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Adiabatic Theorem
If Hamiltonian H(t) “changes slowly” then “no transitions”, i.e.:
System remains in its instantaneous eigenstate H(t) n(t)=En(t) n(t) (or 

degenerate eigenspace) throughout the (adiabatic) evolution, i.e.,
energies En(t) evolve continuously and do not cross.

Applications abound… E.g.: Molecular energy level surfaces (Born-
Oppenheimer approximation), Berry phase, adiabatic QC, holonomic QC

Standard formulation of adiabatic theorem: applies to closed
quantum systems only (Born & Fock (1928); Kato (1950); Messiah (1962)).

This talk: 
- A generalization of the adiabatic approximation to the case of open quantum 
systems. 

- Applications to adiabatic quantum computing & geometric phases.

- We’ll show (main result): adiabatic approximation generically breaks down 
after long enough evolution.

The Adiabatic Approximation



Experimental Evidence for Finite-Time Adiabaticity in 
an Open System





Intuition for optimal time:

Decoherence causes broadening of system energy levels 
(many bath levels accessible), 
until they overlap.

g

e

Competition between adiabatic time (slow) and 
need to avoid decoherence (fast)
yields optimal run time.



Open Quantum Systems

system bath
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Every real-life quantum system is coupled to an environment 
(“bath”).

Full Hamiltonian:
intBSH H H H+ +=

Environment (Bath)
System

Open quantum systems are not described by the Schrodinger equation.

They are described quite generally by completely positive maps:
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Under the assumption that is invertible can obtain a class of, 
generally non-Markovian,

convolutionless master equations:

( ) generally not Hermitian, "Superoperator" 
does not have a complete orthornormal basis
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Master Equations for Open Quantum Systems
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How should we construct adiabatically decoupled eigenspaces?

Hamiltonian 
part

Dissipative 
part



Spectrum via the Jordan block-diagonal form
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One right and one left eigenvector 
per Jordan block, same eigenvalue



Left and Right Bases
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Jordan block index
row index inside given Jordan block

J

J

J

Apply similarity transformation to left and right eigenvectors, 
then complete them to a left and right basis:

Expand the 
density matrix



Definition of Adiabaticity in closed/open systems

Adiabaticity in open quantum 
systems: 
An open quantum system is said to 
undergo adiabatic dynamics if its 
evolution is so slow that it proceeds 
independently in its instantaneous 
decoupled superoperator-Jordan 
blocks, associated to distinct 
eigenvalues of L(t) .

Adiabaticity in closed quantum 
systems: 
A closed quantum system is said to 
undergo adiabatic dynamics if its 
evolution is so slow that it proceeds 
independently in its instantaneous 
decoupled Hamiltonian-
eigenspaces, associated to distinct 
eigenvalues of H(t) .

PRA 71, 012331 (2005)

Can prove, for a closed system:
Adiabatic according to H(t) ç Ł adiabatic according to L(t)



Closed system                                             

adiabatic dynamics takes place in instantaneous decoupled 
eigenspaces of time-dependent Hamiltonian H
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adiabatic 
eigenspaces



Open system                                             

adiabatic dynamics takes place in instantaneous decoupled Jordan-
blocks of dynamical superoperator L
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Remark on Order of Operations
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We chose 3. since 
1. System and bath generally subject to different time scales. 

May also be impractical.
2. Adiabatic limit on system is not well defined when bath 

degrees of freedom are still explicitly present.



Time Condition for Adiabatic Dynamics

• Condition for adiabaticity:

Total evolution time can be lower-bounded by 

max. norm of time-derivative of generator (H or L)

min. square of |spectral gap| (energies or complex-valued Jordan eigenvalues)

• What is the analogous condition for open systems?

)

)
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1D Jordan blocks

Time Condition for Open Systems Adiabaticity

T �

numerical factor

time-derivate of generator

spectral gap

Remarks:

• The crossover time      provides a decoupling timescale for each Jordan block

• If there is a growing exponential (    real and positive) then adiabaticity persists 
over a finite time interval, then disappears!

• This implies existence of optimal time for adiabaticity

• The exponential cancels in the closed-system case since it is fast oscillating

Ω
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Application 1: Geometric Phases

• Adiabatic cyclic geometric phase:

– Berry (Abelian) phase: non-degenerate 
states

– Wilczek-Zee (non-Abelian) phase: 
degenerate states



(Closed System) Berry Phase

• What is the Berry Phase?
A purely geometric phase acquired by a quantum state undergoing 
cyclic adiabatic evolution
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Open Systems Geometric Phase

Substituting:

Convolutionless master equation, 
implicit time-dependence through parameters          :

Solve by expanding d.m. in right eigenbasis, 
explicitly factor out dynamical phase

Simplification for single, 1D, non-degenerate Jordan block:

Solution:

Abelian Geometric Phase:

PRA 73, 062101 (2006)
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Abelian Geometric Phase:

  ( ) is geometric: depends only on path traversed in parameter space.Cαγ•

( )

  ( ) is gauge invariant: cannot modify it by redefining left or right 

eigenvectors via multiplication by complex factor ( ) .i R

C

R e

α

ν

γ

χ

•
����

difference of  ( ) reduces to usual expression for ( ) geometric phases 

in limit of closed system.

