasible region is continuously partitioned into sub-regions with non-decreasing lower 
bounds obtained over each sub-region

a. If  LB ≥UB

b. Optimality gap  ≤ε

c. Solution of sub-problems is feasible for model (RP) i.e. 
non-anticipativity constraints hold in relaxation (LRP)

Step 7. Branching: Similar to technique by Caroe and Schultz (1999)
§ Branch on linking variables following heuristics

Branch and Cut Algorithm
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v Combine proposed algorithm (involving cutting planes) with conventional 
Lagrangean decomposition

Example : Problem (P) contains 10 sub-models

1 9 102 53 4 76 8

1. Decompose (P) into only 6 sub-problems as opposed to 10 sub-problems
- Sub-problem (P5) (collection of 5 sub-problems) , and 6, 7, 8, 9, 10

2. Solve (P5) using proposed algorithm (cutting plane technique) and 6, 7, 8, 9, 10 
using BARON

3. Add global optima of sub-problems to obtain valid lower bound on solution

1 2 53 4 6 7 8 9 10

(P5)
*
8z *

9z*
6z *

7z

*
5Pz

*
10z

v In this way lower bounding problem at any node does not have to be solved in full space

*
10

*
9

*
8

*
7

*
6

*
5 zzzzzzboundLower P +++++=

Remark: Lower Bounding Problem in Reduced Space
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1 binary variable, 19 continuous variables, 10 constraints, 15 nonconvex terms

Linking variables
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v Formulate Lagrangean relaxation and decompose into 3 sub-models and solve each 
sub-model with 2 sets of Lagrange multipliers

Lower and Upper bounds converge within 1 % tolerance at root node of Branch and Bound tree

§ Generate 6 cutting planes

Lower bound (LB) using algorithm = 64.01
Upper bound (UB) obtained = 64.499

LB (using Lagrangean decomposition) = 63.33

LB (from MI(N)LP relaxation) = 61.63

Root node results

vs

Comparison with standard relaxations 

LB (using cutting planes) = 64.01

Numerical Results
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2222.30 ≤≤ x

56666.3 ≤≤ x

2222.3074.3 ≤≤ x

0

1 6

50 ≤≤ x zR = 64.01

zUB = 64.499

2 5

3 4

zR = 67.48973

zUB = 67.832

zR = 65.36749

zUB = 65.61

zR = 64.7746

zUB = 64.869

zR = 64.1563

zUB = 64.499

zR = 64.36722

zUB = 64.499

zR = 64.4413

zUB = 64.499

PRUNED

PRUNED

PRUNED

6666.32222.3 ≤≤ x

074.30 ≤≤ x

6666.30 ≤≤ x

PRUNED

Relaxation gap reduced to 0.1 %

Branch and Bound Tree
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Comparison of relaxations

Test  Examples

6 test examples

1167381574

928764245

13771222776

101911

994330423

946300482

Number of 
Constraints

Number of 
Continuous Variables

Number of 
Binary Variables

Original MINLP model (P)

Example

1,319,882.361,347,297.36 1,369,067.5 6

610,092.61645,951.64 651,653.65 5

147.24189.19383.694

113.35133.80351.323

55.2468.45281.142

61.6364.0164.4991

Relaxation at root 
node (without 
proposed cuts)

Relaxation at root 
node (with proposed 

cuts)
Global optimumExample

Scheduling problems

Process synthesis 
problems

Illustrative problem

2 cuts

10 cuts
MILP
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Synthesis of Integrated Process Water Systems

WATER � One of  MOST IMPORTANT resources used in process industry

How to synthesize a network involving water reuse and
decentralized water treatment that will:
a) Reduce consumption of freshwater
b) Minimize cost 

=> Global Optimization Problem

PU1

PU2

PU3

TU1 TU2

Freshwater

Freshwater

Freshwater

40 ton/hr

50 ton/hr

60 ton/hr

150 ton/hr 150 ton/hr
150 ton/hr

(1 ppm A,
1.16 ppm B)

