Utility Valuation of Credit Derivatives

Ronnie Sircar

Operations Research & Financial Engineering Dept.,

Bendheim Centre for Finance

Princeton University.

Webpage: http://www.princeton.edu/~sircar

Joint with Thaleia Zariphopoulou.

Credit Derivatives

- The market in credit-linked derivative products has grown from \$631.5 billion global volume in the first half of 2001 to above \$12 trillion through the first half of 2005.
- Credit derivatives are increasingly complex, but the quantitative technology for their valuation (and hedging) lags behind.
- <u>Major Problem</u>: <u>high-dimensionality</u> of the basket derivatives, which are typically written on <u>hundreds</u> of underlying names. Computational tractability severely limits model choice.
- A major challenge: to capture and explain high premiums observed for unlikely events.
- Our approach: try to explain such phenomena as a consequence of risk aversion, quantified through the mechanism of utility-indifference valuation.

Utility Indifference Derivative Pricing

- Dynamic generalization of certainty equivalent : $U(p) = I\!\!E\{U(X)\}$
- Reasonable preference-based valuation methodology in illiquid/OTC markets.
- E.g. options on non-traded assets, weather derivatives; (PUP book on indifference pricing, 2007).
- Computationally tractable (and wealth-independent) under exponential utility: $U(x) = -e^{-\gamma x}$, $\gamma > 0$.
- Nonlinear pricing rule.
- Credit & Indifference Pricing: see also Collin-Dufresne et al., Bielecki-Jeanblanc-Rutkowski, Becherer & Schweizer, Shouda.

Indifference Pricing: Single Name Case

• Stock price S and intensity λ :

$$dS = \mu S dt + \sigma S dW^{(1)}$$

$$\lambda_t = \lambda(Y_t)$$

$$dY = b(Y) dt + a(Y) \left(\rho dW^{(1)} + \sqrt{1 - \rho^2} dW^{(2)}\right).$$

• Default time τ is first jump of a time-changed (standard) Poisson process:

$$N\left(\int_0^t \lambda_s \, ds\right),$$

where N and λ are independent.

• Draw $\xi \sim \text{EXP}(1)$, then

$$\tau = \inf \left\{ t : \int_0^t \lambda_s \, ds = \xi \right\}.$$

- Given a utility function $U(x) = -e^{-\gamma x}$, at what value is the buyer indifferent in terms of maximum expected utility between holding and not holding the derivative?
- i) Solve plain Merton (optimal investment) problem (with default risk); ii) Solve Merton problem with the credit derivative.
- Wealth process X:

$$dX = \pi \frac{dS}{S} + r(X - \pi) dt, \quad \{t < \tau\}$$

= $(rX + \pi(\mu - r)) dt + \sigma \pi dW^{(1)}.$

• Switch to discounted variable $X_t \mapsto e^{-rt}X_t$ and $\mu \mapsto \mu - r$. Value function for Merton problem:

$$M(x) = \sup_{\pi} \mathbb{E} \left\{ -e^{-\gamma X_T} \mathbf{1}_{\{\tau > T\}} + (-e^{-\gamma X_{\tau}}) \mathbf{1}_{\{\tau \le T\}} \right\}.$$

• Reduce to

$$M(t, x, y) = -e^{-\gamma x} u(t, y)^{1/(1-\rho^2)},$$

where

$$u_t + \widetilde{\mathcal{L}}_y u - (1 - \rho^2) \left(\frac{\mu^2}{2\sigma^2} + \lambda(y) \right) u + (1 - \rho^2) \lambda(y) u^{-\theta} = 0,$$

with u(T, y) = 1 and

$$\theta = \frac{\rho^2}{1 - \rho^2}.$$

• Reaction-diffusion equation.

Add claim $\mathbf{1}_{\{\tau>T\}}$

• Define $c = e^{-rT}$. Value function

$$H(x) = \sup_{\pi} \mathbb{E} \left\{ -e^{-\gamma(X_T + c)} \mathbf{1}_{\{\tau > T\}} + (-e^{-\gamma X_\tau}) \mathbf{1}_{\{\tau \le T\}} \right\}.$$

• Reduce $H(t, x, y) = -e^{-\gamma(x+c)} w(t, y)^{1/(1-\rho^2)}$, to

$$w_t + \widetilde{\mathcal{L}}_y w - (1 - \rho^2) \left(\frac{\mu^2}{2\sigma^2} + \lambda(y) \right) w + (1 - \rho^2) e^{\gamma c} \lambda(y) w^{-\theta} = 0,$$

with w(T, y) = 1. A similar reaction-diffusion equation.

