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Summary

n Problem: find robust practical methodology for modelling, pricing & 

managing risk of bespoke (synthetic) CDOs – transparent, easy to 

understand and relate to market practices

¤ Characterize and model the effect concentration risk in CDO portfolios

¤ Flexible calibration – fit to prices and makes use of market, historical 

and portfolio information effectively

¤ General – extend to other products (e.g. CDO2)

¤ Communication tool 
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Summary

Methodology

n Systematic Weighted MC – implied risk-factor distribution 
¤ Non-parametric approach
¤ General, flexible, & easy to understand

¤ Consistently prices bespoke portfolios, multiple indices, CDO2

¤ Pricing of particular portfolios can depend on “prior” multi-factor model
¤ Only explore the “static” version – potentially extensible to dynamic setting

n Additional “communication tool”: concentration adjusted mappings
¤ Modified base correlations – simple extension to standard EL (expected 

loss) mappings

¤ Easy to implement and understand… but same disadvantages of base
correlations and mappings… ad-hoc nature, lack of no-arbitrage, and 
sometimes counterintuitive results



Outline

n Background: credit derivatives, pricing synthetic CDOs and implied 

correlations

¤ Pricing bespoke portfolios and EL mappings

¤ Concentration risk in credit portfolios

n Methodology

¤ Concentration adjusted mapping (base correlations)

¤ Systematic Weighted Monte Carlo

n Examples

n Concluding remarks and ongoing work



Credit Derivatives: Credit Default Swaps

n Basically, an insurance contract on the creditworthiness 
of a given entity.

n Di : Discount factor for time ti.

n : Time of credit event (default).

n LGD: Payment upon default.

n : (risk-neutral) survival probability.

Protection

Buyer

Protection

Seller

Payment upon credit event.
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Pricing Credit Default Swaps

n The value of the payments received by the protection seller is: 

n The value of the payments received by the protection buyer is: 

n The initial market price is zero: 
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(Synthetic) CDOs

n Protection is bought/sold on a portfolio of CDS.
n The CDO consist of K tranches. Portfolio losses are 

absorbed by the tranches according to size and 
seniority. 

n The size of tranche k is Sk = uk - lk, where: 
¤ lk is the tranche's attachment point
¤ uk is the tranche's detachment point

n i : cumulative losses on the portfolio (as a percentage of 
total portfolio notional) by time ti. 



CDO Tranche Losses

lk uk=lk+1
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Pricing CDOs

n The value of the payments received by the protection seller (of 
tranche k) is: 

n The value of the payments received by the protection buyer (of 
tranche j) is: 

n As with CDS, the initial market price is zero: 
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Single-Factor Gaussian Copula

n Z systematic factor (Gaussian)

¤ Conditional on Z, default times 

are independent

n Marginal default time 
distribution functions

n Default times – by mapping to 
Gaussian

n Simple, explicit formulae for 
conditional default probabilities

( )( )jjj YF Φ= −1τ

( ) ( ) ( ) ( )ZttqZttp j
Z
jj

Z
j >=≤= ττ PrPr

( ) ( )( )














−

−Φ
Φ=

−

j

jjZ
j

ZtF
tp

ρ
ρ

1

1

jjjj ZY ερρ −+= 1

( )jjF τ



Pricing CDO Tranches 

n Cumulative Portfolio Loss:

n Expected Tranche Loss: 
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Many methods exist to 
calculate this.



Importance of Correlation: Loss Distributions

Equity tranche is long correlation.