Conventional water network: centralized

Freshwater consumed: 150 ton/hrProcess units

Treatment units

Karuppiah, Grossmann (2006)
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S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

Freshwater

M1

M2

M3

M4

M5
Discharge

S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

Freshwater

M1

M2

M3

M4

M5
Discharge

S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

Freshwater

M1

M2

M3

M4

M5
Discharge

Integrated Water Network with reuse and recycle flows is proposed

S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

Freshwater

M1

M2

M3

M4

M5
Discharge

PU

v Superstructure consists of  1. Mixers (MU)

2. Splitters (SU)

3. Process Units (PU)

4. Treatment Units (TU) TU

M

 S
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Design under Uncertainty
Superstructure of an Integrated Water Network

Superstructure optimization is formulated as an Mixed Integer Non-linear 
Programming Problem

S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

Freshwater

M1

M2

M3

M4

M5
Discharge

Contaminants 
in

Contaminants 
in

Contaminants 
out

Contaminants 
out

§ Uncertainty has to be handled at the Design Stage

§ Uncertain Parameters (i) Contaminant loads in each Process unit

(ii) Contaminant removal ratios in each Treatment unit

Take on 
different 
values at 
different 

points of time

Karuppiah (2006)
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Multiscenario MINLP Model
§ Uncertainty in the system modeled using a finite set of scenarios denoted by N

§ Uncertain parameters assume different values in each scenario n ∈ N 

H = Hours of operation of plant per annum (hrs) 
CFW = Cost of freshwater ($/ ton) 

= Investment cost of a treatment unit t ($)
= Operating cost of a treatment unit t in scenario n ($)

AR = Annualized factor for investment

Min

Objective Function

= First stage design variable pertaining to maximum flow in the pipe i
yi = Design variable pertaining to existence of pipe i

= Second stage state variable corresponding to flow in pipe i in scenario n
= Cost coefficient corresponding to existence of pipe i
= Investment cost of pipe i ($)
= Cost of pumping water in pipe i in scenario n ($)

(1)( ) ( ) � ��� ���
∈
∈

∈
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ti
TUt

it
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iiii
p

outout

FOCpHFWCpHFPMpHFICARFIPyCAR
αδ ˆˆ

iF̂

i
nF
i
pC

( )δii FIP ˆ

i
n

i FPM

( )αit FIC ˆ
i

n
t FOC

1st stage costs 2nd stage costs

Concave
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MINLP ModelMINLP Model

Splitter Units
Overall Material Balance

(4)

Contaminant Balance
(5)

Mixer Units
Overall Material Balance 

(2)

Contaminant Balance
(3)

Process Units
Flow Balance

(6)

Contaminant Balance
(7)

Treatment Units
Total Flow Balance

(8)

Contaminant Balance
(9)

NnmkMUmFF out
mi

i
n

k
n

in

∈∀∈∈∀= �
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,,

NnmkMUmjCFCF out
mi

i
jn

i
n

k
jn

k
n
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,,,

NnskSUsFF in
si
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NnsksiSUsjCC inout
k
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i
jn ∈∀∈∈∀∈∀∀= ,,,,

NnpkpiPUpPFF outin
pi

n
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n ∈∀∈∈∈∀== ,,,

NnpkpiPUpjCPLCP outin
k
jn

pp
jn

i
jn

p ∈∀∈∈∈∀∀=×+ ,,,,103

NntktiTUtFF inout
i

n
k

n ∈∀∈∈∈∀= ,,,

NntktiTUtjCC inout
k
jn

t
jn

i
jn ∈∀∈∈∈∀∀= ,,,,β

Bilinear
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MINLP Model (cont.)

