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Uncertainty

So far as the laws of mathematics refer to
reality, they are not certain. And so far as
they are certain, they do not refer to
reality.

Albert Einstein

> Assumptions
» Simplifications oy

Imperial College == S[Sg
London
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Sources of Uncertainty

A B,
Process 1

B, b . C,
A A, s,| B C
—3"—i Process 2 I —=
RAW MATERIAL _ Process5 PRODUCT
B Cs
n Feed Availability n Product Demand
n Feed Composition n Temperature Variations

n Heat Transfer Coefficient n Equipment Availability

Imperial College = 5[ S
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Key Objectives

OBJECTIVE 1: Determine an OBJECTIVE 2: Derive profile

“optimal” structure/ design/ of ALL optimal solutions as
operating policy in the a function of the uncertain
presence of uncertainty parameters

n “optimal”
= profit / cost
= operability objective
n (flexibility, robustness)

n trade-offs

‘ Stochastic Optimization I

Imperial College L
London S
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What is Parametric Optimization?

n Given:
= a performance criterion to minimize/maximize
= a vector of constraints
= a vector of parameters

n Obtain:

= the performance criterion and the optimization
variables as a function of the parameters

= the regions in the space of parameters where
these functions remain valid

Imperial College =G5S



Parametric Optimization (POP)
x(6)
z(6) = min f(x,0)

s.t. g(x,0)<0 |
xe N /\/

!
0e R l :

Imperial College - “UCL
London
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An Examplé— Linear Model

(Edgar and Himmelblau, 1989) Current Max. Prod.
Crude Oil # 1 — — Gasoline 24,000 bbl/day
— Kerosene 2,000 bbl/day
REFINERY —— Fuel O11 6,000 bbl/day
Crude O1l #2 — e Residual
KPE
Objective: Maximise Profit
Parameters:
Gasoline Prod. Expansion (GPE)
Kerosene Prod. Expansion (KPE) GPE

‘ Solve optimization problems at many points? l

Imperial College == =
London
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Parametric Solution

KPE

KPE| Region #1

| Region#1___

Region #2
GPE GPE

Profit  =4.66 GPE + 87.5 KPE + 286759 -0.14 GPE + 4.21 KPE < 896.55
Crude#1 = 1.72 GPE — 7.59 KPE + 26207 |if |0 < GPE <6000

Crude#2 = -0.86 GPE + 13.79 KPE + 6897 0 <KPE (REGION #1)
Profit —=7.53 GPE + 30541 -0.14 GPE + 4.21 KPE > 896.55
Crude#1 = 1.48 GPE + 24590 If |0 < GPE < 6000

Crude#2 = -0.41GPE + 9836 KPE <500 (REGION #2)

‘Only 2 optimization problems solved! I

Imperial College
London




Parametric Optimization (POP)

x(6)
z(@)=min f(x,0)

s.t. g(x,0)<0 |
xe N /\/

!
0e R l :
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On-line Optimization (PoP )

 PARAMETRIC PROFILE
OPTIMIZER 4
CONTROL AC’J‘IONS i :
| — >
PLANT STATE v ~o

Contri} Actions ‘
PLANT Plant|State
[ PLANT ]

‘ Function Evaluation! I

Imperial College L
London S




manipulated
variable
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Model Predictive Control

min Z[x (k)QX(k)]+Z[u(k) Ru(k)]

U(K).ett (k+N) g

st x(k+1)= f(x(k),u(k))

x <x(tk+1)<x<x ,k=0l,.,N

min

u <u(k)<u ,k=0,l,..,N

min

n Solve an optimization problem at each time
interval k

Imperial College B | [ed
London —



Model Predictive Control (MPC)

min A quadratic and convex function of
discretised state and control variables

s.t. 1. Constraints linear in discretised state
and control variables

2. Lower and upper bounds on state and
control variables

\Solve a QP at each time interval I

Imperial College =56
London



Parametric Programmlng
Approach

n State variables  Parameters
n Gontrol variables  Optimization variables

n MPC  Parametric Optimization problem

n Control variables = F(State variables)

Imperial College =— 58
London
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Multi-parametric Quadratic
Programs

z(6) = min 5 x" Qx| |» Theorem 1
’ x and A are linear function of @

s.t. Ax<b+ F6@
n Theorem 2:
xe R z(0) 1s continuous, convex
fe O cCcR” and quadratic

x continuous variables ; @ parameters ; A Lagrange multipliers

Q positive definite constant matrix ; b,A,F constant vector/matrices

Imperial College R HS U ncenal nty

London
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Critical Region (CR)

n CR: the region where a solution remains optimal

= Feasibility Condition:
Ax(O)<b+ FO

= Optimality Condition: Ja
A(0) =0 :

n CR:

