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1 Introduction

» Dynamic consumption-portfolio choice:

e Merton (1971): optimal portfolio includes intertemporal hedging

terms in addition to mean-variance component (diffusion)

e Breeden (1979): hedging performed by holding funds giving best

protection agst fluctuations in state variable (diffusion)

e Ocone and Karatzas (1991): representation of hedging terms using

Malliavin derivatives (Ito, complete markets)

— Interest rate hedge

— Market price of risk hedge
e Detemple, Garcia and Rindisbacher (DGR JF, 2003): practical

implementation of model (diffusion, complete markets)
— Based on Monte Carlo Simulation
— Flexible method: arbitrary # assets and state variables, non-linear

dynamics, arbitrary utility functions

— Extends to incomplete/frictional markets (DR MF, 2005)
)



» Contribution:

e New decomposition of optimal portfolio (hedging terms):

— Formula rests on change of numéraire: use pure discount bonds as
units of account

— Passage to a new probability measure: forward measure (Geman
(1989) and Jamshidian (1989))

— General context: Ito price processes, general utilities



e New economic insights about structure of hedges:

— Hedge fluctuations in the price of long term bond
« pure discount bond with utility of terminal wealth
* coupon-paying bond with intermediate utility
+ this hedge has a static flavor (static hedge)
— Hedge fluctuations in future bond return volatilities and market
prices of risk
— Risk aversion properties:
x if risk aversion approaches one both hedges vanish: myopia
x 1f risk aversion becomes large mean-variance term and second
hedge vanish: holds just long term bonds
x if risk tolerance vanishes all terms are of first order in risk
tolerance.

— Non-Markovian N 4+ 2 fund separation theorem.



e Technical contribution:

— Exponential version of Clark-Haussmann-Ocone formula
« Identifies volatilities of exponential martingale in terms of
Malliavin derivatives
— Malliavin derivatives of functional SDEs
— Explicit solution of a Backward Volterra Integral Equation (BVIE)

involving Malliavin derivatives.



» Applications:
e Preferred habitat
e Preferences for long term bonds
e Lixtreme risk aversion behavior
e International asset allocation
e Preferences for I-bonds

e Integration of risk management and asset allocation

» Road map:
e Model with utility from terminal wealth
e The Ocone-Karatzas formula
e New representation
e Intermediate consumption
e Applications

e (Conclusions



2 The Model

» Standard Continuous Time Model:
e Complete markets and Ito price processes
e Brownian motion W, d-dimensional
e Flow of information 7 = o(W : s € [0,t])
e Finite time period [0, 7.

e Possibly non-Markovian dynamics



» Assets: Price Evolution

e Risky assets (dividend-paying assets):

S} 1 i i
ds;f = (r¢ — 0y) dt + o (0sdt + dWy),  Sp given

ot: volatility coefficients of return process (1 x d vector)

ri: instantaneous rate of interest
6¢: dividend yield

0, : market prices of risk associated with W (d x 1 vector)

L A

(r,0,0,0): progressively measurable processes; standard

integrability conditions
e Riskless asset:

*x pays Interest at rate r



» Investment and Wealth:

e Portfolio policy 7:
— d-dimensional, progressively measurable, integrability conditions
— amounts invested in assets: 7
— amount in money market: X — 7’1
e Wealth process:
dX; = r Xodt + oy (O¢dt + dW3) , subject to Xo = .
e Admissibility:
— 7 admissible (7 € A) if and only if wealth non-negative: X > 0.