Background – Pricing Synthetic CDOs

n Standard model for pricing synthetic CDOs: single-factor Gaussian 
copula (Li 2001)

¤ Codependence through a one-factor Gaussian copula of times to default

¤ Single parameter to estimate (correlation for all obligors in portfolio)

n Basic model does not simultaneously match market prices of all traded 
tranches

¤ “Correlation skew” – set of correlations that match the prices of all tranches 

n Base correlations – alternative to tranche correlations

¤ Implied correlations of equity tranches with different attachment points 

(mezzanine/senior tranches as difference between two equity tranches)

n Interpolation (or extrapolation) model

¤ Calibrated model to observed tranche prices of reference market portfolio 

(e.g iTraxx or CDX) is useful to price new “bespoke” CDO tranches



Credit Indices and Standard Tranches

n Track CDS spreads and CDO tranche spreads
n Major indices include: 

¤ Dow Jones CDX NA IG (tracks 125 North American Investment Grade 
names, 5 and 10 year indices)

¤ iTraxx Europe, Asia, Asia ex Japan indices (125 investment grade 
companies, again 5 and 10 year indices are published). 

n Prices are available for a set of standard tranches on each of the 
main CDS indices. (e.g. CDX.NA.IG 5Y, 5/31/2006)

5.5

10.5

21

99

34.81% + 500*

Spread (bps)

15-30%

10-15%

7-10%

3-7%

0-3%

Tranche
* Equity tranches pay an upfront percent of the 
notional value plus a constant spread of 500 
basis points. 

Prices are usually quoted simply as upfront 
percents.



Example – CDX IG Index, May 31st 2006

Base Correlation (Poisson)

0
0.2
0.4

0.6
0.8

0 - 3% 0 - 7% 0 - 10% 0 - 15% 0 - 30%

CDXIG5YR CDXIG7YR CDXIG10YR

IndexName Index Price Up Front 
Spread (%) 0 - 3% 3 - 7% 7 - 10% 10 - 15% 15 - 30% 0 - 3%

CDXIG5YR 42.04 500 99 21 10.5 5.5 31.81
CDXIG7YR 52.00 500 246 46.5 21 7.5 48.69
CDXIG10YR 65.00 500 595 118.5 55.5 16 55.63

Tranch spreads

Market Quotes - CDX



Alternative Models – Examples 

n Alternative Copula methods:

¤ NIG, t, double-t,, Clayton, Marshall-Olkin copulas (Burtschell et al. 2005a)

¤ Stochastic correlations (e.g. Gaussian mixtures, Li and Liang 2005)

¤ Local and marginal compound correlations (Burtschell et al. 2005b)

¤ Alternative default intensity processes: e.g. Intensity Gamma model (Joshi & 

Stacy 2006)

n Implied loss distribution or hazard rates approaches (non-parametric)

¤ Hull-White 2006, Walker 2007, Brigo et al. 2006

n Dynamic models (generally through Monte Carlo methods)

¤ Reduced form – dependent default intensities (Duffie & Garleanu 2001)

¤ Structural (Merton type) – multi-step default boundary (Hull et al. 2005) 

¤ Dynamic loss distribution processes (Schönbucher 2005, SPA 2005, 

Albanese and Vidler 2007, Hull and White 2007)



Bespoke CDO Tranches

n CDO tranche is “bespoke” if it is not among the set of tranches routinely 
quoted by dealers
1. “Bespoke portfolios” (different that e.g. CDX.NA.IG, iTraxx Europe, etc.)

2. Attachment and detachment point

3. Maturity (e.g. 3, 5, 7 and 10 years quoted)

n Bespoke maturity and attach/detach commonly treated through 
standard interpolation/extrapolation

n Bespoke portfolios… “it seems reasonable to use the same [calibrated 
model] when pricing products of a different basket which has similar 
properties to the index to which one has calibrated” (Pugachevsky & 
Reyfman)
¤ Base correlation mapping: “mapping” new CDO to reference CDOs with 

“similar risk”
¤ Scale correlation skew to fit the “riskiness” of the new portfolio

¤ Most common mapping based on matching expected losses (EL) of 
underlying and reference portfolios



EL Mapping (Base Correlations) – Pugachevsky & Reyfman

n Main idea: base correlations correspond to different levels of risk in the 

reference portfolio. 

¤ By finding the same risk levels on the bespoke portfolio – transfer the base 

correlation structure from the standard portfolio to the bespoke

n Generally, they solve an equation of the form: 

S is a "risk statistic"; P the portfolio, u the detachment point), and rho is 

the base correlation (the unknown is    ).