Bound Strengthening Cuts
(10)

Design Constraints
(11)

Linking Constraints ( “Hard Constraints” )
(12)

( ) NnjCFCFL out
jn

out
n

tk
TUt

k
jn

k
n

t
jn

PUp

p
jn

in

∈∀∀+−=× ��
∈
∈∈

,110 3 β

iyFFyF iiUiiiL ∀≤≤ ˆˆˆ

NniFF i
n

i ∈∀∀≥ ,ˆ

If yi = 0, then stream i
does not exist
and so      is 0iF̂

Design Variable Flow variable in scenario n

Redundant overall mass
balance each component
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v Bilinear terms           ( in contaminant balance for mixers ) are replaced by another variable  i
j

iCF

v We construct Convex and Concave Envelopes for the Bilinear terms and the                                                     
Concave functions

v Concave cost functions        ( in the objective function ) are replaced by another variable      
to get a relaxed objective function

( )αiF ( )i
F

out
mi

i
j

k
j mkMUmjff

in

∈∀∈∀∀= �
∈

,,

( ) ��
∈
∈

∈
∈

++

outout ti
TUt

it

ti
TUt

it
FW FOCHFICARFWHC�relax =

Linear Programming Relaxation

i
jf

Very large gap between the Lower and Upper bounds

(10)

(11)

Relaxation of Nonconvex NLP
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iL
j

iUiiL
j

i
j

iUi
j

iU
j

iLiiU
j

i
j

iLi
j

iU
j

iUiiU
j

i
j

iUi
j

iL
j

iLiiL
j

i
j

iLi
j

CFFCCFf

CFFCCFf

CFFCCFf

CFFCCFf

−+≤

−+≤

−+≥

−+≥
McCormick (1976 )

Under- and over-estimators     
( Linear Inequalities )

FiL ≤ Fi ≤ FiU Cj
iL ≤ Cj

i ≤ Cj
iU

C

CL

FL

CU

FU

F 

Underestimators

Overestimators

Bilinear term

Concave and Convex Envelopes for Bilinear Terms

Underestimation of Concave functions

F

(FL)

FL

(FU)

FU

F 

Underestimator

Concave term

( ) ( ) ( ) ( )iLi
iLiU

iLiU
iLi

FF
FF

FF
FF −×

�
�
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�

−
−+≥�



�
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αα
α

FiL ≤ Fi ≤ FiU

( Secant line )
αααα

αααα

αααα

(12)

Convexification of Nonconvex Functions
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Illustrative Example
Optimization of 2 Process Unit - 2 Treatment Unit network operating under uncertainty

0.520.511120.512A

20.510.52110.512A

5050
0.520.511120.512B

50PU2

00
2.511.512.51.51.511.52.5B

40PU1

Maximum 
Inlet Conc.

(ppm)  
A         B

Discharge load
(Kg/hr) 

n1         n2        n3         n4         n5     n6         n7         n8        n9        n10

Flow 
(ton/hr)Unit 

Annualized factor for investment  (AR)              =   0.1
Hours of operation of plant per annum (H)       =  8000 hrs
Cost of Freshwater  ( CFW )                                     = 1 $ / ton

Process Unit data

Treatment Unit data

Environmental discharge limit for both contaminants = 10 ppm

0000000000A

90959995959995999590A

0.70.006712600
95959090959595999590B

TU2

0.7116800
0000000000B

TU1

αOCICRemoval ratio (%)
n1         n2         n3          n4         n5       n6         n7        n8        n9        n10Unit 

0.05n10

0.05n9

0.02n8

0.03n7

0.05n6

0.05n5

0.1n4

0.15n3

0.3n2

0.2n1

Probablity
(pn)

Scenario

Scenario Probabilities

Cost coefficient for pipe connection  (Cp)                          =   6
Investment cost coefficient for pipe (IP ) =  100 
Operating cost coefficient for pumping water (PM )       = 0.006
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Optimal Network Topology

Global minimum of Network Capital Cost and Expected Operating Cost = $651,653.1/yr

( Maximum flows to be handled in the pipes are shown )