• Indifference price: M(x) = H(x - p) given by

$$p = e^{-rT} - \frac{1}{\gamma(1-\rho^2)} \log(w/u).$$

• Constant Intensity Case: when λ is constant, defaultable bond price is

$$p_0(T) = e^{-rT} - \frac{1}{\gamma} \log \left(\frac{e^{-\alpha T} + \frac{\lambda}{\alpha} e^{\gamma c} \left(1 - e^{-\alpha T} \right)}{e^{-\alpha T} + \frac{\lambda}{\alpha} \left(1 - e^{-\alpha T} \right)} \right),$$

with
$$\alpha = \frac{\mu^2}{2\sigma^2} + \lambda$$
.

• Plot of yield spread $Y_0(T) = -\frac{1}{T}\log(p_0(T)/e^{-rT})$.

Figure 1: Single name buyer's and seller's indifference yield spreads. The parameters are $\lambda = 0.1$, along with $\mu = 0.09, r = 0.03$ and $\sigma = 0.15$. The curves correspond to different risk aversion parameters γ and the arrows show the direction of increasing γ over the values (0.01, 0.1, 0.25, 0.5, 0.75, 1).

Multi-Name Case: Constant Intensities

• N firms. Stock prices processes

$$\frac{dS_t^{(i)}}{S_t^{(i)}} = (r + \mu_i) dt + \sigma_i dW_t^{(i)},$$

with $I\!\!E\{dW_t^{(i)} dW_t^{(j)}\} = \rho_{ij} dt, i \neq j.$

- Firm *i* defaults at random time $\tau_i \sim \text{EXP}(\lambda_i)$. Default times are mutually *independent*, and independent of the Brownian motions.
- Discounted wealth process

$$dX_{t} = \begin{cases} \sum_{i} \pi_{t}^{(i)} \mathbf{1}_{\{\tau_{i} > t\}} \mu_{i} dt + \sum_{i} \pi_{t}^{(i)} \mathbf{1}_{\{\tau_{i} > t\}} \sigma_{i} dW_{t}^{(i)}, & t < \bar{\tau} \wedge T, \\ 0 & \bar{\tau} \wedge T \leq t \leq T \end{cases},$$

where $\bar{\tau} = \max_i \{\tau_i\}$.

• Merton value function (when all N firms alive)

$$M^{(N)}(t,x) = \sup_{\{\pi^{(i)}\}} \mathbb{E} \left\{ -e^{-\gamma X_T} \mid X_t = x \right\}$$

solves

$$M_t^{(N)} - \frac{1}{2} (\mu^T A^{-1} \mu) \frac{(M_x^{(N)})^2}{M_{xx}^{(N)}} + \sum_{i=1}^N \lambda_i \left(M_i^{(N-1)} - M^{(N)} \right) = 0,$$

where $A = \sigma \sigma^T$, and $M_i^{(N-1)}$ is the Merton value function when firm i has dropped out.

• Combinatorial problem: when k firms have defaulted, have to solve the Merton problems for each of $\binom{N}{k}$ combinations of possible firms left.

Symmetric Model

• When there are $n \leq N$ stocks, labelled by the index set

$$I_n = \{i_1, i_2, \cdots, i_n\},\$$

 $\mu(I_n)$ denotes expected returns; $\sigma(I_n)$ the volatility matrix. Let $A(I_n) = \sigma(I_n)\sigma(I_n)^T$.

- Our assumption is that $D(n) := \mu(I_n)^T A(I_n)^{-1} \mu(I_n)$ is a function only of $n = |I_n|$. The diversity function D(n) is increasing and concave in n.
- E.g. $\mu_i \equiv \mu$, $\sigma_i = \sigma$ and correlation structure $IE\{dW^{(i)}dW^{(j)}\} = \rho dt$, $i \neq j$

$$\Rightarrow D(n) = \frac{\mu^2 n}{\sigma^2 (1 + (n-1)\rho)}.$$

Merton Problem

• Let $M^{(n)}(t,x)$ be the value function when there are $n \in \{0, 1, \dots, N\}$ firms alive. Writing $M^{(n)}(t,x) = -e^{-\gamma x}v_n(t)$,

$$v'_n - \alpha_n v_n + n\lambda v_{n-1} = 0$$

 $\alpha_n := \frac{1}{2}D(n) + n\lambda.$

• It follows that

$$v_n(t) = c_0^{(n)} + \sum_{j=1}^n c_j^{(n)} e^{-\alpha_j(T-t)},$$

$$c_0^{(n)} = \frac{n\lambda}{\alpha_n} c_0^{(n-1)},$$

$$c_j^{(n)} = \frac{n\lambda}{(\alpha_n - \alpha_j)} c_j^{(n-1)}, \quad j = 1, \dots, n-1$$