= A polyhedron
= Qbtain:

CR™ =®-CR=CR'UCR*UCR”’

Imperial College
London

CR
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|
.o T 1 T r
](Xt) = min - x, ., th+2 T P Z [xt+k th+k T UL Rut+k]

Uy Upg k:()

S.1.
0.7326 —0.0861] [0.0609

X1 = X, + u

101722 0.9909 | | 0.0064 |

y, =0 1.4142]x
—2<u,, <2,k=0,l

Imperial College == 5 8=
London
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Explicit Solution

[—5.9220 —6.8883 2
: 59220 6.8883 2
[-5.9220 -6.8883] x if reio ewo1 | X <5 1
| 1.5379  —6.8291 2
- [—3.4155 4.6452 [ 2.6341
2 if 0.1044 0.1215| x < |-0.0353 2,4
| 0.1259  0.0922 | —0.0267

Imperial College
London
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Explicit Solution

[-5.9220 -6.8883] x

|-6.4159 —4.6953] x+0.6423
-2

[-6.4159 —4.6953] x—0.6423

Imperial
London

College

if

if

if

if

if

if

-5.9220 —6.8883
5.9220  6.8883
~1.5379  6.8291
| 1.5379  -6.8291
[ —3.4155 4.6452]
0.1044 0.1215] «x
| 0.1259  0.0922
(0.0679 —0.0924 | .
10.1259  0.0922 |
[—0.1259 —0.0922 .
|—0.0679  0.0924
—6.4159 —4.6953
~0.0275 0.1220 | x
6.4159  4.6953
3.4155 —4.6452
—0.1044 —0.1215| «x
—0.1259 —0.0922
6.4159  4.6953
0.0275 —0.12201| x
—6.4159 —4.6953




Worst- Case Computational

Complexity
Number of Regions: N Zk'c

k=0

a c!
where: 77_; (c—i)!i!

where m is the number of optimization
variables and c is the number of
inequalities

Imperial College —— Lt
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Computational Experience

Computational Time (s):

C m/n 2 3 4 5

4 2 3.02 4.12 5.05 5.33

6 3 10.44 | 26.75 31.7 70.19
8 25.27 | 60.20 | 5393 | 58.61

Number of Regions:

C m/n 2 3 4 5

4 2 7 7 7 7

6 3 17 47 29 43

8 29 99 121 127

imperial College —HCL
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Applications

n Control of Type 1 diabetes

n Gontrol of Pilot Plant Reactor

n Gontrol of Industrial Air Separation Units

n Gontrol of Automotive Systems

Imperial College ‘ Hybr|d COI'ItI‘O| I _g

London



I\/Iultl Paraetrlc Mixed Integer
Linear Programs

z(@)=minc x+d"y
X,y

s.t.Ax+Ey<b+F@
xe R

ye {0,1}"
e O R’

Imperial College = 5[ 8
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mp-MILP Algorithm - Step 1

n fiX integer variables

n Solve the multi-
parametric LP =>
parametric upper
bound

n Infeasible region for
multi-parametric
case given by a set
of convex regions

Imperial College

Lai 10N

Infeasible
Region
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Next Integer Solution

n Obtain another %0) y=y1
integer solution by:

= treating parameters
as variables

= introducing integer
and parametric cuts

n Solve multiparametric LP for next integer
solution

Imperial College L

Lai 10N
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Compare Parametric Solutions

Z®) 76

n keep lower

i

a

7(6)

\ ~ 3
) 26y ZOM ——
of the two A\ :jj;
parametric ' _
i . | — retain
solutions - oo rejeat
o [, | |

CR2 CR7

n for the multiparametric case, comparison is
more difficult as it involves hyperplanes

