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Credit Derivatives

The market in credit-linked derivative products has grown from
$631.5 billion global volume in the first half of 2001 to above
$12 trillion through the first half of 2005.

Credit derivatives are increasingly complex, but the
quantitative technology for their valuation (and hedging) lags

behind.

Major Problem: high-dimensionality of the basket derivatives,

which are typically written on hundreds of underlying names.
Computational tractability severely limits model choice.

A major challenge: to capture and explain high premiums
observed for unlikely events.

Our approach: try to explain such phenomena as a

consequence of risk aversion, quantified through the mechanism
of utility-indifference valuation.



Utility Indifference Derivative Pricing

Dynamic generalization of certainty equivalent :

U(p) = E{U(X)}

Reasonable preference-based valuation methodology in
illiquid/OTC markets.

E.g. options on non-traded assets, weather derivatives; (PUP
book on indifference pricing , 2007).

Computationally tractable (and wealth-independent) under
exponential utility : U(x) = —e™ 7", v > 0.

Nonlinear pricing rule.

Credit & Indifference Pricing : see also Collin-Dufresne et al.,
Bielecki-Jeanblanc-Rutkowski, Becherer & Schweizer, Shouda.
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Indifference Pricing: Single Name Case

e Stock price S and intensity A:

dS = uSdt+oSdw
AN = AY)

dY = b(Y)dt+a(Y) (de V1 p dW<2>>.

e Default time 7 is first jump of a time-changed (standard)

N(/OtASds>,

where N and A\ are independent.

e Draw £ ~ EXP(1), then

t
T:inf{t:/ )\Sd8:§}.
0

Poisson process:



Given a utility function U(x) = —e™ 7", at what value is the
buyer indifferent in terms of maximum expected utility
between holding and not holding the derivative?

i) Solve plain Merton (optimal investment) problem (with
default risk); ii) Solve Merton problem with the credit

derivative.

Wealth process X:

dX = W%—I—T(X—ﬂ')dt, {t <1}

= (rX+n(p—r))dt+ordWd.

Switch to discounted variable X; — e "™ X; and pu+— pu —r.

Value function for Merton problem:

M(:C) = sup I {_e_fyXT]-{T>T} + (_B_WXT)]-{TST}} .



e Reduce to
M (t,z,y) = —e "u(t,y)/ 0=,

where

2

it By = (1= ) (o 00wt (1= PN =0,

with u(7T,y) =1 and

e Reaction-diffusion equation.



Add claim 157

e Define ¢ = ¢ 1. Value function

H(ZIZ‘) = SU_pE {—G_W(XT+C)1{T>T} -+ (—B_WXT)].{TST}} .

e Reduce H(t,z,y) = —e 7@y (¢, y)1/ (A=, o
2

it Lyw = (1= ) (o 4 M) ) w0+ (L= ) A~ =0,

with w(T,y) = 1. A similar reaction-diffusion equation.
e Indifference price: M(x) = H(x — p) given by

- ! og(w/u
p=e 7(1_p2)1g( Ju).




e Constant Intensity Case: when A is constant, defaultable bond

price 1s

1 (eaT 4+ gefyc (1 . 6aT>>

TY=e ™ - 1o
pO( ) v g €_O‘T—|—%<1—€_O‘T)

. 2
Wltha:;?—l—)\.

e Plot of yield spread Yo(T) = — 5 log(po(T)/e~"1).



Single-Name Yield Spreads
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Figure 1: Single name buyer’s and seller’s indifference yield spreads.
The parameters are A = 0.1, along with pn = 0.09,7 = 0.03 and
o = 0.15. The curves correspond to different risk aversion parame-

ters v and the arrows show the direction of increasing v over the wvalues
(0.01,0.1,0.25,0.5,0.75,1).
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Multi-Name Case: Constant Intensities
e N firms. Stock prices processes

ds”

@) (r+ pi) dt + oy th(i)a
St

with E{dW " dW '} = p,; dt, i # ;.

e Firm i defaults at random time 7; ~ EXP();). Default times
are mutually independent, and independent of the Brownian

motions.

e Discounted wealth process

dX Zz 7T7§i>1{n;>t},“i dt + Zz Wt(i>]‘{7'z'>t}o-’l: th@a t<TA Tu
t p—

0 TANT <t<T

where 7 = max;{7; }.
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e Merton value function (when all N firms alive)