» Asset Allocation Problem:

e Investor maximizes expected utility of terminal wealth:
maxre E |U(X7)]
e Utility function: U : R, — R

— Strictly increasing, strictly concave and differentiable
— Inada conditions: limx_ ., U'(X) =0 and limx_,o U'(X) = 00
— Example: CRRA U(z) = =X where R > 0.

e Property:
— Strictly decreasing marginal utility in (0, co)
— Inverse marginal utility [ (y) exists and satisfies U’ (I (y)) =y
— Derivative: I'(y) = 1/U"(I(y))

e Variation: U : [A, +00) — R
— Strictly increasing, strictly concave and differentiable
— Inada conditions: limx o, U'(X) =0 and limx .4 U'(X) = o0
— Example: HARA U(z) = 25 (X — A)'"# where R > 0, A > 0.
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3 The Optimal Portfolio

» Complete Markets:
e Market price of risk: 0; = (01¢, ..., 0a)’
e State price density:

= exp (— [y (rs + 50.05) ds — [y 6LdW)

— converts state-contingent payofls into values at date 0

e Conditional state price density:

So=exp (— [ (rs+ 50005) ds — [V 0LdWs) = &, /&
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» Optimal Portfolio: Ocone and Karatzas (1991), Detemple, Garcia and
Rindisbacher (2003)

="+

where
MV: m =By [6 T (07) " 6
/
IRH: m = (o) By |&r (X - ) J) Dirds|

/
MPRH: |7/ = — (o)) ' E; [gt,T (X5 —T%) [T (dw, + Hsds)’DtGS}

e Optimal terminal wealth X7 = I(y*{r)

e Constant y* solves x = F [{71(y*&r)| (static budget constraint)

e ['(X)=-U'(X)/U"(X): measure of absolute risk tolerance

o I, =T (X7): risk tolerance evaluated at optimal terminal wealth

e D, is Malliavin derivative
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» Structure of Hedges:

/
RH: | nf = — (o) " By |G (X}~ T7) f)f Doryds]

e Driven by sensitivities of future IR and MPR to current innovations

in W;. Sensitivities measured by Malliavin derivatives D;rs and D;0,

e Sensitivities are adjusted by factor & 7 (X7 —I'}.): depends on

preferences, terminal wealth and conditional state prices.
e Optimal terminal wealth: I(y*&r)
e Date t cost: & rI(y*ér) = &l (y i)
e Sensitivity to change in conditional SPD &; 7

(& rI(y" r— 17
(&7 a(é,jt&j)) = I(y*&Ser) + vy &erI'(y* &l r) = X7 — I

e Sensitivity of conditional SPD to fluctuations in IR and MPR
~&r [ Dirsds  and  — &p [[1 (AW, + 05ds) Dybs.
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» Constant Relative Risk Aversion (CRRA)

o v = (E[&] /z)"
o X =E; [ft,T(y*fT)_l/R}

e Hedging terms are weighted averages of the sensitivities of future
interest rates and market prices of risk to the current Brownian

innovations.
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4 A New Decomposition of the Optimal Portfolio

4.1 Bond Pricing and Forward Measures

» Pure Discount Bond Price: BtT = F; [ft,T]

» Forward T-Measure: (Geman (1989) and Jamshidian (1989))

e Random variable:

e Properties: Z; 7 > 0 and E; [Z; 7] = 1. Use Z; r as density

e Probability measure: dQ! = Zy TdP
— Equivalent to P
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» Change of Numéraire: unit of account is T-maturity bond

e Under Q] price V (¢) of a contingent claim with payoff Y7 is

V() = By [&1Yr] = By &1 By [Ef[;T]YT] = BFEF v

o E!'[| = E/[Z; 1] is expectation under Q}
e Martingale property: V (t) /B! = El' [Yr] = E; [Z;7Y7].

e Density Z; 1 is stochastic discount factor: converts future payofls

into current values measured in bond unit of account.