¤ Note: this is the BASE CORRELATION for the STANDARD PORTFOLIO  -

but it is used on both sides
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û



EL Mapping (Base Correlations)

3% 10%7% 15% 30% U

(U)
Index Base Correlation Curve

Bespoke Base Correlation Curve



EL Mapping (Base Correlations)

n Main idea: base correlations correspond to different levels of risk in the capital 

structure of the reference portfolio. 

¤ By finding the same risk levels on the bespoke portfolio – transfer the base 

correlation structure from the standard portfolio to the bespoke

n EL Mapping: solve for the detachment point(s) in the bespoke portfolio 
which matches the equation: 
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n We can construct a new base correlation “skew” for the bespoke 
portfolio (and interpolate from there).



EL Mapping (Base Correlations)

What “risks” should the EL mapping account/adjust for?

n Difference in ELs of portfolios (~ “shift” of the loss distribution) –
implicit in both numerators and denominators of mapping equation

n Difference in portfolio granularity (at least partially) for the of the 
portfolios (numerators in the mapping equation)

n Does not account for “sector” concentrations (systematic risk)
¤ e.g., a portfolio with same number of names, ratings distributions and 

LGDs as a given index à same price/spread, even if it is fully 
concentrated in one or two sectors 

¤ Ad-hoc adjustments used in practice 

¤ Need “concentration adjustment”
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Concentration Risk in Credit Portfolios

n Types of concentration: regional, business sector/industry sector, 
name concentration or granularity 

n Concentration risk measures

¤ Name concentration

n Herfindahl index (HI) on name exposures, ELs

n Granularity adjustment (for capital and tail risk)

¤ Sector/geographical concentration

n HI on sector exposures (ELs or stand-alone capital)

n Average (weighted) correlation

n Diversification factor on volatility, capital (e.g. Garcia et al 2006) 

n Credit portfolio models generally rely on multi-factor model to model 
codependence of credit events



Concentration Reports – CDX & iTraxx

Rating CDX HY CDX IG ITRAXX EUR ITRAXX CJ ITRAXX ASIA
AAA 1.49% 0.28% 0.38% 1.49%
AA+ 0.51%
AA 1.10% 0.24% 1.10%
AA- 0.39% 5.28% 2.13% 0.39%
A+ 4.70% 7.53% 4.70%
A 12.56% 6.70% 9.13% 12.56%
A- 11.16% 11.93% 19.25% 11.16%

BBB+ 16.36% 19.54% 5.22% 16.36%
BBB 25.49% 35.00% 13.63% 25.49%
BBB- 0.47% 19.61% 12.98% 14.00% 19.61%
BB+ 4.20% 4.40% 10.77% 4.40%
BB 9.14% 10.10%
BB- 6.85% 15.39%
B+ 12.12% 2.74% 2.74%
B 8.50%
B- 9.79%

CCC+ 4.22%
CCC 34.57%
CCC- 7.34%
CC 2.81%

Concentration by Expected Loss 



ITRAXX EUR

Aerospace & Defence Automobiles Banking & Finance
Broadcasting/Media/Cable Business Services Building & Materials
Chemicals Computers & Electronics Consumer Products
Energy Food, Beverage & Tobacco Gaming, Leisure & Entertainment
Health Care & Pharmaceuticals Industrial/Manufacturing Lodging & Restaurants
Metals & Mining Packaging & Containers Paper & Forest Products
Real Estate Retail (general) Supermarkets & Drugstores
Telecommunications Transportation Utilities
Sovereign

Sector Concentration in Indices 

CDX IG

Aerospace & Defence Automobiles Banking & Finance
Broadcasting/Media/Cable Business Services Building & Materials
Chemicals Computers & Electronics Consumer Products
Energy Food, Beverage & Tobacco Gaming, Leisure & Entertainment
Health Care & Pharmaceuticals Industrial/Manufacturing Lodging & Restaurants
Metals & Mining Packaging & Containers Paper & Forest Products
Real Estate Retail (general) Supermarkets & Drugstores
Telecommunications Transportation Utilities
Sovereign