$$c_n^{(n)} = 1 - \left(\frac{n\lambda}{\alpha_n} c_0^{(n-1)} + \sum_{j=1}^{n-1} \frac{n\lambda}{(\alpha_n - \alpha_j)} c_j^{(n-1)}\right),$$

with initial data

$$c_0^{(1)} = \frac{\lambda}{\alpha_1}.$$

Special Case: $\rho = 0 \rightarrow \text{binomial coeffs}$.

$$c_j^{(n)} = \binom{n}{j} p^{n-j} (1-p)^j, \quad p := \frac{\lambda}{\lambda + \mu^2/(2\sigma^2)}.$$

Next: look at the tranche holder's stochastic control problem.

CDO Mechanics

Let N denote the number of firms underlying the CDO and Q the total notional. Attachment points:

Tranche	K_L	K_U
Equity	0%	3%
Mezzanine 1	3%	7%
Mezzanine 2	7%	10%
Senior	10%	15%
Super-Senior	15%	30%

- The tranche holder (protection seller) receives a tranche premium R on his remaining notional, which decreases as the losses start to eat at his tranche.
- The protection buyer receives payments on the losses.

CDO Tranches Spreads

- We want to find the such that he is indifferent between holding the tranche or not.
- Assume fractional recovery q < 1, and a coupon payment Re^{rt} paid continuously. Then define

$$F(\ell) = (K_U - \ell)^+ - (K_L - \ell)^+,$$

the tranche holder's percentage notional, and

$$\ell_{n} = (1-q)\frac{(N-n)}{N}
f_{n} = F(\ell_{n}) - F(\ell_{n-1})
dX_{t}^{(n)} = \left(\sum_{i} \pi_{t}^{(i)} \mathbf{1}_{\{\tau_{i} > t\}} \mu_{i} + RQF(\ell_{n})\right) dt + \sum_{i} \pi_{t}^{(i)} \mathbf{1}_{\{\tau_{i} > t\}} \sigma_{i} dW_{t}^{(i)},$$

Tranche Holder's Problem

• Let $H^{(n)}(t,x)$ denote the tranche holder's value function when n firms are left. Writing $H^{(n)}(t,x) = -e^{-\gamma x} w_n(t)$, we have

$$w_n' - \beta_n w_n + n\lambda e^{\gamma f_n} w_{n-1} = 0,$$

with $w_n(T) = 1$ and where

$$\beta_n = \frac{1}{2}D(n) + n\lambda + \gamma RQF(\ell_n).$$

- Can similarly construct solution as a series of exponentials with coefficients given through recurrence relations.
- The indifference tranche spread value is found by solving for R

$$w_N(0) = v_N(0).$$

Figure 2: N=25 (left), N=100 (right); $\lambda=0.015$, $\mu=0.07$, $\sigma=0.15$ and $\rho=0.3$. The recovery is q=40%, the interest rate r=3% and T=5 years. The notional is normalized to 1 unit per firm, so Q=N.

Figure 3: N = 100 firms.

Stochastic Intensities

• Of course, want to incorporate utility valuation around correlated defaults: Intensities: $\lambda_t^{(i)} = \lambda(Y_t)$

$$\frac{dS_t^{(i)}}{S_t^{(i)}} = (r+\mu) dt + \sigma dW_t^{(i)}$$

$$dY_t = b(Y_t) dt + a(Y_t) dZ_t$$

$$\langle dW^{(i)}, dW_t^{(j)} \rangle = \rho dt \qquad \langle dW^{(i)}, dZ_t \rangle = m dt.$$

Then in the control problems, have to solve a system of reaction-diffusion PDEs.

- Preliminary computations (both symmetric and heterogeneous cases) suggest utility valuation greatly enhances the real correlation.
- This is the model we are developing, both purely symmetric, and with a small number of heterogeneous groups.

Concluding Remarks

- Non-trivial yield spreads and potential implied correlation smiles even from constant intensities.
- Nonlinearity of indifference pricing rule acts as a correlator of default times via the effect of risk-aversion on portfolios.
- Computational/combinatorial problem remains, but under constant intensities deal with ODEs.
- Symmetric case tractable. Interesting to construct a system in which this is the "homogenized" approximation.
- Related problem: optimal static-dynamic hedging of CDO tranche risk (with CDSs and stocks).