16



» Characterization (Theorem 2): The forward T-density is given by

Zy1 = exp ( [T 0% (s,1) dW, — L [T 6% (5, T) 0% (s,T) ds)

e volatility at s € [t,T]: 07 (5,T) = o (s5,T) — 0,

e bond return volatility: o” (s,7) = D,log B!
» Contribution(s):

e Identify volatility of forward measure

e Application of Exponential Clark-Haussmann-Ocone formula

e Market price of risk in the numéraire
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4.2 Portfolio allocation and long term bonds

» An Alternative Portfolio Decomposition Formula:

*x . _m b A
Ty = Ty + Ty + Ty

e Mean variance demand:
m * —1
Ty :Ef [FT] BtT (07/5) 0y

e Hedge motivated by fluctuations in price of pure discount

bond with matching maturity
—1 * *
m = (07)" o (t,T) Ef [X3 —T7] B/

e Hedge motivated by fluctuations in density of forward

T-measure
i = (0}) " Bl (X5 —T%) Dylog (Zu,r)] BY .
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» Eissence of Formula: change of numéraire

e SPD representation: & = B! Z, 1

e Optimal terminal wealth: X, =/ (y*fthZt,T)

e Cost of optimal terminal wealth: B/ Z, I (y*ftBtT Zt,T)
e Hedging portfolio: D, (B Z,rI (v*&B{ Zi 1))

e Chain rule of Malliavin calculus:

— (Zt,T] (y*ftB;}th,T) + Bl Zy I’ (y*ftBtTZt,T) y*ftZt,T) DB}

— (BI'I (y*&Bl Zy 1) + BI ZyrI' (v* & B] Zy 1) y* & BEY) DiZs 1

— BtTZt,T]/ (y*ftB?thT) BtTZt,TDt (y*gt)
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» Long Term Bond Hedge:

e Immunizes against instantaneous fluctuations in return of long term

bond with matching maturity date

e Corresponds to portfolio that maximizes the correlation with long

term bond return

e This portfolio is synthetic asset or maturity matching bond, if exists

» Forward Density Hedge:

e Immunizes against fluctuations in forward density Z; r

(instantaneous and delayed)

e Source of fluctuations are bond return volatilities and MPRs:
0% (s,T) = oP (5,T) — 0,

e Dio? (5,T) = DyoP (s,T) — D;b,.
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4.3 Constant Relative Risk Aversion

» Hedging Terms are:

e Hedge motivated by fluctuations in price of pure discount bond

with matching maturity

b —1
<= = p (o) oB (¢t,T) B}

e Hedge motivated by fluctuations in density of forward 7-measure

-1 /

1154 —1 Zr
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» Highlights knife-edge property of log utility (Breeden (1979))
e Logarithmic investor displays myopia (hedging demands vanish)
e More (less) risk averse investors will hold (short) portfolio
synthesizing long term bond
e More (less) risk averse investors will hold (short) portfolio that
hedges forward density
— portfolio is individual-specific: depends on risk aversion of

utility function
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4.4 Application: Demand for long term bonds

» Constant relative risk aversion

e Market model:
— T-maturity bond is traded. Two assets: stock and LT bond

— Volatility matrix:

S S
O1¢ Oo
9t = B B
i O1¢ Oot |
e Optimal portfolio:
B B
m 1 X7 o101t — 01,02
t Ulstaztglt U2t0ﬁ 9 9
—09:U1¢ + O1¢Y2¢

B __B B __B
b X; O2t91t — 91192t _ Ly 0
Tt _paltaztelt 0275055 S _B S _B — P 1
| 0501 T 010 1]
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z __
Tt =P _5 B S B

2:91t— 9591

—1
{ z07 {aiDltlog(Zt,T)—aﬁDgtlog(zt,T) ”
t

E;JT [Zf’}l] _O-QStD:lt log (Zt,T) —f— O'lstDQt log (Zt,T)

q

Ju—

~
q

e Remark: Typical models in literature 77 = 0 (Gaussian models)

— Bonds-to-equities ratio
e = (_U2St91t+0igt92t) i (R _ 1) (_U2St05+0igt0£)

B B B B
05101t —071;02¢ 05101t —071;02¢

* Increases with risk aversion if second ratio is positive
« Independent of investment horizon
« Independent of wealth

— Explains Asset Allocation Puzzle (Canner, Mankiw, Weil (1997))
« Typical advice: increase BER for more conservative investors
*x Mean-variance model: ratio is independent of risk aversion