Imperial College



Material DeS|gn under
Uncertainty

n Objective: minimize the maximum
deviation from the target property

n Constraints: property upper and lower
bounds, property prediction correlations

n Integer Variables: number of each
constituent molecular group

n Uncertainty: property prediction
parameters

Imperial College == 58



Polymer Design under
Uncertainty

wl Sl A Parametric Solution

oy
2
©
g
S
B
© ¢
a CR Parametric Solution Critical Region
© —(CH L(cHa),)- sT = 0.02596 — 1.5020 766000, + 02 < 916.806
2 : : : 0.005 < 0,50 < fo < 250
& CR 2 =0.0084 +2.352 x 10750, | — 766008, — 8 < —916.806
5. T8, — @ < 1200.806
o -((CH,), —(CHCI), )- 50 < 6o < 250
c 7 = —0.02596 + 1.8026, —?55{3091 + 02 < —1290.806
= #; < 0.03075,50 < 6 < 250
= s =0.06491 — 1.152745 ?550{:91 & < 3252 846
= 504 0.03075 < &1, 50 < 6 < 250
@ s? =0.0158 — 1.505 x 10778, | 7660081 + & < 5363.846
o | | —766000) + 02 < —3262.846
1 1 50 < 8 < 250
0.005 0.000 5% = —0.06491 +1.152748, —T660080 — 0 < — 53 846
Variation in prediction of water absorption & =< 0.09,50 < & <
R

Imperial College



I\/Iultl Parametrlc Mixed Integer
Quadratic Programs

z(@)=minc’ x+1 S X "Ox+d"y
X,y

st.Ax+ Ey<b+F@6
xeR"

ye {0,1}"
fe O CH’

Imperial College —— Sk
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An Enclosure of the Solution

©®)

N 3

n Fix integer variables
= solve mp-QP
= parametric upper bound
= critical regions

n Introduce cuts:
= previous integer solution | . .
= parametric upper bound 5 0
(Nonconvex formulation)

n Remove redundant parametric solns

n Retain ALL non-redundant parametric solns

Imperial College =




N ‘(— Centre for Process Systems

Multi- Parametrlc Global

Optimization

z(¢) =min f(x)
s.t.g(x) b+ F@O
x"<x<x
0" <6<6"
xe X cR”
e O R’

Imperial College

n Formulate Convex Multi-

Parametric Overestimating
and Underestimating
Subproblems

n Branch and Bound on the
space of optimization
variables and parameters
to:

Obtain tighter subproblems

Compare parametric
solutions

Fathom spaces of variables
and parameters ..

i
M\i
i

alll



Key Problems:

n Research in Global Optimization
Not much work on Overestimators
A local solution provides an upper bound

n Upper Bound: Solution of Multi-Parametric
Non-convex Programs by using Multi-
Parametric Convex Programming
Techniques does not provide a parametric
upper bound

Imperial College ==E5]&
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An Example

z(6) = min cos(x)

s.t. x<40 it 0
x>0
T<O0<57 1
Quter-Approximation at 6 =«
79 (@) =min —1 ) O )
s.t. x<6 15— ; ————
0 (radians)
x>0
T<O0<57w Not an upper bound!
Imperial College =—G5[86 =

London
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Four Overestimators

OVERESTIMATOR-1

n Substitute the solution of the
underestimating subproblem into the
original problem

n  Minimum computational effort

n If the parametric profile is linear it can
be compared to the solution of the
underestimating subproblem to check
for convergence

Imperial College ==
London
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OVERESTIMATOR-2: Bilinear

Problem: Underestimating Problem:
z(@) =min f(x)+ x,x, z(@)=min f(x)+w

s.t.g(x)<b+ F6

McCormick Underestimator

Lemma 1 (Floudas and co-workers): the maximum
separation distance between the bilinear term and
its convex underestimator is given by o where:

5:(xf]—xf)(x§]—x§) ——

Imperial College 4 == S8
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OVERESTIMATOR-2

Overestimating Subproblem:

2(¢) = min f)+w+o 2 &is a function of

s.t. g(x)<b+F6 space of x under
consideration =>

finite convergence
w=x X, + X)X — X, Xy within €

n LEMMA 2 (Dua, Papalexandri, Pistikopoulos
The difference between the solution of the
overestimating and the underestimating
subproblem is given by o. Only one subproblem:
overestimating or underestimating, needs to be

L L L_L
W2 X, Xy + X, X — X X,

N

!SC)h/ENj [

Imperial College == 5[ 8=
London
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OVERESTIMATOR-3

Replace the non-convex  McCormick Overestimator:

n

Imperial
London

term by its overestimating . y .

i - Al 22X, X, +X, X, —X, X
expressions: quite general WZ X Xy T X X =X X
Requires solving an WX, X, + XX — X X,
optimization problem

Lemma 3 (Dua, Papalexandri, Pistikopoulos, 2003): For
the case when only bilinear non-convexities are
present, the Overestimator-2 is tighter than the
Overestimator-3 in 87.5% of the area of the rectangle:
(% =X, —x,)