CDX HY CDX IG ITRAXX EUR ITRAXX CJ ITRAXX ASIA
Exposure Per Name 10MM 8MM 8MM 20MM 1B
Number of Names 100 125 125 50 50

Industry (Fitch)
Aerospace & Defence 3.00% 4.00% 2.40%
Automobiles 9.00% 7.20% 4.00% 4.00%
Banking & Finance 3.00% 17.60% 20.00% 20.00% 24.00%
Broadcasting/Media/Cable 7.00% 8.00% 7.20%
Business Services 4.00% 1.60% 10.00%
Building & Materials 4.00% 3.20% 4.00% 6.00%
Chemicals 6.00% 3.20% 4.80% 2.00% 2.00%
Computers & Electronics 10.00% 4.00% 1.60% 8.00% 6.00%
Consumer Products 5.00% 3.20% 3.20% 4.00%
Energy 10.00% 4.80% 1.60% 10.00%
Food, Beverage & Tobacco 4.00% 5.60% 7.20% 4.00%
Gaming, Leisure & Entertainment 3.00% 1.60% 0.00% 2.00%
Health Care & Pharmaceuticals 3.00% 5.60% 0.80% 0.00%
Industrial/Manufacturing 2.00% 3.20% 2.40% 8.00% 6.00%
Lodging & Restaurants 3.00% 3.20% 0.80%
Metals & Mining 2.00% 1.60% 0.80% 12.00% 4.00%
Packaging & Containers 2.00%
Paper & Forest Products 5.00% 3.20% 1.60%
Real Estate 1.60% 0.00% 4.00%
Retail (general) 3.00% 6.40% 4.00% 4.00% 8.00%
Supermarkets & Drugstores 1.00% 4.80% 4.80%
Telecommunications 4.00% 4.80% 8.80% 2.00% 12.00%
Transportation 3.00% 4.80% 0.80% 8.00% 4.00%
Utilities 4.00% 5.60% 14.40% 4.00% 4.00%
Sovereign 14.00%

Herfindahl 5.7% 7.0% 9.5% 9.8% 12.2%
Effective number of sectors 17.5 14.2 10.5 10.2 8.2

Industry concentration by Notional 



Example: 40 Names (diversified) Portfolio – CDX 

0.180.160.190.16HI

16.9%17.5%13.5%15.2%ENERGY

Bespoke PortfolioCDX Index

6.07

9.6%

19.2%

20.0%

5.6%

9.6%

20.8%

Weight 
(Notional)

5.40

9.9%

11.8%

29.0%

3.6%

10.9%

21.4%

Weight 
(EL)

6.30

15%

10%

17.5%

5%

15%

20%

Weight 
(Notional)

5.63No. Eff. 
sectors

14.2%INDUSTRIAL

6.6%FINANCE

27.2%RETAIL

3.9%PHARMA

16.7%SERVICE

14.5%TECH

Weight  
(EL)

Sector 
(aggregate)

Average 5yr PD       Index = 3.65%  40 Name = 3.92% 

Simplified sector 
classification 
(model) – 7 sectors

23% intra-sector 
corr
16% cross-sector 
corr



EL Mapping 40 Names

27.77%30%

14.01%15%

9.75%10%

7.01%7%

3.45%3%

EL Mapped 
Point

CDX 
Detach Point

0

18

43

139

34.04%

Bespoke (EL)

5.5

9.9

21

99

31.81%

Index 

15-30%

10-15%

7-10%

3 - 7%

0 - 3%

Tranche
PRICES



Example: 20 Names Portfolio – CDX 

16.9%17.5%13.5%15.2%ENERGY

0.600.500.180.160.190.16HI

1.672.005.636.305.406.07
No. Eff. 
sectors

15%

10%

17.5%

5%

15%

20%

Weight 
(Notional)