+ Static bond hedge explains the puzzle (Bajeux-Besnainou,
Jordan and Portait (2001))
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» Wealth-dependent risk aversion HARA:

—A 1-R
’LL(%) — @ 1—)R 1psa — 001ng

e Gaussian model: 77 =0

e Bonds-to-equities ratio

02159175 athQt E;—F[F}] 02t91t athQt

T *
e; = ( 02t91t+01t92t) i (Et [XT] _ 1) ( 0237:‘71t+01t02%)

F1xz] ABT B{)P)
prirs = B (1+ xi2aer (B

ABlI AB} T~>\1/R
X;-ZB?'_'(mngg)il@>(B¥2&)

ht) = exp (4 fy (3105 + 0 (s, T2 = 0B (s, 7)]2) ds)
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e Changes in risk aversion imply:

— Direct relative risk aversion effect: outside power R increases BER

— Endogenous wealth effect: direction depends on
1/R
h(t) (BF Z:)"

- nonlinear effects - reduces BER if wealth increases

+ Reduction in dispersion of optimal terminal wealth:
consumption smoothing across states

*x Cost of optimal terminal wealth can increase or decrease

+ Budget constraint effect: decreases or increases multiplier y 1/

to satisfy budget (opposite direction)

+x Net effect on wealth at date ¢ can be positive or negative
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e Graph illustrates the possibility of a decrease in BER: negative

wealth effect dominates in certain regions

Bonds—to—equities ratio: intolerance for shortfall

Bonds-to—equities ratio

Risk aversion parameter R

Forward density Z(t)

— Vasicek interest rate model:r, =7 =0.06, x,. =0.05, o1 = —0.02, 05 = —0.015
and market prices of risk are constants s = 0.3 and 63 = 0.15. The interest rate at t = 5 is

r+ = 0.02. Other parameter values are A = 200, 000, x = 100, 000 and T = 10.
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5 Intermediate Consumption

5.1 The Investor’'s Preferences

» Consumption-portfolio Problem:

maXy cca B [fOT u (e, t)dt +U(Xr)

e Utility function: u (-,-) : Ry x [0,7] — R and bequest function:
U : R, — R satisty standard assumptions

e Maximization over set of admissible portfolio policies m,c € A

e Inverse marginal utility function J (y,t) exists: v’ (J (y,t),t) =y for
all t € [0, 7]

e Inverse marginal bequest function I (y) exists: U’ (I (y)) =y
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5.2 Portfolio Representation and Coupon-paying Bonds

» Decomposition:

¥ . _m b A
Ty = Ty + Ty + Ty

e Mean variance demand:

m T v X (9 * -
nt = (J) By (03] Bydo + E] 03] BY) (01) ™ 6,

e Hedge motivated by fluctuations in price of coupon-paying bond

with matching maturity:

7t = (o))" [ 0B (t,v) BYEY [¢f — T du
+ (o))t oB (t,T) BTEL [ X5 — T3]

e Hedge motivated by fluctuations in density of forward

T-measure:
/
o= (o) (S B (e; — T3) Dilog Zy,) Bydv)
+ (o))~ (B (X3 —T%) Dy log Zir) BY)'
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» Static Hedge 7¥: against fluctuations in value of coupon-paying bond

e Coupons |C (v) = EY ¢} — T'}] | at intermediate dates v € [0,7T)

e Bullet payment | F' = E/ [ X} — T'%] | at terminal date T

e Coupon payments and face value are
— time-varying

— tailored to individual’s consumption profile and risk tolerance

e Bond value

B(t,T;C,F) = [' BYC (v)dv + B]'F.

