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Credit Derivatives

• The market in credit-linked derivative products has grown from

$631.5 billion global volume in the first half of 2001 to above

$12 trillion through the first half of 2005.

• Credit derivatives are increasingly complex, but the

quantitative technology for their valuation (and hedging) lags

behind.

• Major Problem: high-dimensionality of the basket derivatives,

which are typically written on hundreds of underlying names.

Computational tractability severely limits model choice.

• A major challenge: to capture and explain high premiums

observed for unlikely events.

• Our approach: try to explain such phenomena as a

consequence of risk aversion, quantified through the mechanism

of utility-indifference valuation.
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Utility Indifference Derivative Pricing

• Dynamic generalization of certainty equivalent :

U(p) = IE{U(X)}

• Reasonable preference-based valuation methodology in

illiquid/OTC markets.

• E.g. options on non-traded assets, weather derivatives; (PUP

book on indifference pricing , 2007).

• Computationally tractable (and wealth-independent) under

exponential utility : U(x) = −e−γx, γ > 0.

• Nonlinear pricing rule.

• Credit & Indifference Pricing : see also Collin-Dufresne et al.,

Bielecki-Jeanblanc-Rutkowski, Becherer & Schweizer, Shouda.
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Indifference Pricing: Single Name Case

• Stock price S and intensity λ:

dS = µS dt + σS dW (1)

λt = λ(Yt)

dY = b(Y ) dt + a(Y )
(
ρ dW (1) +

√
1 − ρ2 dW (2)

)
.

• Default time τ is first jump of a time-changed (standard)

Poisson process:

N

(∫ t

0

λs ds

)
,

where N and λ are independent.

• Draw ξ ∼ EXP(1), then

τ = inf

{
t :

∫ t

0

λs ds = ξ

}
.
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• Given a utility function U(x) = −e−γx, at what value is the

buyer indifferent in terms of maximum expected utility

between holding and not holding the derivative?

• i) Solve plain Merton (optimal investment) problem (with

default risk); ii) Solve Merton problem with the credit

derivative.

• Wealth process X :

dX = π
dS

S
+ r(X − π) dt, {t < τ}

= (rX + π(µ − r)) dt + σπ dW (1).

• Switch to discounted variable Xt 7→ e−rtXt and µ 7→ µ − r.

Value function for Merton problem:

M(x) = sup
π

IE
{
−e−γXT 1{τ>T} + (−e−γXτ )1{τ≤T}

}
.



7

• Reduce to

M(t, x, y) = −e−γxu(t, y)1/(1−ρ2),

where

ut + L̃yu − (1 − ρ2)

(
µ2

2σ2
+ λ(y)

)
u + (1 − ρ2)λ(y)u−θ = 0,

with u(T, y) = 1 and

θ =
ρ2

1 − ρ2
.

• Reaction-diffusion equation.
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Add claim 1{τ>T}

• Define c = e−rT . Value function

H(x) = sup
π

IE
{
−e−γ(XT +c)

1{τ>T} + (−e−γXτ )1{τ≤T}

}
.

• Reduce H(t, x, y) = −e−γ(x+c)w(t, y)1/(1−ρ2), to

wt + L̃yw − (1− ρ2)

(
µ2

2σ2
+ λ(y)

)
w + (1− ρ2)eγcλ(y)w−θ = 0,

with w(T, y) = 1. A similar reaction-diffusion equation.

• Indifference price: M(x) = H(x − p) given by

p = e−rT −
1

γ(1 − ρ2)
log(w/u).
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• Constant Intensity Case: when λ is constant, defaultable bond

price is

p0(T ) = e−rT −
1

γ
log

(
e−αT + λ

αeγc
(
1 − e−αT

)

e−αT + λ
α (1 − e−αT )

)
,

with α = µ2

2σ2 + λ.

• Plot of yield spread Y0(T ) = − 1
T log(p0(T )/e−rT ).
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Figure 1: Single name buyer’s and seller’s indifference yield spreads.

The parameters are λ = 0.1, along with µ = 0.09, r = 0.03 and

σ = 0.15. The curves correspond to different risk aversion parame-

ters γ and the arrows show the direction of increasing γ over the values

(0.01, 0.1, 0.25, 0.5, 0.75, 1).
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Multi-Name Case: Constant Intensities

• N firms. Stock prices processes

dS
(i)
t

S
(i)
t

= (r + µi) dt + σi dW
(i)
t ,

with IE{dW
(i)
t dW

(j)
t } = ρij dt, i 6= j.

• Firm i defaults at random time τi ∼ EXP(λi). Default times

are mutually independent, and independent of the Brownian

motions.

• Discounted wealth process

dXt =





∑
i π

(i)
t 1{τi>t}µi dt +

∑
i π

(i)
t 1{τi>t}σi dW

(i)
t , t < τ̄ ∧ T,

0 τ̄ ∧ T ≤ t ≤ T
,

where τ̄ = maxi{τi}.
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• Merton value function (when all N firms alive)

M (N)(t, x) = sup
{π(i)}

IE
{
−e−γXT | Xt = x

}

solves

M
(N)
t −

1

2
(µT A−1µ)

(M
(N)
x )2

M
(N)
xx

+
N∑

i=1

λi

(
M

(N−1)
i − M (N)

)
= 0,

where A = σσT , and M
(N−1)
i is the Merton value function when

firm i has dropped out.