S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

40

50

40

50 50

44.79

50.89

44.79

50.89

40

5.71 39.28
40

39.08

40

5.93

M1

M2

M3

M4

M5
0.89

4.39

44.79

15.78

25.78

Freshwater use reduced from 90 ton/h to 40 ton/h

− Lower bound (LB) generated using  proposed algorithm = $645,951.64/yr
− Upper bound (UB) obtained = $651,653.1/yr

Lower and Upper bounds converge within 1 % tolerance at root node of Branch and Bound tree

− Total time = 62.8 secs (GAMS/CPLEX, CONOPT, BARON)

10 scenarios for uncertain contaminant loads (A,B) in process units, 
and uncertain recovery in treatment units

MINLP 24 0-1 var
764 cont. var
928 constr.
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Crude Tanks

Given: Determine:
1. Scheduling Horizon
2. Tank inventory (min, max,

initial levels)
3. Available crude types and their

properties
4. Product property specifications and demands
5. Bounds on crude and product flows 

1. When to order crudes
2. How much of each crude to order
3. Operating flows of crude

between tanks
4. Charges to Pipestills
5. How much of each product to produce 

Optimization

REFINERY Schematic
Distillation 

Columns

Products

Products
Crude Arrivals

Scheduling Problem
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v Continuous time formulation by Furman et al. (2006)

OpOptimization model

(P)(P)

v Scheduling problem modeled as a Mixed Integer Nonlinear Program (MINLP)
§ Discrete variables used to determine which flows should exist and when
§ Model is non-linear and non-convex

Minimize total cost = waiting cost for supply streams 
+  unloading cost of supply streams
+  inventory cost for each tank over scheduling horizon
+  setup cost for charging CDUs with different charging tanks

s.t.         Tank constraints    (Bilinear)
Distillation unit (CDU) constraints
Supply stream constraints
Variable bounds

Scheduling Model
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v Large-scale non-convex MINLPs such as (P) are very difficult to solve

§ Commercial global optimization solvers fail to converge to solution in tractable   
computational times

v Special Outer-Approximation algorithm proposed to solve problem to global optimality

§ Guaranteed to converge to global optimum given certain tolerance between              
lower and upper bounds

Upper Bound : Feasible solution of (P)

Lower Bound : Obtained by solving a MILP relaxation (R) of the non-convex 
MINLP model with Lagrangean Decomposition based cuts added to it

NLP fixed 0-1

Master MILP

Upper Bound

Lower Bound Solving this convex relaxation 
is time consuming!

Global Optimization of MINLP
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D1

D2

Crude 
Supply 
Streams Storage

Tanks
Charging 
Tanks

Crude 
Distillation 
Units

v Network is split into two decoupled sub-structures D1 and D2
§ Physically interpreted as cutting some pipelines   (Here a, b and c)
§ Set of split streams denoted by p    {a , b, c }∈

a
b

c

How to derive the Lagrangean cuts ?

Spatial Decomposition of the Network
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min z1 = waiting cost for supply streams +  unloading  
cost of supply streams +  inventory cost for 
tanks in D1 over scheduling horizon +  setup 
costs for charging CDUs in D1 with different 
charging tanks + Optimize to 

get solution 
*
1z

Sub-problem 
corresponding to 
sub-structure D1

(LD1)
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s.t. Tank constraints
Distillation unit constraints
Supply stream constraints 
Variable bounds

min z2 = inventory cost for tanks in D2 over scheduling 
horizon + setup costs for charging CDUs in D2 
with different charging tanks +

Optimize to 

get solution 
*
2z

(LD2)
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s.t. Tank constraints
Distillation unit constraints
Variable bounds

Sub-problem 
corresponding to 
sub-structure D2

Decomposed Sub-models
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v Using solutions      and      we develop the following cuts :

v Add above cuts to (R) to get (RP) which is solved to obtain a valid lower bound on
global optimum of (P)

Remark: Update Lagrange multipliers and generate more cuts to add to (R)

*
1z *

2z

waiting cost for supply streams +  unloading  cost of supply streams +  
inventory cost for tanks in D1 over scheduling horizon + setup costs 
for charging CDUs in D1 with different charging tanks +