e Instantaneous volatility

o (B(t,T;C,F))B(t,T;C,F) = [!oB(t,v) BYC (v)dv
+oP (t,T)Bl'F

e Hedge: |(0))' ¢ (B(t,T;C,F)) B(t,T;C,F)
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» Forward Density Hedge 77:
e Motivation: desire to hedge fluctuations in forward densities Z; ,

e Static hedge already neutralizes impact of term structure

fluctuations on PV of future consumption
o Given &, = B/ Z;, it remains to hedge fluctuations in discount
factor in new numéraire 7, ,,v € [t,T].
» Optimal Portfolio Composition:

e To first approximation portfolio has mean-variance term + long term

coupon-bond hedge

e Under what conditions is this approximation exact (i.e. last term

vanishes)?

e If last term does not vanish what is its size?
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5.3 Constant Relative Risk Aversion

» Relative risk aversion parameters R, , Ry for utility and bequest

functions. Portfolio:

e Mean-variance term

= (o)~ (ftT By (¢ Bydo + 1 ET [X*]BT) 0,

u

e Hedge motivated by fluctuations in price of coupon-paying bond

with matching maturity

mt = (o) (pu f, B (t,0) BYEY () dv + puo® (,T) BT ET (X))

e Hedge motivated by fluctuations in densities of forward measures

o= py (02)_1 fT E} [¢:Dylog Zy )" BY dv
—|—pU( ) ET [X*Dt 10g Zt T] B?
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» Static Hedge has two parts:

e Pure coupon bond (annuity) with coupon given by optimal

consumption
e Bullet payment given by optimal terminal wealth
e T'wo parts are weighted by risk aversion factors p, and pg
e Knife edge property traditionally associated with power utility.

e Possibility of positive annuity hedge (R, > 1) combined with
negative bequest hedge (Ry < 1).

» Literature: special cases of this result analyzed by

e Munk and Sorensen (2004)

— CRRA with homogeneous risk aversion coefficients R, = Ry = R.

— Portfolio decomposition 7" + W?

« = (o)) "o

+x Hedge against fluctuations in wealth-to-consumption ratio

* atQ in terms of unknown volatility function (invoke MRT)
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6 Applications

6.1 Preferred Habitats and Portfolio Choice

» Preferred Habitat Theory Modigliani and Sutch (1966):

e Individuals exhibit preference for securities with maturities matching

their investment horizon

e Investor who cares about terminal wealth should invest in bonds

with matching maturity

e Existence of group of investors with common investment horizon

might lead to increase in demand for bonds in this maturity range

e Implies increase in bond prices and decrease in yields. Explains

hump-shaped yield curves with decreasing profile at long maturities.
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» Formula shows that optimal behavior naturally induces a demand for

certain types of bonds in specific maturity ranges

i =w(X; - B(t,T;C,F))+w!B (t,T;C, F) + 7}

m

/ . / / _
wy® = arg max,, {w'of; : wooiw = k}.

w? = arg max,, {w'o;o (B (t,T;C)) : woiojw' = k}

77 = argmax, {n'ow0 (t,T) : w'oroin’ =k}

where

Gl [ EY (¢t —T%) Dylog Zy.) By dv
+E! [(X5 — %) Dylog Zy 1) BEY
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e Any individual has preferred bond habitat:
— Optimal portfolio includes long term bond with maturity date
matching the investor’s horizon
— Preferred instrument is coupon-paying bond with payments

tailored to consumption profile of investor

e Complemented by mean-variance efficient portfolio to

constitute static component of allocation
e Under general market conditions static policy is fine-tuned by
dynamic hedge
— When bond return volatilities and market prices of risk are

deterministic, dynamic hedge vanishes
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» Motivation for preferred habitat here is different from Riedel (2001)

e In his model habitat preferences are driven by structure of subjective

discount rates placing emphasis on specific future dates

e In our setting preference for long term bonds emerges from the

structure of the hedging terms

e Optimal hedging combines static hedge (long term bond) with
dynamic hedge motivated by fluctuations in forward measure

volatilities
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6.2 Universal Fund Separation

» Non-Markovian fund separation

e Assumptions:

— N State variables with path-dependent evolution (N < d)
dYy = p(Y(y)edt + o (Y())edWs

