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Why cost-effectiveness?

 Evidence-based medicine
— Improved Treatment
— Increased Cost!

* How to provide the best treatment within a
finite budget

— e.g. what should be funded by OHIP?




Background

e Clinical Trials

— Estimate difference in mean effectiveness between
trial treatment and control (AE)

— Estimate difference in mean cost between treatment
and control (AC)

« Balancing cost and effectiveness

— How to deliver best effectiveness within a finite
budget?
— How to use the data




Cost-Effectiveness for Decision-
Making

Key concept is Willingness-to-Pay ()
— How much is society willing to pay for a unit increase
in effectiveness?

Calculate Incremental Net Benefit

INB(A) = AAE — AC

Decision Rule
— Adopt treatment if INB(A)>0

In practice, INB is estimated so need to quantify
uncertainty




Aside — other summary statistics

* |nitially, decisions were based on the

Incremental Cost-Effectiveness Ratio (ICER)
AC

ICER =—
AE

* Adopt trial treatment If

ICER <A and AE >0 or

ICER > A and AE <0




Censoring

Calculating differences in means sounds
straightforward

In practice, patients will often withdraw from the
trial early (censoring)

Patients who survive longer are more likely to be
censored

Censoring is informative

— I.e. if we use information only from patients who
completed the trial, we will get biased results




Cost Data

« Heavily skewed, difficult to model parametrically
— means are sensitive to choice of distribution

 Must estimate mean, not median

 Cost data are autocorrelated

— costs at time of censoring are correlated with costs at
end of study (informative censoring)




A non-parametric estimator

« If we had complete data

AC=—Y  C¢-—Y .C

1, n, C, = cost incurred by patient 1

x, =1 1f patient 1 receives treatment, 0 o/w
- With censored data, we use

0.C. 1 0.C.
Zi:xizl — Zi:xFO;

T, 1, T

1 |

0, = I[patient i's cost is not censored]
. =P, =11T,x,)

T. = survival time for patient 1




Reduce loss of information

« Collect cost data at multiple time points
— Time points a,, a,,..., ax
— G, is the cost incurred by patient i in interval [a, ,, &)

 Estimated difference in mean costs for interval k

ACH :LZi:xizl 0, Cy 1 Z 03 Ci

1:x;=0
n, Ty n, Ty

0, = I[patient i's cost in interval k not censored]

., =P, =1IT,x,)

- Total difference in mean costs: sum AC, over k




A semi-parametric estimator

Can also fit a regression model
E(Cy 1Z;)= Zi,Bk

Could also include other covariates (e.g. age, gender)

K
AC, = Bk,Z; AC = ZBk,Z
Estimate B by =

i Sik (Cik u Zin )Zi -0
i=1 Tk




Semi-parametric efficiency?

« Semi-parametric efficient estimator solves

0;h (Z;),;(C; -7, N =

1 — 0
G(T; Aa;; W)

heff (Zi )klE(Cil l Cm) j‘ E(var(Cl Cu) 1 Z)
G(u) o Gy
C,=0(Z,TI(T <u),C, :a, <u),G(u)=P(censored after time u)

where w,(u) =

dG(u)] ;

®Z., h,(Z)= [Var(C | Z) —

G(;w) is the Cox PH estimator for G using time-dependent covariates w
Cc=(C,,C,,...C.)




What were we thinking??!

« Why are we treating each interval separately?

« With 10 time intervals, we would be fitting 10
models (a total of 20 parameters)

E(C, I1x,) = B1,1 + Bl,ZXi E(Cy 1 x;) = B6,1 + B6,2Xi
E(C,, 1) =B,, +B,,x; E(C, Ix;) =0, +5,,x,

E(CB | Xi) — B3,1 T B3,2Xi E(Cig | Xi) — 38,1 + 38,2Xi

E(Cm | Xi) — ﬁ4,1 + B4,2Xi E(Cig | Xi) = 39,1 T 39,2Xi
BUCis 1%) =Bs; +Ps2%, B(Cyo 1%,) =By, +ByosX,




“Usual” models

With longitudinal data, we would usually fit
E(Cik | Xi) — Bl +BZX1
E(C, I1x.)=(B, +B.k)+B,x,

E(Cy Ix)) =B, +B:k) + (B, +BK)x,

If we were feeling adventurous, we might use
smoothing functions

E(C, