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The Adiabatic Approximation

Adiabatic Theorem
If Hamiltonian H(t) “changes slowly” then “no transitions”, i.e.:
System remains in its instantaneous eigenstate H(t)y ,(t)=E, (t)w,(t) (or
degenerate eigenspace) throughout the (adiabatic) evolution, i.e.,
energies E_(t) evolve continuously and do not cross.

Applications abound... E.g.: Molecular energy level surfaces (Born-
Oppenheimer approximation), Berry phase, adiabatic QC, holonomic QC

Standard formulation of adiabatic theorem: applies to closed
guantum systems only (Born & Fock (1928); Kato (1950); Messiah (1962)).

This talk:

- A generalization of the adiabatic approximation to the case of open quantum
systems.

- Applications to adiabatic quantum computing & geometric phases.

- We'll show (main result): adiabatic approximation generically breaks down
after long enough evolution.



Experimental Evidence for Finite-Time Adiabaticity in
an Open System
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We report the realization of a nuclear magnetic resonance computer with three quantum bits that
simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new
insight into how quantum resources can be used to solve hard problems. This experiment uses a
particularly well-suited three quantum bit molecule and was made possible by introducing a technique
that encodes general instances of the given optimization problem into an easily applicable Hamiltonian.
Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction
of a simple decoherence model.
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Intuition for optimal time:

Decoherence causes broadening of system energy levels
(many bath levels accessible),
until they overlap.

Competition between adiabatic time (slow) and
need to avoid decoherence (fast)
yields optimal run time.




Open Quantum Systems

Every redl-life quantum system is coupled to an environment

(“bath™). H=H +H_+H Hint:ZSUDBU
Full Hamiltonian: a »\

system bath

Environment (Bath)

<> Hp

Open quantum systems are not described by the Schrodinger equation.

They are described quite generally by completely positive maps:

Pt =0(p(0) =Y ApOA 3 AA=I



Master Equations for Open Quantum Systems

Under the assumption that @ is invertible can obtain a class of,
generally non-Markovian,

convolutionless master equations:

Hamiltonian Dissipative
part part

agis = L(t)[og] L (t) = H (t) + R(t)

E.g.0 LO)[ps]=-1[Hs®. 0] +%Z(2Fa(t)psrz(t) ~{p ThOT 40}

"Superoperator” L(t) generally not Hermitian,
does not have a complete orthornormal basis

How should we construct adiabatically decoupled eigenspaces?



Spectrum via the Jordan block-diagonal form

Jordan canonical form:

where L£;(t) = diag(Jy, ..., J,) is the Jordan form of L(t), with the

Jordan block J, associated to an eigenvector of £(t) whose eigenvalue

IS Yo
Yo 1 O 0
0 =, 1 0
=
0 T |
{ e 0 Y

One right and one left eigenvector
per Jordan block, same eigenvalue

L,(t) =

J

m
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Left and Right Bases

Apply similarity transformation to left and right eigenvectors,
then complete them to a left and right basis:

Right and left bases in the space of linear operators:

{'Dr(iﬂ»-f} and {f((g((;)T}—\ row index inside given Jordan block

Jordan block index

Properties:
e Block structure is preserved under L{t):

L8} [DPENY = DE1 @) + Aalt) (D)),
(ED @) L) = ((ESTV )] + ((EV @) Aal?).

e Orthonormality condition:

ED®DY (1)) = 8asb™.
i Hﬁ—l

Expand the 1 r
derr:sity matrix |P(U)}=;2 2 F"Ej[f” D:{;'j[”)}-
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Definition of Adiabaticity in closed/open systems

Adiabaticity in closed quantum Adiabaticity in open quantum
systems: systems:

A closed quantum system is said to | An open quantum system is said to
undergo adiabatic dynamics if its undergo adiabatic dynamics if its
evolution is so slow that it proceeds | evolution is so slow that it proceeds
independently in its instantaneous independently in its instantaneous
decoupled Hamiltonian- decoupled superoperator-Jordan
elgenspaces, associated to distinct blocks, associated to distinct
eigenvalues of H(t) . eigenvalues of /(f) .

Can prove, for a closed system:
Adiabatic according to H(t) t adiabatic according to £(t)

PRA 71, 012331 (2005)



Closed system

adiabatic dynamics takes place in instantaneous decoupled
eigenspaces of time-dependent Hamiltonian #

H) = Hyt)=

E,

adiabatic

. eigenspaces

/

E2
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Open system

adiabatic dynamics takes place in instantaneous decoupled Jordan-

blocks of dynamical superoperator L

L) —» L,(1)=

Al

1

adiabatic

/ blocks

|
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Remark on Order of Operations

In deriving adiabatic condition for open systems we have a choice:

1. Tr, o (adiabatic limit).,,

2. Tr, o (adiabatic limit),

3. (adiabatic limit); o Tr,

We chose 3. since
1. System and bath generally subject to different time scales.
May also be impractical.
2. Adiabatic limit on system is not well defined when bath
degrees of freedom are still explicitly present.