Bespoke Portfolio 
(40)

14.2%

6.6%

27.2%

3.9%

16.7%

14.5%

Weight 
(EL)

Bespoke Portfolio 
(20)CDX Index

9.6%

19.2%

20.0%

5.6%

9.6%

20.8%

Weight 
(Notional)

9.9%

11.8%

29.0%

3.6%

10.9%

21.4%

Weight 
(EL)

50%

50%

Weight 
(Notional)

INDUSTRY

27.7%FINANCE

RETAIL

PHARMA

SERVICE

72.3%TECH

Weight 
(EL)

Sector
(aggregate)

Avg 5yr PD       Index = 3.65%  40 Name = 3.92%        20 Name = 3.36% 



EL Mapping 20 Names

27.77%

14.01%

9.75%

7.01%

3.45%

EL Mapped 
Point (40)

24.65%30%

11.55%15%

7.98%10%

5.89%7%

3.17%3%

EL Mapped 
Point (20)

CDX 
Point

0

18

43

139

34.04%

Bespoke 
(40)

0

11

29

113

28.26%

Bespoke 
(20)

5.5

9.9

21

99

31.81%

Index 

15-30%

10-15%

7-10%

3 - 7%

0 - 3%

Tranche
PRICES

20 Names

40 Names



Concentration-Adjusted Mappings

n Basic Model – “Average correlation adjustment”

where the betas are EL-weighted “average correlations” of each 
portfolio. For a given portfolio solves:

n Justification: roughly assume “equal risk premia” for the systematic 
portfolio asset volatility (under some assumptions and simplifications)
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CA Mapping – Comments 

n Alternative definitions of average correlation in practice 

n Requires “real” multi-factor/correlation model for the portfolio 

¤ MF model, nested SF Economy-wide systematic, calibrated SF

n Idea extended when portfolio and index do not have same EL and 

number of names (EL mapping adjusts for this already)

¤ “comparable portfolio” with same EL and name concentration but different 

sector concentration:

Mapping: Index à bespoke (EL, name) à bespoke (EL, name, sector)
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CA Mapping – Example (40 Names)

n Simple multi-factor (prior) model:
¤ 23% intra-sector corr
¤ 16% cross-sector corr

n Average correlations
¤ Index: 0.1805
¤ Bespoke: 0.1787

n Corr. Ratio: 0.9902

0

18

43

141

34.1%

Bespoke 
(CA) 

0

18

43

139

34.04%

Bespoke 
(EL)

5.5

9.9

21

99

31.81%

Index 

15-30%

10-15%

7-10%

3 - 7%

0 - 3%

Tranche

PRICES



CA Mapping – Example (20 Names)

0

0

4

64

26.64%

Bespoke 

(CA) 

0

11

29

113

28.26%

Bespoke 

(EL)

5.5

9.9

21

99

31.81%

Index 

15-30%

10-15%

7-10%

3 - 7%

0 - 3%

Tranche

PRICES

n Simple multi-factor (prior) model:

¤ 23% intra-sector corr

¤ 16% cross-sector corr

n Corr. Ratio: 1.1312



Systematic Weighted Monte Carlo Method

General Idea

n From observed prices/spreads of indices, tranches, and single-name 

CDSs, obtain implied discrete distribution (or process in a dynamic 

setting) of a set of systematic factors

¤ Factors drive the systematic credit risk, and hence the joint movement 

of default probabilities (or hazard rates)

n Multi-factor model links the systematic factors and conditional 

default probabilities

n Single factor model is generally enough to model an index but a 

multi-factor model is required to distinguish bespoke portfolio 

concentrations, and special structures



Systematic Weighted MC Approach

Background

n Weighted MC approach used to price complex options 

¤ e.g. Avellaneda et al., 2001, Elices and Giménez, 2006

n Similar idea to fitting the implied distribution (or process) of

underlying in a (discrete) lattice 

n Hull-White “Implied Copula” (2006) is essentially an application of 

this concept

¤ Homogeneous portfolio – cannot be used directly to price bespokes

¤ Similar ideas (also for homogeneous portfolios) in Brigo et al (2006). 



