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• Financial Valuation of Guaranteed Minimum 
Withdrawal Benefits,
M.A. Milevsky & T.S. Salisbury.
Ins. Math & Econ. 2006 

• Asset Allocation and the Transition to Income: 
The Importance of Product Allocation in the 
Retirement Risk Zone,
M.A. Milevsky & T.S. Salisbury
IFID working paper, 2006 (www.ifid.ca)

• Asset Allocation with GMWBs, (in progress, 2006)
H. Huang, M.A. Milevsky & T.S. Salisbury. 



• A GMWB is a rider on a variable annuity contract. 
Deposit an amount W(0) into a mutual fund (or 
portfolio of funds). The account value W(t) then 
evolves dynamically. 
One is entitled to withdraw g=G·W(0) per year 
(eg. G=7%) for 1/G years, even if this (coupled 
with market performance) drives the account value 
to zero.

• If it does, the firm selling the VA steps in and 
makes good on the guarantee. 
Typically this is one of several embedded options, 
eg. GMDB, ratchets, passport option.



• One may withdraw less than g (often there 
is a bonus if one withdraws nothing). One 
may leave the VA at any time (lapsation) 
and receive the account value less any 
deferred surrender charge (DSC). 
But if one withdraws more than g this 
typically resets the guaranteed amount or 
the withdrawal period, or both.

• GMWB-for-life: payment stream continues 
after time 1/G. Increasingly seeing this.



• Funding: a yearly fee α (insurance charge) applied 
variously to the account value or remaining 
amount guaranteed (W(0) less withdrawals).

• This is a complex product, because of the 
interaction of the various embedded options, but 
also because of the optionality of lapsation and 
withdrawals. 

• In the U.S. variable annuities are tax-sheltered 
retirement savings plans, and represent a 
substantial face value ($1,125 billion at end of 
2004), with about half protected by GMWB riders 
(NAVA factbook)

• Why??
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• Increasingly, retirees are left to take 
responsibility for their own retirement 
planning. Firms transfer risk to 
individuals
• Risk factors - improving mortality 
leaves us the risk of outliving our 
money.
• Ageing of the population
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Canada Pension Plan Retirement 
Beneficiaries
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The Annuity Life-Cycle
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Wealth Path Under a Reversed Historical Returns Sequence

$-

$50

$100

$150

$200

$250

$300

$350

$400

20
03

19
99

19
95

19
91

19
87

19
83

19
79

19
75

19
71

19
67

19
63

19
59

��

��

����

�����
Spend Per Year*:

*Inflation Adjusted



A Canadian Investor Starts Withdrawing (Retires) at Age 65
What is the Probability of Retirement Ruin?

Probability of Ruin (%)
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Can Your Planned 30 Years of Retirement Income Survive 
Five Bad Years in the Market?

100% Invested in Equities

62.7449.7637.3624.226th Five Years Earned -5% Returns:
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61.4647.6435.3422.08Investment Returns Earned 
as Planned:
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Can Your Planned 30 Years of Retirement Income Survive 
Five Bad Years in the Market?

60% Invested in Equities

70.4254.4633.4415.426th Five Years Earned -5% Returns:

75.2459.8640.0420.525th Five Years Earned -5% Returns:

80.1866.0846.3424.904th Five Years Earned -5% Returns:

86.1675.1255.9832.223rd Five Years Earned -5% Returns:

93.7084.9267.8040.662nd Five Years Earned -5% Returns:

99.6696.8283.6851.641st Five Years Earned -5% Returns:

68.5051.7431.4014.26Investment Returns Earned 
as Planned:

Probability of Ruin (%)
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Can Your Planned 30 Years of Retirement Income Survive 
Five Bad Years in the Market?

100% Invested in Bonds

96.5685.2660.7224.126th Five Years Earned -5% Returns:

97.6890.8468.8632.865th Five Years Earned -5% Returns:

99.1494.2676.0842.084th Five Years Earned -5% Returns:

99.6097.4486.7652.583rd Five Years Earned -5% Returns:

99.9699.2093.9066.562nd Five Years Earned -5% Returns:

100.00100.0099.2483.381st Five Years Earned -5% Returns:

95.8884.8456.6621.68Investment Returns Earned 
as Planned:

Probability of Ruin (%)

$7 $6 $5 $4 Spending Rate per $100*:

*Inflation-Adjusted



• GMWBs (esp. GMWBs-for-life) are 
intended to manage some of this risk. 
They step in where DB pension plans 
used to. 
• Very popular in US, Japan, UK. 
• First is currently being marketed in 
Canada - Manulife’s IncomePlus



Static case - Price as a “Quanto 
Asian Put” plus annuity:
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What would Wall Street charge for a 
plain vanilla GMWB?

117 – 2329%

94 –1948%

73 – 1587%

54 – 1236%

37 – 905%

23 – 604% 

Cost in Basis PointsWithdrawal Rate 

Assumption: Stochastic pricing model with 5% discount rate and 20% to 30% volatility

plus ZERO OPTIMAL LAPSATION….



IME paper, 2006

• Simple case of the 1st paper: no passport, 
no ratchets, no GMDB. 

dW(t) = (r-α)W(t) dt + σW(t) dB(t)-γ(t) dt
(under the risk neutral measure)

The guaranteed amount evolves as dA(t) = -
γ(t) dt   (as long as γ(t) < g).



