Cost-effectiveness analysis in clinical trials with longitudinal data: filling in some gaps

Eleanor M Pullenayegum Post-doc Dept of Statistics and Actuarial Sciences University of Waterloo

Why cost-effectiveness?

Evidence-based medicine

 Improved Treatment
 Increased Cost!

How to provide the best treatment within a finite budget
 – e.g. what should be funded by OHIP?

Background

- Clinical Trials
 - Estimate difference in mean effectiveness between trial treatment and control (ΔE)
 - Estimate difference in mean cost between treatment and control (ΔC)
- Balancing cost and effectiveness
 - How to deliver best effectiveness within a finite budget?
 - How to use the data

Cost-Effectiveness for Decision-Making

- Key concept is Willingness-to-Pay (λ)
 - How much is society willing to pay for a unit increase in effectiveness?
- Calculate Incremental Net Benefit

 $INB(\lambda) = \lambda \Delta E - \Delta C$

Decision Rule

- Adopt treatment if $INB(\lambda)>0$

In practice, INB is estimated so need to quantify uncertainty

Aside – other summary statistics

- Initially, decisions were based on the Incremental Cost-Effectiveness Ratio (ICER) $ICER = \frac{\Delta C}{\Delta E}$
- Adopt trial treatment if

ICER $\leq \lambda$ and $\Delta E > 0$ or

ICER > λ and $\Delta E < 0$

Censoring

- Calculating differences in means sounds straightforward
- In practice, patients will often withdraw from the trial early (censoring)
- Patients who survive longer are more likely to be censored
- Censoring is informative
 - i.e. if we use information only from patients who completed the trial, we will get biased results

Cost Data

- Heavily skewed, difficult to model parametrically

 means are sensitive to choice of distribution
- Must estimate mean, not median
- Cost data are autocorrelated
 - costs at time of censoring are correlated with costs at end of study (informative censoring)

A non-parametric estimator

• If we had complete data

$$\widehat{\Delta C} = \frac{1}{n_1} \sum_{i:x_i=1}^{n_1} C_i - \frac{1}{n_0} \sum_{i:x_i=0}^{n_1} C_i$$

 $C_i = cost incurred by patient i$

 $x_i = 1$ if patient i receives treatment, 0 o/w

• With censored data, we use

$$\widehat{\Delta C} = \frac{1}{n_1} \sum_{i:x_i=1}^{\infty} \frac{\delta_i C_i}{\pi_i} - \frac{1}{n_0} \sum_{i:x_i=0}^{\infty} \frac{\delta_i C_i}{\pi_i}$$

 $\delta_i = I[\text{patient i's cost is not censored}]$

- $\pi_{i} = P(\delta_{i} = 1 | T_{i}, x_{i})$
- $T_i =$ survival time for patient i

Reduce loss of information

- Collect cost data at multiple time points
 - Time points a_0, a_1, \dots, a_K
 - $-C_{ik}$ is the cost incurred by patient i in interval $[a_{k-1}, a_k)$
- Estimated difference in mean costs for interval k

$$\widehat{\Delta C}_{k} = \frac{1}{n_{1}} \sum_{i:x_{i}=1} \frac{\delta_{ik} C_{ik}}{\pi_{ik}} - \frac{1}{n_{0}} \sum_{i:x_{i}=0} \frac{\delta_{ik} C_{ik}}{\pi_{ik}}$$

 $\delta_{ik} = I[patient i's cost in interval k not censored]$

$$\pi_{ik} = P(\delta_{ik} = 1 | T_i, x_i)$$

• Total difference in mean costs: sum ΔC_k over k

A semi-parametric estimator

Can also fit a regression model

 $E(C_{ik} | Z_i) = Z_i' \beta_k$

- Usually $Z_{i1}=1$ $Z_{i2}=x_i$
- Could also include other covariates (e.g. age, gender)

$$\Delta C_{k} = \beta_{k,2}; \ \Delta C = \sum_{k=1}^{K} \beta_{k,2}$$

• Estimate β by

$$\sum_{i=1}^{n} \frac{\delta_{ik} (C_{ik} - Z_i \beta_k) Z_i}{\pi_{ik}} = 0$$

Semi-parametric efficiency?