Hull-White Implied Copula Method

n Assume homogeneous portfolio.

n Specify a set of hazard rate scenarios s.

n Extensions for different numbers of names, different 

maturities, matching CDS term structure,…

prices.  tranchestandardMatch 
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Bespoke Portfolios in the Implied Copula Method

n For portfolios that have the same homogeneity as the index, scale hazard 

rates 

by a constant factor so that average CDS spreads are matched.

§ For portfolios that have different homogeneity from that of the index: 

§ Calculate y,y* the average equity return correlations for companies in 
the index and bespoke portfolios.

§ Compute:

where is the Gaussian copula correlation for the index. Alter hazard 

rate scenarios to match market CDS spreads and joint default  probabilities 
from the Gaussian copula model.

ss cλλ =*

*
*

y
y⋅= ρρ



Bespoke Portfolios in the Implied Copula Method

n "Dealing with portfolios that are less (or more) well 
diversified than the index requires some judgment and, 
whether the Gaussian copula/base correlation or implied 
copula approach is used, is inevitably somewhat ad 
hoc". (Hull-White, 2006).

n SWMC provides a systematic approach to the problem: 
¤ Can handle bespoke tranches on any portfolio, regardless of 

concentration/diversification.

¤ Implied systematic factor distributions can be used to price other 
portfolio credit derivatives (e.g. CDO2).

¤ Stronger assumptions are required: relationship between real 
and risk neutral measure, fully calibrated MF model under P. 



Implied Risk Factor Distributions – Intuition 

Key objective: tractable distribution of joint default times – match 
marginal distributions and prices of CDSs and quoted CDO tranches

¤ In a Gaussian copula – conditioning on the systemic factor
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n Base correlations à the correlation rho is a function of the 
detachment point

n Hull-White “implied copula” à model directly conditional PDs through 
discrete scenarios (on a hazard rate) for homogeneous portfolio

n Implied risk factor distribution à model directly the distribution of 
the systematic risk factor through discrete scenarios à conditional 
default probabilities through the copula “mapping” 
¤ Extensible to multi-factor and applied to other portfolios



Systematic Weighted MC Approach – Static Model

n Assumptions

¤ MF model à joint default behaviour under real world measure P

¤ Coefficients of MF model for portfolio are known and fixed

¤ Difference between real measure P and RN-measure Q is in the joint 
distribution of the systematic factors

n (Marginal) distribution of default times for each name under the risk-

neutral measure based on CDS spreads 

n Conditional distribution of default times, as a function of the factor 

levels under the RN measure still given by the same formula

n Solution

¤ Sample discrete “paths” (in this case, single values) for the systematic 

factors and adjust probabilities of paths to match prices



Systematic Weighted Monte Carlo: Probability Constraints

n For each name j in the index and bespoke portfolios, based on 
default swap spreads, estimate the cumulative default 
probability Fj (T)

n Define the default threshold to be:  

n Constraint that (implied, risk-neutral) probabilities match 
market implied default probabilities:
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Systematic Weighted Monte Carlo: Spread Constraints

For each tranche: 

n S = tranche size, U = detachment point, L = attachment point

n s = market quoted spread (given)

n i = the tranche loss random variable at time ti
n Di = discount factor for cashflows at time ti
n Tranche value:

n Constraint on matching market spreads is*

* In this exercise, conditional expectations calculated using Normal approximation to portfolio loss
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Weighted Monte Carlo: Objective Function

n Optimize a measure of fitness of the probability distribution G(q),

¤ subject to constraints described above (in practice, use penalties instead)

n Options for G include:

¤ Maximum Entropy: maximize

¤ Maximum Smoothness: minimize  quadratic form approximation integral 

of square of second derivative (same as used in Hull-White)