• Combinatorial problem: when k firms have defaulted, have to

solve the Merton problems for each of
(
N
k

)
combinations of

possible firms left.
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Symmetric Model

• When there are n ≤ N stocks, labelled by the index set

In = {i1, i2, · · · , in},

µ(In) denotes expected returns; σ(In) the volatility matrix.

Let A(In) = σ(In)σ(In)T .

• Our assumption is that D(n) := µ(In)T A(In)−1µ(In) is a

function only of n = |In|. The diversity function D(n) is

increasing and concave in n.

• E.g. µi ≡ µ, σi = σ and correlation structure

IE{dW (i)dW (j)} = ρ dt, i 6= j

⇒ D(n) =
µ2n

σ2(1 + (n − 1)ρ)
.
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Merton Problem

• Let M (n)(t, x) be the value function when there are

n ∈ {0, 1, · · · , N} firms alive. Writing M (n)(t, x) = −e−γxvn(t),

v′n − αnvn + nλvn−1 = 0

αn :=
1

2
D(n) + nλ.

• It follows that

vn(t) = c
(n)
0 +

n∑

j=1

c
(n)
j e−αj(T−t),



16

c
(n)
0 =

nλ

αn
c
(n−1)
0 ,

c
(n)
j =

nλ

(αn − αj)
c
(n−1)
j , j = 1, · · · , n − 1

c(n)
n = 1 −


nλ

αn
c
(n−1)
0 +

n−1∑

j=1

nλ

(αn − αj)
c
(n−1)
j


 ,

with initial data

c
(1)
0 =

λ

α1
.

Special Case:ρ = 0 → binomial coeffs.

c
(n)
j =

(
n

j

)
pn−j(1 − p)j , p :=

λ

λ + µ2/(2σ2)
.

Next: look at the tranche holder’s stochastic control problem.
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CDO Mechanics

Let N denote the number of firms underlying the CDO and Q the

total notional. Attachment points:

Tranche KL KU

Equity 0% 3%

Mezzanine 1 3% 7%

Mezzanine 2 7% 10%

Senior 10% 15%

Super-Senior 15% 30%

• The tranche holder (protection seller) receives a tranche

premium R on his remaining notional, which decreases as the

losses start to eat at his tranche.

• The protection buyer receives payments on the losses.
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CDO Tranches Spreads

• We want to find the such that he is indifferent between holding

the tranche or not.

• Assume fractional recovery q < 1, and a coupon payment Rert

paid continuously. Then define

F (`) = (KU − `)+ − (KL − `)+,

the tranche holder’s percentage notional, and

`n = (1 − q)
(N − n)

N
fn = F (`n) − F (`n−1)

dX
(n)
t =

(
∑

i

π
(i)
t 1{τi>t}µi + RQF (`n)

)
dt +

∑

i

π
(i)
t 1{τi>t}σi dW

(i)
t ,
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Tranche Holder’s Problem

• Let H(n)(t, x) denote the tranche holder’s value function when

n firms are left. Writing H(n)(t, x) = −e−γxwn(t), we have

w′
n − βnwn + nλeγfnwn−1 = 0,

with wn(T ) = 1 and where

βn =
1

2
D(n) + nλ + γRQF (`n).

• Can similarly construct solution as a series of exponentials with

coefficients given through recurrence relations.

• The indifference tranche spread value is found by solving for R

wN (0) = vN (0).
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Figure 2: N = 25 (left), N = 100 (right); λ = 0.015, µ = 0.07, σ = 0.15

and ρ = 0.3. The recovery is q = 40%, the interest rate r = 3% and T = 5

years. The notional is normalized to 1 unit per firm, so Q = N .



21

0 1 2 3 4
0

1

2

3
x 10

4

γ

R

Equity

Mezz. 1

0 1 2 3 4
0

500

1000

1500

γ

R

Mezz. 2

0 1 2 3 4
0

200

400

600

800

γ

R

Senior

0 1 2 3 4
0

10

20

30

40

50

γ
R

Super Senior

Figure 3: N = 100 firms.
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Stochastic Intensities

• Of course, want to incorporate utility valuation around

correlated defaults: Intensities: λ
(i)
t = λ(Yt)

dS
(i)
t

S
(i)
t

= (r + µ) dt + σ dW
(i)
t

dYt = b(Yt) dt + a(Yt) dZt

〈dW (i), dW
(j)
t 〉 = ρ dt 〈dW (i), dZt〉 = m dt.

Then in the control problems, have to solve a system of

reaction-diffusion PDEs.

• Preliminary computations (both symmetric and heterogeneous

cases) suggest utility valuation greatly enhances the real

correlation.

• This is the model we are developing, both purely symmetric,

and with a small number of heterogeneous groups .
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Concluding Remarks

• Non-trivial yield spreads and potential implied correlation

smiles even from constant intensities.

• Nonlinearity of indifference pricing rule acts as a correlator of

default times via the effect of risk-aversion on portfolios.

• Computational/combinatorial problem remains, but under

constant intensities deal with ODEs.

• Symmetric case tractable. Interesting to construct a system in

which this is the “homogenized” approximation.

• Related problem: optimal static-dynamic hedging of CDO

tranche risk (with CDSs and stocks).