College —— = &=



Overestimator-4

n When only bilinear terms are present in
the objective function

n Replace the bilinear terms by
McCormick overestimating expressions
and reverse the sign of inequalities In
the expressions

n Replace ‘min’ by ‘max’ in the objective
function: solve an optimization problem

n Overestimator-4 is tighter than
Overestimator-3

Imperial College =58
London



Parametric Overestimators Selection
Criterion: Problem Specific

n Ease of obtaining: computational effort
01,02 <03, O4

n Tightness: special cases
Case-1: 02<03
Case-2: 04 < O3

n Functional Description: Linear or
Nonlinear — for comparison purposes
O1 is sometimes non-linear

Imperial College == 5[ 85
1':‘;;&1 Pa I
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What is Bilevel Programming?

Leader
Follower

Imperial College =— 5 &
London




Mathematical Formulation

min F (x,vy)

s .t. G (x,y)=< 0
. Inner
min  f (X, YY) Proplem
s.t. g(x,y) =<0
xe X ,ye Y

n Linear Formulation is NP hard and Nonconvex

n Extensive Literature on Applications and Solution
Techniques

Imperial College == =
London



IIIustratlon Bllevel Linear
Programming Problem

min F(x,y)=c, x+d,y
st. Ax+ B,y <b,
min f(x,y)=c,x+d, Yy
Y

st. A,x+B,y<b,

Imperial College
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Bilevel Prgrammlng via
Parametric Programming

Step 1. Solve the inner problem as a parametric
programming problem

(Reactions of the inner problem are computed as a
function of the outer problem variables )

Step 2. Formulate the outer problem as a number of
single optimisation problems

Step 3. Solve the single optimisation problems
(Global optimisation solutions are obtained)

Imperial College =
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Reformulation and Solution as
a Parametric Program

min f(x,y)=csx+ds y Transform myin f(x,y)=diy+c,x

y —_—
st. Ax+B,y<b, st Byysby, —Ayx
Inner Problem l mp-LP/QP

(LP or QP )

Critical
(0= it Hxsh
region

E(x)=m,+n,x if H,x<h,

Ex)=m, +nx if Hx<h

Imperial College = ¢
S (" E——\
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Formulation and Solution of Single
Optimization Problems

mn ¢, x +d,;/ &, (x)
X

s.it. A, x+ B, £, (x) < b,
; ) H x £ h,
mme(x,y):clx+d1y min Ty 4 d Tf (x)
> 2 2 2

< X
s.t. Ax+By=h s.it. A, x + B,¢,(x) < b,
Inner Problem
H ,x < h,
mn c¢c, x+d, &, (x)
sit. A, x+ B, ¢,(x) < b,
H x < h,

Imperial College = = i 4=
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Numerical Example: Linear — Linear Case
Bard (1983), Visweswaran et al. (1996)

mn F(x,y)=x+y

X
s.T. - X <0
mn f(x,y)=-5x-—Y
y
s.t - x—-0.5y <=2
- 0.25 x + y <2
x+0.5y £ 8
X -2y <2
- y< 0
imperial College —HCL
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Numerical Example: Linear — Linear Case

min —y—35x

1
0.5
-2
—1

College

—0.5]

y

-5

S D o0 1

Transformation of the inner problem

as an mp-LP problem

j>y:<

(0.25x+2

—2x+16

if  622<x<6.8

1f 0.8889<x<6.22 (1)

(2)



Computation of Global Optimum

(1) minl.25x+2 (2) min—x+16
st. 0.8880<x<6.22 st. 6.22<x<6.8
CR (1) CR (2)
F 9.20
X 6.80
y 2.40
S
Imperial College %% ; Eﬁ %

London



Concluding Remarks

n Parametric Programming
Theory and algorithms for a wide range of
mathematical programs

n Applications:
Optimization under Uncertainty

On-line Control and Optimization of Chemical,
Biomedical, Automotive Systems

Bilevel programming

Imperial College =58
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Efstratios N. Pistikopoulos,
Michael C. Georgiadis, Vivek Dua (Eds.)

Multi-Parametric
Programming

WILEY-VCH

Theory, Algorithms and Applications

Valume 1

Valumme Editars:
Py oorpanibors,
Genrgiadia. D

Imperial College
London

Efsiratios N. Pistikopoulos,
Michael C. Georgiadis, Vivek Dua (Eds.)

Multi-Parametric
Model-Based Control

SWILEY-VCH

Theory and Applications

Yolume 2

Walarre Ediseis
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