PRA 71, 012331 (2005)



Time Condition for Adiabatic Dynamics

« Condition for adiabaticity:
Total evolution time can be lower-bounded by

max. norm of time-derivative of generator (H )

min. seere of [spectral gap| (energies)

power
dH(s |
F F= max |{k(s)| ( )|m(.5‘)> ,
7> —, 0<s<l ds

s=t/T
G= min |g,(s)|.

O=s=1

* What is the analogous condition for open systems?

PRA 71, 012331 (2005)



Time Condition for Open Systems Adiabaticity

ng l('n,[-,-—.') P | 5q~1 ’Vﬁa(o) V,{-‘,!a(s) Tﬂ
T0 T = 1nax 7> max E (
T D{K:Ifé |§A o E:] ;;Zl rznl quz:n 0=s<l| g+a “’ﬁﬂf(o) “’ﬁa(‘g)
1D eX J
1 6\‘%(\” q) p&?gf-l_) T Qg4 (5) j o 3 (S _
(_ ) f){%p{l ,r,' Sp|l dS (l') (S
Waq ((]) Waq (5) pa
(igp
S 51 T () @ Vsu-”)(-b‘) 1D Jordan blocks
— /0 ds e ™ e :
| 5 A ()

where

.5, = zlg@ K Ygit-_h So = 0; numerical factor

o Vi (s)Fhe Closedver time) | 1 o [Bides a decdipigrg eneataefrgesiatdidan block

o O, (1) thergs &' grewing expanential (Q(real gp@@@g[tlggbthen adiabaticity persists
over a finite time interval, then disappears!

» This implies existence of optimal time for adiabaticity

» The exponential cancels in the closed-system case since it is fast oscillating



Application 1. Geometric Phases

» Adiabatic cyclic geometric phase:

—Wilczek-Zee (non-Abelian) phase:
degenerate states



(Closed System) Berry Phase

« What is the Berry Phase?

A purely geometric phase acquired by a quantum state undergoing
cyclic adiabatic evolution

Control parameters (vector field, e.g., magnetic field): R(t)

Cyclic evolution along a path C: H (R(0)) = H (R(T))

c R(t)
H(R()) @, (1)) = E, )|, 1))

—i].En(t)dt C
,(0))

= |g,(M)=¢" e’

geometric  dynamic

AIAGIE

C

¢,(R) @R



Open Systems Geometric Phase

Convolutionless master equation, - \ —
implicit time-dependence through parameters R(t): dﬂ/af — L:[R(f)]p(f)

m ng—1
Solve by expanding d.m. in right eigenbasis,
explicitly factor out dynamical phase Z Z p

ng—1
Substituting: p(\) — pc:+l) Z Z p(J) 1)|Dg)>>
Bl Ag=Xa j=0

Simplification for single, 1D, non-degenerate Jordan block: jﬁa,_ = —Pa < <5a |'Da>>

Solution:  pu(t) = pa(0) exp [i7a(®)] With Ya(t) = i [1({Ea(t)|Dal(t)))dt

Abelian Geometric Phase: 7, (C') = zjg <<5{1(§)|6|Da(§)>> . dR
'

AIAGIEITAGHET
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Abelian Geometric Phase: -’}-’G(C) =1 }Ié <<5ﬂ(ﬁ)|§|7.7a(ﬁ)>> . dﬁ
C

« ). (C) isgeometric: depends only on path traversed in parameter space.

* ). (C) isgauge invariant: cannot modify it by redefining left or right

eigenvectors via multiplication by complex factor y(R)&"®.

* ). (C) reducesto usual expression for ( ) geometric phases
In limit of closed system.

* ,(C) can be complex: real part determines visibility.

PRA 73, 062101 (2006)



Non-Abelian Open Systems Geometric Phase

Case of degenerate 1D Jordan blocks: p)\a — — Z} lpE\J) <<5§2 |D§‘Q>>
Rewite: P, = —(Ay, - )Py, where Py, = () p)
Solution: P)\Q,_ (Cf) — Z/{P)\a (0)

Wilson loop: U=Pe .92::’ Axg dR
non-Abelian Wilczek-Zee gauge potential,
holonomic connection: ({ (1) 6|D§1)>> <<5§\U|§|D&G)>>

Are = s 5
G2 1 G| = G
(EDIVIDLY) - (& 1VID)

Geometric, gauge-invariant, correct closed-system limit,
complex valued.