— |BY = B (t,v,Y,))

— |0?(t,v) = o? (t,v,Y(.))
*x Path-dependent functionals.
«x Fréchet differentiable.

e Universal N + 2-fund separation holds: portfolio demands can be
synthesized by investing in N + 2 (preference free) mutual funds:
— Riskless asset
— Mean-variance efficient portfolio
— N mutual funds (¢}) "' o) (Y(,))/ to synthesize the static bond
hedge and the forward density hedge.
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6.3 Extreme Behavior

» Assume risk tolerances go to zero:

e Intermediate utility and bequest functions:

(T'y(z,v),T'y(2)) — (0,0) for all z € [0, +00) and all v € [0, T]]

e Relative behaviors: for some constant k& € [0, +00):

[y (z1,v)
L'y (22)

>k for all 21,29 € [0,00) and all v € 0,7

P 1 for all 2,2 € [0,00) and all vy, vp € [0, 7]
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» Limit Allocations: coupon-paying bond with constant coupon C' and

face value F' given by

C = & and F = L .
[ Bgdv+BYL /k [ Bydvk+BT

e If £ = 0 exclusive preference for pure discount bond,
(C,F)=(0,z/Bg)
e If k — oo preference is for a pure coupon bond,
(C,F) = (a:'/ ST Bgdv,o)
» Limit Behavior:

e Governed by relation between utility functions at different dates

e As risk tolerances vanish, preference for certainty: coupon-paying

bond with bullet payment

e Least extreme of the extreme behaviors drives the habitat:
— Given a preference for riskless instruments: individuals puts more
weight on maturities where risk tolerance is greater
— Exhibits a time preference in the limit.
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» Illustration: CARA preferences I';, and 'y constant, k =T, /I'y.

1
e Slope of indifference curves: —‘% — % (eX —c/ k) Fu
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» Special case examined by Wachter (2002)

e Arbitrary utility functions over terminal wealth and markets with

general coefficients
e Documents emergence of preferred habitat when relative risk
aversion goes to infinity
— Pure discount bond with unit face value and matching maturity
e Our analysis shows that preferred habitat for an extreme consumer
may take different forms depending on nature of behavior

— Pure discount bonds, pure annuities or coupon-paying bonds with

bullet payments at maturity can emerge in limit.
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» Order of Convergence
e As (I'y(z,v),I'y(2)) — (0,0), the limit portfolios
— %t =7; =0
— 7 = (o] fo B, v)BYdvC + o (t, T)BL'F
e have scaled asymptotic errors:
— ) = (T,() ™' (r®* — 7%) with a € {m,b, 2} and v € {u, U},

e (U),€e(w)] - (o) 0 | f)} Bydv BT | K
W] = =) | o (t,v) Bydv oP (t,T) BT | K
- (o)) [ [T Ny BY do Nt,TB;T] K

— | Ner = B [(J7 02 (rm) dWe — L [ lloZ (r, 7)|2dr) (Dy log Zt,7)]

I R
L%
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6.4 Term structure models and asset allocation

» Integration of term structure models and asset allocation models:

e Forward rate representation of bonds
By = exp (— ftv ftsds)

— Continuously compounded forward rate: [’ = —% log (BY)

— Bond price volatility:

oB(t,v) = Dilog BY = — [['Dyfids = — [ o/ (¢, s)ds

— Volatility of forward rate: o/ (t, s)

e Forward rate dynamics:
— No arbitrage condition (HJM (1992)):

dff = ol (t,v) (AW, + (6, — B (t,v)) dt), [f§ given

— Dynamics completely determined by forward rate volatility

function and initial forward rate curve
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» Optimal Portfolio: previous formula with

Dy log Ztp = [ (dWS + (03 + [Y ot (s, u)du) ds)/ (Dtes + [? Diod (s, u)du))

e Forward density hedge in terms of forward rate volatilities

e Useful for financial institution using a specific HJM model to

price/hedge fixed income instruments and their derivatives

e Implied forward rates inferred from term structure model and

observed prices

— estimate volatility function o/ (s, u)