≤*
1z
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inventory cost for tanks in D2 over scheduling horizon + setup costs 
for charging CDUs in D2 with different charging tanks +

≤*
2z
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Lagrange Multipliers

Cut Generation
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1167381573

994330422

946300481

Number of 
Constraints

Number of 
Continuous Variables

Number of 
Binary Variables

Original MINLP model (P)

Example

383.698928.60383.69383.693

361.636913.92.27359.48351.322

291.93827.70.37282.19281.141

Local optimum
(using DICOPT)

Total time 
taken for

one iteration
of algorithm*

(CPUsecs)

Relaxation 
gap (%)

Upper bound 
[on solving         

(P-NLP) 
using 

BARON ]
(zP-NLP)

Lower bound 
[obtained by 

solving relaxation 
(RP) ]

(zRP)

Example

8025.91258100189.19383.6915874.83029600147.24383.693

5873.2310600133.80351.3214481.7931700113.35351.322

758.833430068.45281.141953.3940800-55.24281.141

Time taken 
to solve (RP)* 

(CPUsecs)

No. of 
nodes

LP relaxation 
at root node

Solution 
(zRP)

Time taken 
to solve (R)* 
(CPUsecs)

No. of 
nodes

LP relaxation 
at root node

Solution
(zR)

Solving MILP model (RP)
(including proposed cuts)Solving MILP model (R)

Example

* Pentium IV, 2.8 GHz , 512 MB RAM

Solvers : MILP CPLEX 9.0,      NLP BARON 7.2.5 (Sahinidis, 1996)

3 Supply streams 3 Supply streams –– 6 Storage tanks 6 Storage tanks –– 4 Charging tanks 4 Charging tanks –– 3 Distillation units3 Distillation units

3 Supply streams 3 Supply streams –– 3 Storage tanks 3 Storage tanks –– 3 Charging tanks 3 Charging tanks –– 2 Distillation units2 Distillation units

3 Supply streams 3 Supply streams –– 3 Storage tanks 3 Storage tanks –– 3 Charging tanks 3 Charging tanks –– 2 Distillation units2 Distillation units

BARON could not guarantee global optimality in more than 10 hours*

Computational Results
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2. Presented a technique to combine the concepts of Lagrangean decomposition
and convex relaxations to generate tight relaxations of nonconvex models

1. Proposed a novel branch-and-cut algorithm for global optimization of large-scale
nonconvex MINLP models with decomposable structures

- Orders of magnitude reduction in solution time can be obtained compared 
to standard solvers

Summary

3. Successful applications in integrated water systems and crude oil scheduling
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THANK YOU !!!¿ QUESTIONS ?
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S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

Freshwater

M1

M2

M3

M4

M5
Discharge

Contaminants 
in

Contaminants 
in

Contaminants 
out

Contaminants 
out

Superstructure optimization problem

v Uncertain Parameters (i) Contaminant loads in each Process unit

(ii) Contaminant removals in each Treatment unit

Take on 
different values

at different 
points of time

Design problem formulated using a two-stage stochastic programming framework

Objective: 1st stage capital 
costs

minimize 2nd stage expected operating 
costs

Illustrative Example



��Carnegie Mellon

Optimization of 2 Process Unit - 2 Treatment Unit network operating under uncertainty           

0.520.511120.512A

20.510.52110.512A

5050
0.520.511120.512B

50PU2

00
2.511.512.51.51.511.52.5B

40PU1

Maximum 
Inlet Conc.

(ppm)  
A         B

Discharge load
(Kg/hr) 

n1        n2       n3         n4         n5        n6         n7       n8       n9       n10

Flowrate
(ton/hr)Unit 

Annualized factor for investment  (AR)                  =   0.1
Hours of operation of plant per annum (H)             =  8000 hrs
Cost of Freshwater  ( CFW )                                     = 1 $ / ton

Process Unit data

Treatment Unit data

Environmental discharge limit for both contaminants = 10 ppm

0000000000A

90959995959995999590A

0.70.006712600
95959090959595999590B

TU2

0.7116800
0000000000B

TU1

αOCICRemoval ratio (%)
n1         n2         n3          n4         n5       n6         n7        n8        n9        n10Unit 

0.05n10

0.05n9

0.02n8

0.03n7

0.05n6

0.05n5

0.1n4

0.15n3

0.3n2

0.2n1

Probablity

(pn)
Scenario

Scenario Probabilities

Cost coefficient for pipe connection  (Cp)                  =   6

Investment cost coefficient for pipe (IP ) =  100 

Operating cost coefficient for pumping water (PM )  = 0.006 

Numerical Data
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v Proposed Algorithm

MINLP Model :
§ Number of Binary Variables         = 24
§ Number of Continuous Variables  = 764
§ Number of Constraints                  = 928
§ Number of Non-convexities          = 406

Solvers Used : LP / MILP CPLEX 9.0,      NLP CONOPT3

* Pentium IV, 3.2 GHz , 1024 MB RAM

61.83661,439.35610,109.06648,073.24648,828.602

4.1672,971.83610,115.37647,496.24648,566.7161

19.33651,653.65610,092.61644,856.82645,951.640 (root 
node)

Total time taken at 
node

(CPUsecs*)

Upper Bound 
(zUB)

Lower bound 
from
MILP 

Relaxation (zCR)

Best bound from 
Lagrangean Decomposition 

(zLB)

Lower bound using 
proposed algorithm (zR)Node #

20 cutting planes used at each node

Lower and Upper bounds converge within 1 % tolerance at root node of Branch and Bound tree

Total time taken in solving problem to global optimality = 85.6 sec*

v BARON (Global Optimization MINLP Solver, Sahinidis (1996) )
− Could not guarantee global optimality in more than 10 hours*

Computational Results
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F 
Flo Fup

O
bj

ec
tiv

e 
Relaxation

Gap < ∈

F Flo

0

2
1

F ≤ (Flo+Fup)/2

Pruned

LB0

UB0

LB1

UB1

LB2

UB2

F ≥ (Flo+Fup)/2Tree 
Representation

Objective 
function

Upper 
bound

Lower 
bound

Relaxation 
gap

Geometric Interpretation
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Integrated network operating under uncertainty

Global minimum sum of Network Design Cost and Expected Operating Cost = $ 651,653.1

( Maximum flows to be handled in the pipes are shown )

S1

PU1

PU2

S2

S3

TU1

TU2

S4

S5

40

50

40

50 50

44.79

50.89

44.79

50.89

40

5.71 39.2840

39.08

40

5.93

M1

M2

M3

M4

M5
0.89

4.39

44.79

15.78

25.78

Objective Function value for the Conventional Network = $ 1,568,286.7

Conventional Network

Vs

PU1

PU2

TU1 TU2

Freshwater

Freshwater

40

50

90 90
90

Optimal Network Topology
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6

5

344.267147.24189.19383.694

276.582113.35133.80351.323

201.335-55.2468.45281.142

1

Lagrangean
decomposition at 

root node

Convex Relaxation 
at root node

Relaxation (using 
proposed 

algorithm)
Global optimumExample
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Crude 
Supply 
Streams Storage

Tanks
Charging 
Tanks

Crude 
Distillation 
Units

Given:
(a) Maximum and minimum inventory levels for a tank
(b) Initial total and component inventories in a tank
(c) Upper and lower bounds on the fraction of key components in the crude inside a tank
(d) Times of arrival of crude oil in the supply streams
(e) Amount of crude arriving in the supply streams
(f) Fractions of various components in the supply streams
(g) Bounds on the flowrates of the streams in the network
(h) Time horizon for scheduling

Determine:
(i) Inventory levels in the tanks at various points of time
(ii) Flow volumes from one unit to another in a certain time interval
(iii) Start and end times of the flows in the network 

Objective: Minimize Cost

Problem Statement