PRA 73, 062101 (2006)



Berry’s Example: Spin-1/2 in Magnetic Field
Under Decoherence

System Hamiltonian:  H(B) = —uS - B B(t) = (B.(t). B, (t), B.(1))

In adiabatic + weak-coupling limit leading to the Markovian master equation,
Lindblad operators must follow Hamiltonian (Davies & Spohn, J. Stat. Phys. '78):

Dephasing: I, = B.W(B)o.WH(B)

Spontaneous emission: ['_ = (_ [fV(g)U_Tffo’TT(é)

%{_J

diagonalizes H ( é)

— —

Superoperator: ﬁ(é) = H(B) + R(B)
[7—[’ R] — (), diagonalizable, hence £ diagonalizable in H eigenbasis.

But H eigenbasis doesn’t depend on Bz,—

Hence geometric phase immune
to dephasing and spont. emission!
Closed system result reproduced.



Adiabaticity time does depend on ﬁzj_ . l.e., adiabatic geometric phase
disappears when adiabatic approximation breaks down.

PRA 73, 062101 (2006)



Geometric phase is not invariant under bit flip: Fm(g) — ﬁ1W(§)g$W(§)T

geometric phase in units of Tt

Re (v_,)

Results for spherically symmetric B-field, azimuthal angle=1v/3

-0.98 . | . |

--- Dephasing, Spontaneous emission

-1.02
= Bit-flip (B=0.8)
I Bit-flip (B=1.0)
+» Bit-flip (B=2.0)
-1.04 —
_1 06 1 | 1 I 1 | | 1
0 0.1 0.2 0.3 0.4
Bll
Im(y) =107

-
th
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Application 2: Adiabatic Quantum Computing

Adiabatic quantum computation (AQC): Farhi et al., Science (2001)

H(s) - > |n(1)
|n(0)) > - f Ground state of A1), which

_ encodes the solution of the
Ground state of /(0). H(s) interpolates between

problem.
HO0) and AT), with s=¢ T
and 0< s<1.




[ Start a system in non-degenerate ground state of easily prepared Hamiltonian,
eg, H(0)=-BO)Y.§: [¢es(®)=|11...1),

JFort>0: H(t)= —B(t)z S —Zi<j J; 1S 3

1 Time-evolve adiabatically to new Hamiltonian whose
ground state is computationally hard to find, e.g.,

HT) ==Y, (T)S [$;, J, random and fixed: |(/os(T)) = 72?

 Measureindividual spin states and find answer to hard computational
guestion!

* Procedure’ s success depends on gap not being too small: >

@9

G U (poly(N))™



Implications for Adiabatic QC

M.S. Sarandy, DAL, Phys. Rev. Lett. 95, 250503 (2005)

Adiabatic QC can only be performed while adiabatic approximation is valid.

Breakdown of adiabaticity in an open system implies same for AQC.



Example: Deutsch-Josza algorithm for a single qubit,
under (non-Markovian) dephasing, with unitary interpolation

Adiabatic time interval: adiabaticity only occurs for a

finite time interval, disappearing afterwards! This behavior is an

exclusive feature of open systems, which is illustrated in Fig. 1.
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FIG. 1: Crossover time T'5 as a function of the total evolution
time 1" for the Jordan blocks Ja, J3, and Jy (the plot for Jy is
the same as for Ja). The inset of {a) shows that Jz has non-
negligible couplings for 7 ~ 10% (in units such that w = 1).

e Concrete case: take A = 0.1 and impose a certainty of 90% (either

pr =0.9or p— = 0.9). Then, T = 11, which is compatible with the

adiabaticity, since 75 ~ 0.82 and 15 = T}

-



Implications for Adiabatic QC

M.S. Sarandy, DAL, Phys. Rev. Lett. 95, 250503 (2005)

Robustness of adiabatic QC depends on spectral gap closing slowly
(polynomially) with system size. Can we somehow preserve the gap?

Yes, using a “unitary interpolation strategy” [see also M.S. Siu, PRA "05].

We find:
A constant gap is possible in the Markovian weak-coupling limit

A constant gap is non-generic in non-Markovian case



Unitary Interpolation: Adiabatic Open Systems

Sufficient condition for constant gaps in open systems:
Consider a Lindblad super-operator £(s) = H(s)+R(s), where H(s)
denotes the Hamiltonian super-operator and R(s) the decohering
super-operator. If the Hamiltonian changes by a unitary transfor-
mation, namely H(s) = V'(s)H(0)V(s), then a sufficient condition

for a constant spectrum of L£(s) is R(0) = V(s)R(s)V1(s).

In adiabatic + weak-coupling limit leading to the Markovian master equation, Lindblad operators must

follow Hamiltonian (Davies & Spohn, J. Stat. Phys. '78).
But otherwise this condition is non-generic.