— feed into asset allocation formula

e Simple integration of fixed income management and asset allocation.
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» Forward Density Hedge:

e Immunization demand due to fluctuations in future market prices of

risk and forward rate volatilities

e Vanishes if deterministic forward rate volatilities o/ (s, u) and

market prices of risk 6,

e Pure expectation hypothesis holds under forward measure:
f(t,0) = Ef[ro]

—

—

—

l

l

Standard version of PEH (f(¢,v) = E¢[r,]) fails when Z;, # 1
Density process Z;, measures deviation from PEH

Malliavin derivative D; log Z; ,, captures sensitivity of deviation
with respect to shocks

Dynamic hedge = hedge against deviations from PEH

If Z;, =1 PEH holds under the original beliefs and hedging
becomes irrelevant

If 07 deterministic, deviations from PEH are non-predictable and
do not need to be hedged
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» Literature:

e Gaussian models: Merton (1974), Vasicek (1977), Hull and White
(1990), Brace, Gatarek and Musiela (1997)

e Lixtensively employed in practice

e Forward rate volatilities o/ are insensitive to shocks. If MPR also

deterministic no need to hedge

e Bajeux-Besnainou, Jordan and Portait (2001) also falls in this

category (one factor Vasicek)
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» Numerical Results: Forward measure hedges in one factor CIR model
e CIR interest rates:

dry = k(T — 1¢))dt + o /TdWy; 1o =7

— Parameter values (Durham (JFE, 2003)):

- Ky = 0.002

- 7 =0.0497

- o, = —0.0062
- =0.06

e Market price of risk:

et — 77“\/7715

— Parameter values:

. 7, = 0.3/+/7 such that 6 = ~,/7 = 0.3

e CRRA preferences for terminal wealth
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e Mean-variance demand: |m""/X; = +(o7) 16,

=
ol
/

=
/

054

Mean-variance portfolio weight

NN
oo
i

Investment horizon 0 o

Relative risk aversion
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e Static term structure hedge: 7!/ X; = p(o)) " toP(t,T)

yBram oljopiod abpay aneis

Relative risk aversion

Investment horizon
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. zP—1
e Dynamic forward measure hedge: ~z/x; =y (o)) ' ET t—T_l} (D4 log Zy 1)’

TP
E; [Zt,T

004- -

0.034.

0.01\

Forward measure hedge portfolio weight
o
o
o N
\Yi /

AN
o

Investment horizon 0 o

Relative risk aversion
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e Changing initial interest rate: Relative risk aversion fixed at R = 4

— Mean-variance demand: | 7]/ X} = %(0}) 16,

I o o o
w IN o fo)
/ / / /

Mean-variance portfolio weight
o
N
/

»O
SR
vV

Investment horizon 0 o

Initial short rate
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— Static term structure hedge: |77/ X} = p(o}) LB (t,T)

A
™ N — © o
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e Dynamic forward measure

} (Dt log Zt,T)/]
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e Changing initial interest rate: Investment horizon fixed at 7" = 15

— Mean-variance demand:

n X = h(oh) 6,
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— Static term structure hedge: 72/ X} = p(o}) Lo P (t,T)

Static hedge portfolio weight
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e Dynamic forward measure

} (Dt log Zt,T)/]
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7 Conclusion

» Contributions:
e Asset allocation formula based on change of numéraire

e Highlights role of consumption-specific coupon bonds as instruments

to hedge fluctuations in opportunity set

e Formula has multiple applications: preferred habitat, demand for
long term bonds, fund separation, extreme behavior, international

asset allocation, demand for I-bonds

e Technical contributions: exponential Clark-Haussmann-Ocone

formula, Malliavin derivatives of functional SDESs, Solution of linear
BVIE

» Integration of portfolio management and term structure models
e Asset allocation in HJM framework

e Other applications
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