¤ Proximity to a prior distribution p. Minimize q - p r where: 

n r =1 or à linear programs

n r = 2 à quadratic program

∑−
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Caveat: Interpreting Implied Distributions

n Consider a homogeneous portfolio, and assume that the "prior" 
model is the single factor Gaussian copula with correlation P, and 
market prices agree with a single factor Gaussian copula with M.

n Market prices can be reproduced exactly by taking the systematic
factor to have a Normal implied distribution with mean and variance:

n Moral: Implied factor distributions must be viewed in relation  to the 
"prior" factor model. Significant deviations from standard normal 
factors imply significant changes from the prior model to the implied 
model. 
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Systematic Weighted MC – Example

5.5

10.5

21

99

31.81%

Index 
(Market) 

15-30%

10-15%

7-10%

3-7%

0-3%

Tranche

0

9.2

24

102

31.93%

Index 
(WMC)

PRICES

Basic numerical exercise (“raw” calibration)

n 200 to 300 Quasi-MC Scenarios (multi-
dim. Sobol points)
¤ Normal prior scenarios 

¤ Conditional Normal approx., constant LGD

n Optimization problem
¤ min. distance from prior
¤ “soft” matching constraints (penalty 

function)



Systematic Weighted MC – Example

-0.220.041.00-0.01ENERGY

-0.04-0.011.04-0.01INDUSTRY

-0.230.030.97-0.02FINANCE

-0.390.011.00-0.03RETAIL

-0.20-0.130.99-0.01PHARMA

-0.120.041.00-0.01SERVICE

-0.050.271.04-0.07TECH

2.76-0.480.63-0.15Global

Ex. Kurt.SkewStdMeanFactor

Global 
Systemic 
Factor



Evolution of distribution – from maximum smoothness to tight fit of prices

Global Factor Implied Distribution (enhanced calibration)



Global Factor Implied Distribution (enhanced calibration)

Difference in implied distributions by removing most senior tranche



Systematic Weighted MC – CDO Index Prices

MEAN STD SKEW EX.KURT 0-3% 3-7% 7-10% 10-15% 15-30%
None 0.00 0.99 -0.11 -0.27 28.47% 229.06 45.97 9.81 1.12
level 1 0.37 1.90 1.49 1.02 32.31% 118.39 32.85 23.27 9.47
level 2 0.30 1.81 1.68 2.05 32.22% 111.58 34.8 18.67 10.37
level 3 0.22 1.69 1.90 3.33 32.04% 106.54 30.78 16.12 10.77
level 4 0.14 1.54 2.23 5.01 31.89% 101.58 24.46 12.47 7.5

Final 0.12 1.47 2.42 5.98 31.82% 99.35 21.47 10.77 5.77

MARKET 31.81% 99 21 10.5 5.5

Global factor statisticsPenalties Tranche Prices



Systematic Weighted MC – Bespoke (40 Names)

0-3% 3-7% 7-10% 10-15% 15-30%
None 29.75% 302.4 77.78 19.53 1.83
level 1 31.58% 244.48 39.2 25.16 10.65
level 2 31.93% 232.1 39.48 22.28 10.85
level 3 32.22% 219.38 38.48 19.67 10.99
level 4 32.48% 207.92 35.2 15.41 7.78

Final 32.57% 203.51 33.07 13.37 6.09

EL Mapping 34.04% 139 43 18 0

WMC Index 31.82% 99.35 21.47 10.77 5.77
Market Index 31.81% 99 21 10.5 5.5

Penalties
Tranche Prices



Systematic Weighted Monte Carlo Bespoke (40 Names)

0-3% 3-7% 7-10% 10-15% 15-30%

MARKET 31.81 99 21 10.5 5.5

WMC INDEX 31.81 99.53 19.96 10.86 5.48

BESPOKE 
(WMC MF) 33.13 214.54 24.66 11.18 5.53
BESPOKE 
(WMC SF) 32.57 203.51 33.07 13.37 6.09
BESPOKE 
EL Mapping 34.04 139 43 18 0