MW (t,2) = sup E{—e " | X; =z}
{n()}

solves

Ny (M2 X _
T i=1

where A = oo, and M~ is the Merton value function when
firm ¢ has dropped out.

e Combinatorial problem: when £ firms have defaulted, have to
solve the Merton problems for each of (JZ ) combinations of

possible firms left.
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Symmetric Model

e When there are n < IV stocks, labelled by the index set
In — {7:177:27 T 77:n}7

1(1,,) denotes expected returns; o(/, ) the volatility matrix.
Let A(L,) = o(I,)o(I,)" .

e Our assumption is that D(n) := u(1,)T A(L,) *u(l,) is a
function only of n = |I,,|. The diversity function D(n) is

increasing and concave in n.

e F.g. u; =, o0; = o and correlation structure
E{dWOdWWY = pdt, i #j
p*n

7P S )
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Diversity Coefficient D(n)
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Merton Problem

e Let M (™ (¢, z) be the value function when there are
ne{0,1,---,N} firms alive. Writing M (™) (¢,z) = —e™"%0, (1),

/
UV, — QpUn + NAUp_1 =

o, =

N | = O

D(n) 4+ nA.
o [t follows that

o (t) = C(()n) 1 Z C;n)e—aj(T—t),
j=1
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(n) _ A (1)
Co a, O ;
() nA  (n-1)
Cj (Oén L CVJ) ] Y, ] Y 7n
nA (n-1) nz_l nA_ (n-1)
with initial data
RO
0 s

Special Case:p = 0 — binomial coeffs.

. n\ | A\
= (M- i

Next: look at the tranche holder’s stochastic control problem.
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CDO Mechanics

Let N denote the number of firms underlying the CDO and () the
total notional. Attachment points:

Tranche K; | Ky

Equity 0% | 3%
Mezzanine 1 3% | ™%
Mezzanine 2 | 7% | 10%

Senior 10% | 15%
Super-Senior | 15% | 30%

e The tranche holder (protection seller) receives a tranche
premium £ on his remaining notional, which decreases as the

losses start to eat at his tranche.

e The protection buyer receives payments on the losses.
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CDO Tranches Spreads

e We want to find the such that he is indifferent between holding
the tranche or not.

e Assume fractional recovery ¢ < 1, and a coupon payment Re"?
paid continuously. Then define

F(l)=(Ky —0)" — (KL - )",

the tranche holder’s percentage notional, and

) = (1_q)(N];n)

fo = F(ln) = F(ln-1)

i = (g RQFE) )i+ o1 g




Tranche Holder’s Problem

o Let /(") (t,x) denote the tranche holder’s value function when
n firms are left. Writing H™ (t,2) = —e~ 7w, (t), we have

w! — Bpwn + nie?mw,_; =0,

with w, (T') = 1 and where

g, = %D(n) + A+ vROF(L,).

e Can similarly construct solution as a series of exponentials with

coefficients given through recurrence relations.

e The indifference tranche spread value is found by solving for R

wN(O) — ’UN(O).
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Figure 2: N =25 (left), N = 100 (right); A = 0.015, u = 0.07, 0 = 0.15
and p = 0.3. The recovery is ¢ = 40%, the interest rate r = 3% and T =5

years. The notional 1s normalized to 1 unit per firm, so Q = N.
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Figure 3: N = 100 firms.
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Stochastic Intensities

e Of course, want to incorporate utility valuation around
correlated defaults: Intensities: )\ff) = \Y;)

IS0 i
St. (r4+p)dt+o th( )
S(z)
t
dYy = b(Yy)dt+a(Yy)dZ,

AW awiy = pdt (WD, dzZ,) = mdt.
Then in the control problems, have to solve a system of

reaction-diffusion PDEs.

e Preliminary computations (both symmetric and heterogeneous
cases) suggest utility valuation greatly enhances the real

correlation.

e This is the model we are developing, both purely symmetric,
and with a small number of heterogeneous groups .
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Concluding Remarks

Non-trivial yield spreads and potential implied correlation

smiles even from constant intensities.

Nonlinearity of indifference pricing rule acts as a correlator of

default times via the effect of risk-aversion on portfolios.

Computational /combinatorial problem remains, but under

constant intensities deal with ODEs.

Symmetric case tractable. Interesting to construct a system in

which this is the “homogenized” approximation.

Related problem: optimal static-dynamic hedging of CDO
tranche risk (with CDSs and stocks).