• Semi-parametric efficient estimator solves

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\delta_{ij} h_{eff} (Z_i)_{kj} (C_{ij} - Z'_i \beta_j) Z_i}{\hat{G}(T_i \land a_j; W_{ikj})} = 0$$

where
$$w_{ikl}(u) = \frac{h_{eff}(Z_i)_{kl}E(C_{il} | C_{iu})}{G(u)} \otimes Z_i$$
, $h_{eff}(Z) = \left(var(C | Z) - \int_0^\tau \frac{E(var(C | C_u) | Z)}{G(u)^2} dG(u)\right)^{-1}$
 $C_{iu} = \sigma(Z_i, T_iI(T_i \le u), C_{ik} : a_k \le u), G(u) = P(\text{censored after time } u)$
 $\hat{G}(;w)$ is the Cox PH estimator for G using time-dependent covariates w
 $C = (C_{i1}, C_{i2}, ..., C_{iK})'$

What were we thinking??!

- Why are we treating each interval separately?
- With 10 time intervals, we would be fitting 10 models (a total of 20 parameters)

 $E(C_{i1} | x_i) = \beta_{1,1} + \beta_{1,2} x_i$ $E(C_{i2} | x_i) = \beta_{2,1} + \beta_{2,2} x_i$ $E(C_{i3} | x_i) = \beta_{3,1} + \beta_{3,2} x_i$ $E(C_{i4} | x_i) = \beta_{4,1} + \beta_{4,2} x_i$ $E(C_{i5} | x_i) = \beta_{5,1} + \beta_{5,2} x_i$

 $E(C_{i6} | x_i) = \beta_{6,1} + \beta_{6,2} x_i$ $E(C_{i7} | x_i) = \beta_{7,1} + \beta_{7,2} x_i$ $E(C_{i8} | x_i) = \beta_{8,1} + \beta_{8,2} x_i$ $E(C_{i9} | x_i) = \beta_{9,1} + \beta_{9,2} x_i$ $E(C_{i10} | x_i) = \beta_{10,1} + \beta_{10,2} x_i$

"Usual" models

With longitudinal data, we would usually fit $E(C_{ik} | X_i) = \beta_1 + \beta_2 X_i$ $E(C_{ik} | x_i) = (\beta_1 + \beta_3 k) + \beta_2 x_i$ $E(C_{ik} | x_i) = (\beta_1 + \beta_3 k) + (\beta_2 + \beta_4 k) x_i$ If we were feeling adventurous, we might use smoothing functions $E(C_{ik} | x_i) = \beta_1(k) + \beta_2 x_i$ $E(C_{ik} | x_i) = \beta_1(k) + \beta_2(k)x_i$

CIDS Trial

- 659 patients at risk of cardiac arrest
- Randomised trial of amiodarone vs. implantable cardioverter defibrillator
- Cost data from first 430 patients
- Costs collected every 90 days for 6.4 years (so K=26)
- No censoring within first 10 intervals so can sum data within first intervals to give a total of K=17 intervals.

Models

- Initially use $E(C_{ik} | x_i) = \beta_{k,1} + \beta_{k,2} x_i$
 - The usual model for cost data (**stratified model**)
 - Estimate parameters using inverse-probability and the semi-parametric efficient estimator
- Then fit the model (for k>1) $E(C_{ik} | x_i) = \beta_1 + \beta_2 x_i$
 - The usual model for longitudinal data (pooled model)
 - Estimate parameters using inverse-probability and the semi-parametric efficient estimator

CIDS Results

Model & Estimator	Estimate	SE
Stratified IPW	48728	3970
Stratified Efficient	48300	3943
Pooled IPW	48517	3911
Pooled Efficient	40968	5869

Revised Model

- Graph shows both overall trends and seasonal variation e.g. treatment effects larger in first quarter of the year
- Fit a revised model with treatment effect varying by year of study and quarter (for k>1).

$$\begin{split} & E(C_{ik} \mid x_i) = \alpha_{0k} \\ &+ x_i (I[k \le 4]\beta_1 + I[4 < k \le 8]\beta_2 + I[8 < k \le 12]\beta_3 + I[12 < k \le 17]\beta_4 \\ &+ I[k = 1, 5, 9, 13, 17]\gamma_1 + I[k = 2, 6, 10, 14]\gamma_2 + I[k = 3, 7, 11, 15]\gamma_3) \end{split}$$

Revised CIDS Results

Model & Estimator	Estimate	SE
Stratified IPW	48728	3970
Stratified Efficient	48300	3943
Pooled IPW	48517	3911
Pooled Efficient	40968	5869
Year-and-Quarter IPW	48726	3933
Year-and-Quarter Efficient	40514	2946

Key Points

- Where the problem originated affects how we think about it
- In this example we were thinking about estimating a difference in means rather than estimating the parameters from a model
- Developing a good model for the data is at least as important as using fancy mathematics
- Main contribution of my thesis was to apply very well known statistical ideas to a fairly well-studied estimation problem