Factor MEAN STD SKEW KURT
Global 0.66      1.26        1.35        2.89        
TECH 0.15      2.91        0.14-        1.13-        

SERVICE 0.13      2.86        0.07-        1.09-        
PHARMA 0.31      2.59        0.09-        1.14-        
RETAIL 0.36-      2.73        0.13        1.01-        

FINANCE 0.13      2.41        0.06        0.72-        
INDUSTRY 0.39      2.78        0.21-        1.13-        
ENERGY 0.37      2.83        0.16-        1.10-        



Systematic Weighted MC – Example (20 Names)

0-3% 3-7% 7-10% 10-15% 15-30%

MARKET 31.81 99 21 10.5 5.5

WMC INDEX 31.81 99.53 19.96 10.86 5.48

BESPOKE       
(40 name) WMC 32.57 203.51 33.07 13.37 6.09

BESPOKE      
(20 Name) WMC 20.98 266 81 30 8
BESPOKE EL 
Mapping 28.26 113 29 11 0



¤ Example of general multi-factor copula

¤ Matching, for each name, the “unconditional” default probability

term structure

¤ … and match quoted CDO prices 

Intuition: Implied Risk Factor Distributions

n More generally, we can use other “link functions”, satisfying basic matching 
(no-arbitrage) constraints

¤ Logit function, NIG, double-t, etc…

n Generalized linear mixed model (McNeil and Wendin 2006) framework.
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Implied Risk Factor Distributions and GLMMs

n General formulation:
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n Poisson mixture (e.g. CreditRisk+)

∑ =
== K

k kikiii ZcZUEZ
1

]|[)( βλ



Systematic Weighted MC Approach

n Various possible routes – for a practical and stable solution we have 
to be pragmatic

¤ e.g. calibration problem can be computationally intensive, and with 

“ugly” underlying distributions

n Issues include:

¤ Joint credit evolution model: static (multi-factor Gaussian copula) or 

dynamic (structural or reduced-form model)

¤ Multi-factor model and dimensionality of the problem

¤ Discretization (MC method), and number of scenarios

¤ Computation of conditional portfolio loss distributions (in each scenario)

¤ Optimization problem (objective function, smoothness, constraints, etc.)

¤ Solution strategy for optimization

¤ Price new instruments via MC or map/calibrate to simple model 



Systematic WMC – Improving Performance & Stability

n Systematic Weighted MC is a modelling framework 
¤ Model stability for particular problems must be well understood before 

using it in practice

n Some available tools to fit and apply the model in practice include
1. Scenario generation and prior distributions

2. Non-constant LGDs (as in Altman, Brigo, Moody’s)

3. Effective application of objective function – max. smoothness, max. 
entropy, min. distance to prior, penalties

4. Additional “fake constraints” to obtain desired distributions

n e.g. a solution close to the EL mapping can be obtained by 
including penalties for giving prices different from it

5. Computational method to compute conditional portfolio loss 
distributions (conditional Normal, Poisson, recursions, etc.)

6. Alternative distribution functions for factors and residuals and even 
time-dependent parameters



Concluding Remarks and Future Directions

n EL mappings and base correlations can be misleading at times
¤ Better used as communication and (perhaps) interpolation tools 

n Weighted MC methodology is quite general and can price consistently other 

instrument types (e.g.CDO2)

¤ Sensitivities via MC Greek techniques or also through fitting simplified model

n Key areas of focus include
¤ Detailed understanding of sensitivity to model parameters and concentration risk
¤ Tail scenarios and non-normal priors

¤ Computational “tuning” (scenario sampling, convolution, optimization problem, etc.)

¤ Use empirically validated multi-factor model and understanding of its impact

¤ Extensions to other instruments – e.g. CDO2 (calibrating to prices & multiple indices)

n Extensions to dynamic models via hazard rate processes (Cox processes) or 

multi-step structural models (e.g. Kreinin et al. 1999, HW 2001)

n Measurement and aggregation of risk concentrations across credit portfolios 
(including CDOs)
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