Cαγ•

  ( ) can be complex: real part determines visibility.Cαγ•

PRA 73, 062101 (2006)



Non-Abelian Open Systems Geometric Phase

Case of degenerate 1D Jordan blocks:

Rewrite: where

Wilson loop:

Solution:

non-Abelian Wilczek-Zee gauge potential; 
holonomic connection:

Geometric, gauge-invariant, correct closed-system limit,
complex valued.

PRA 73, 062101 (2006)



Berry’s Example: Spin-1/2 in Magnetic Field
Under Decoherence

System Hamiltonian:

In adiabatic + weak-coupling limit leading to the Markovian master equation, 
Lindblad operators must follow Hamiltonian (Davies & Spohn, J. Stat. Phys. ’78):

Dephasing:

Spontaneous emission:

diagonalizes

Superoperator:

, diagonalizable, hence      diagonalizable in     eigenbasis.

But       eigenbasis doesn’t depend on  

Hence geometric phase immune
to dephasing and spont. emission! 
Closed system result reproduced.



Adiabaticity time does depend on           . I.e., adiabatic geometric phase
disappears when adiabatic approximation breaks down.

Results for spherically symmetric B-field, azimuthal angle=π/3

too short

too long

condition for
adiabaticity:

cT Tα�

PRA 73, 062101 (2006)



Geometric phase is not invariant under bit flip: 

ge
om

et
ri

c 
ph

as
e 

 in
 u

ni
ts

 o
f

π
Results for spherically symmetric B-field, azimuthal angle=π/3
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Application 2: Adiabatic Quantum Computing



1( ( ))poly N −�

• Measure individual spin states and find answer to hard computational 
question!

• Procedure’s success depends on gap not being too small:

GS

  Start a system in non-degenerate ground state of easily prepared Hamiltonian, 

   e.g., (0) (0)  :    (0) .z
i

i
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  Time-evolve adiabatically to new Hamiltonian whose

   ground state is computationally hard to find, e.g.,
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i ijj ijH T SJ T J TS ψ
<

= − =⋅�

�

�� ��

  For 0:    ( ) ( ) ( )z
i ji iji j

i

t H t B t S J t S S
<

> = − ⋅−� �
�� ��

�



Adiabatic QC can only be performed while adiabatic approximation is valid.

Breakdown of adiabaticity in an open system implies same for AQC.

Implications for Adiabatic QC
M.S. Sarandy, DAL, Phys. Rev. Lett. 95, 250503 (2005)



Example: Deutsch-Josza algorithm for a single qubit, 
under (non-Markovian) dephasing, with unitary interpolation



Implications for Adiabatic QC
M.S. Sarandy, DAL, Phys. Rev. Lett. 95, 250503 (2005)

Robustness of adiabatic QC depends on spectral gap closing slowly 
(polynomially) with system size. Can we somehow preserve the gap?

Yes, using a “unitary interpolation strategy” [see also M.S. Siu, PRA ’05].

We find:
A constant gap is possible in the Markovian weak-coupling limit
A constant gap is non-generic in non-Markovian case

.



Unitary Interpolation: Adiabatic Open Systems

*Note: constant super-operator spectrum
implies constant gaps in Hamiltonian spectrum

*

C

In adiabatic + weak-coupling limit leading to the Markovian master equation, Lindblad operators must
follow Hamiltonian (Davies & Spohn, J. Stat. Phys. ’78). 
But otherwise this condition is non-generic.

Phys. Rev. Lett. 95, 250503 (2005)



Example: Deutsch-Josza algorithm under (non-Markovian) dephasing, 
with unitary interpolation

Phys. Rev. Lett. 95, 250503 (2005)



Additional comments:
- Gaps constant in spite of non-
Markovian model. True also for 
spontaneous emission in this 
example.
- Four 1D Jordan blocks; one 
automatically decoupled. Hence 
adiabaticity depends on decoupling 
of other three.

Phys. Rev. Lett. 95, 250503 (2005)



Example: Deutsch-Josza algorithm under (non-Markovian) dephasing, 
with unitary interpolation



• Adiabatic QC can only be performed while adiabatic approximation is 
valid.

• However, the adiabatic approximation (typically) breaks down in an 
open system if the evolution is sufficiently long.

• Breakdown of adiabaticity in an open system implies same for AQC.

• Breakdown is due to vanishing of gaps, due to interaction with 
environment.

• Gaps can be kept constant via unitary interpolation (at expense of 
introducing many-body interactions) when bath is Markovian.

• Error correction techniques (e.g., Jordan, Shor & Farhi, quant-
ph/0512170) are needed.

Summary of Conclusions for Adiabatic QC

Phys. Rev. Lett. 95, 250503 (2005)
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Summary

• Adiabaticity defined for open systems in terms of 
decoupling of Jordan blocks of super-operator (for another 
approach based on weak coupling see P. Thunstrom, J. Aberg, E. Sjoqvist, 
PRA 72, 022328 (2005))

• Central feature: adiabaticity can be a temporary feature 
in an open system

• Implications for robustness of adiabatic QC and for 
geometric phases in open systems

Phys. Rev. A 71, 012331 (2005); Phys. Rev. Lett. 95, 130501 (2005);
Phys. Rev. A 73, 062101 (2006)