• With this model it would be optimal to sell 
and repurchase as soon as W(t)>W(0), 
reestablishing the guarantee at a higher 
level. So we include a DSC at (flat) rate κ. 
In other words, as long as W(t)>A(t), the 
account holder receives  f(γ(t)) dt
where    f(γ(t)) = γ(t)- κ(γ(t)-g)+



• The seller hedges, and we assume that both the 
insurance charge and DSC are retained in the 
hedge (ie not used as trailers etc). 

• We also assume that the seller is to be hedged 
against all choices of withdrawals/lapsation (worst 
case scenario). In that case this becomes an 
American-style option with extremal behaviour
consisting of withdrawing gdt unless W(t) exceeds 
some threshold, at which time the buyer lapses, 
pays the DSC and resets the guarantee.



• The hedge value V(t)=v(W(t), A(t)) satisfies
dV(t) = rV(t)dt + dM(t) -f(γ(t))dt   

V(t) ≥ (1- κ)W(t)
• The resulting pde for v is parabolic (the a variable 

plays the role of time), and can be solved 
numerically by standard techniques. 

• If V(0) > W(0) then the initial capital is not 
sufficient to hedge completely, while if 
V(0) < W(0) then there is a clear profit to the 
seller.  If equality holds, the hedge is perfect: for 
given κ one can solve for the critical α making 
this so.



• In fact, being under-hedged is typical; the 
embedded options are sold below cost. 
Eg.  g=7%, r=5%, σ=20%, κ=1% gives a critical 
α of about 160 b.p. whereas typically α is 30 - 50 
b.p.

• How can this be sustained?  The extremal γ(t) is 
worse-case; if one assumes other behaviour for 
withdrawals/lapsation then a lower insurance 
charge will suffice. 



Capital Market (Model) M&E Fee 
for a 7% GMWB

565 b.p.158 b.p.σ = 30%σ = 30%σ = 30%σ = 30%

320 b.p.113 b.p.σ = 25%σ = 25%σ = 25%σ = 25%

160 b.p.73 b.p.σ = 20%σ = 20%σ = 20%σ = 20%

Dynamic 
(Financial)

Static* 
(Actuarial)

Investment
Volatility:

Assuming 5% (risk free) pricing rate. Note that under a static model 28.53% of
the initial premium deposit is used to purchase Q.A.P. and remaining 71.47%
is used to purchase a 14.28 year term-certain annuity.



dVt  =  rVt dt + dMt  - f(γt) dt

dv(At , Xt )  

Equating gives

where the RHS is a submartingale, and a martingale under 
the optimal choice of  γ.

Details ….



for every  γ, with equality for some  γ.

Because  f is piecewise-linear, there are three critical 
cases, namely γ =0, γ =g, and γ = �. We arrive at the 
free boundary value problem

with equality in at least one case.

(Hamilton-Jacobi-Bellman equations) 



• On the other hand Moody’s special comment 
(October 2005) warns against this, quoting our 
numbers and rationale. Undercharging leaves 
sellers open to arbitrage, especially as a secondary 
market emerges for VA policies:

“most companies realize that policyholder 
inefficiency is a key driver of pricing.”

“Increased efficiency in the markets only a matter of 
time: relying on policyholder inefficiencies is a 
losing long-term proposition.”

“It is essential for insurance companies to monitor 
and guard against the arbitraging of actuarial 
assumptions.”





Further work or work in progress:
• Ratchets - Can finesse lapsation by building in 

ratchets. In continuous version, withdrawals are 
based on X*= max observed value of X. Can then 
compute hedging cost (still expensive)

• GMWBs for life - the guaranteed withdrawals 
persist for the lifetime of the policyholder. One 
can approach this either with mortality fully 
diversified, or with some mortality risk retained 
and a partial hedge. 



• The full product is more complex. But assuming 
constant w.d. at rate g (static case), it is amenable 
to Monte Carlo. In our eg, the critical dynamic α
is 2-3 times that of the static one.

• Optimal policyholder behaviour: It isn’t a 2-way 
market so utility maximizing behaviour may not 
be extremal for the seller. One can ask when a 
GMWB adds utility over the mutual fund, and for 
what α, κ it does so.

• An interesting question is the asset allocation
within a portfolio protected by a GMWB-for-life. 
With only utility of consumption the simple 
answer is leverage.  In practice - not allowed, but 
do people start to invest more agressively?



• Yes: LIMRA study - average allocation to 
large/midcap changes from 45% to 62%. 

• Our analysis is that utility of consumption 
alone should predict a much bigger shift. 
Currently trying to model a combination of 
consumption and liquidity that reflects more 
realistic behaviour. 



Other Literature
• No Arbitrage theory to value insurance (or pension) 

guarantees.
– Brennan and Schwartz (1976)
– Boyle and Schwartz (1977)
– Pennachi (1999)
– Mitchell, Lachance and Smetters (2003)

• Asian option pricing.
– Milevsky and Posner (1998)

• Variable Annuity (VA) market.
– Milevsky and Posner (2001)
– Brown and Poterba (2004)
– Boyle et al (2006) - lapsation modeling

• Actuarial work on Investment Guarantees
– Hardy (2003), monograph