Phys. Rev. Lett. 95, 250503 (2005)



Example: Deutsch-Josza algorithm under (non-Markovian) dephasing,
with unitary interpolation

e Initial state: |¢(0)) = |[+1) ® -+ ® |+x), where |£;) = (|0;) =
11:))/v/2, with {|0;), |1;}} denoting the basis for the i'" qubit.

e [nitial Hamiltonian:
N
Hy = w_;l L QL 1®|-i){—il 811 ®--- ® IN)

e Unitary transformation: Ulz) = (—1)/®|z) (z € Xy, with Xy
being the set of natural numbers represented by N bits). Matrix

representation: U = diag ((—1)““); _— (—1)-f(2w_1)>.

e Final state: |v(1)) = Ul(0)).

e Final Hamiltonian: H(1) = UH(0)U".

e Interpolation: H(s) = U(s)H(0)U'(s) , with U(s) = exp (L%SU)

e Measurement: if f is constant then all the qubits are in the state

|+), otherwise f is balanced. For the simple case N = 1 we have:

|
My = £} pe =5 [L£ (-1 O]

e Standard adiabatic theorem: T > 7/2w (independently of N).

Phys. Rev. Lett. 95, 250503 (2005)



Open systems: we illustrate the procedure for the case of a sin-
gle qubit, i.e., N = 1. Let us consider constant dephasing in the

computational basis {|0), [1)}, given by I' = A\/wo..

(a) Lindblad super-operator:

0 O 0 0
0-2X 0 gq(s)
0 0 —2)% —r(s)
0 —q(s) r(s) 0O

with 7(s) = — cos ZFs, g(s) = sin Z-s, and F = (— 1)/ — (—1)/0),

e The sufficient condition for constant spectrum is satisfied!

e Eigenvalues: y; = 0, v = —2wA?, 73 = w(—A%? — v/A* — 1), and
i = w(—=A? + VAT —1). These eigenvalues are non-degenerate for
0 < A < 1 and define four one-dimensional Jordan blocks for the

Lindblad super-operator, denoted by J, (a0 € {1,...,4}).

(b) Adiabatic Lindblad equation: Let us suppose that A and
T are such that the adiabatic approximation can be applied. Then,

the solution of the Lindblad equation in the adiabatic regime is

l O Je C A i P
,(J(.S) = 5 | 8 (:,—JA),aT(il)‘,’{f_))—f—‘f(l}o_‘]:

Additional comments:

- Gaps constant in spite of non-
Markovian model. True also for
spontaneous emission in this
example.

- Four 1D Jordan blocks; one
automatically decoupled. Hence
adiabaticity depends on decoupling
of other three.

Phys. Rev. Lett. 95, 250503 (2005)



Example: Deutsch-Josza algorithm under (non-Markovian) dephasing,
with unitary interpolation

(c) Adiabatic time interval: adiabaticity only occurs for a
finite time interval, disappearing afterwards! This behavior is an

exclusive feature of open systems, which is illustrated in Fig. 1.

-
- :E.:l A=D1
158 a--a-n-ra-HH-H--E-0-5- 50555 E-0-B-E-E-B-
4000
: — [
Ta 1faN —5u ] f
by 1000 ¢ _»»ﬂ_.ﬁﬁ.fi FIG. 1: Crossover time TS as a function of the total evolution
o s TaTT"000 1100 1200 1300 1400 time 1" for the Jordan blocks Ja, J3, and Jy (the plot for Jy is
ol , Sttt tssststastatoey the same as for Ja). The inset of {a) shows that Jz has non-
ap O 20 40 80 B0 w0 negligible couplings for 77 ~- 10 {in units such that w = 1).

e Concrete case: take A = 0.1 and impose a certainty of 90% (either
pr =0.9or p— = 0.9). Then, T = 11, which is compatible with the

adiabaticity, since 75 ~ 0.82 and 15 = T} ~ 1.43.



Summary of Conclusions for Adiabatic QC

 Adiabatic QC can only be performed while adiabatic approximation is
valid.

* However, the adiabatic approximation (typically) breaks down in an
open system if the evolution is sufficiently long.

» Breakdown of adiabaticity in an open system implies same for AQC.

» Breakdown is due to vanishing of gaps, due to interaction with
environment.

» Gaps can be kept constant via unitary interpolation (at expense of
introducing many-body interactions) when bath is Markovian.

 Error correction techniques (e.g., Jordan, Shor & Farhi, quant-
ph/0512170) are needed.

Phys. Rev. Lett. 95, 250503 (2005)



Summary

« Adiabaticity defined for open systems in terms of

decoupling of Jordan blocks of super-operator (for another

approach based on weak coupling see P. Thunstrom, J. Aberg, E. Sjoqgvist,
PRA 72, 022328 (2005))

e Central feature: adiabaticity can be a temporary feature
In an open system

 Implications for robustness of adiabatic QC and for
geometric phases in open systems

Phys. Rev. A 71, 012331 (2005); Phys. Rev. Lett. 95, 130501 (2005);
Phys. Rev. A 73, 062101 (2006)
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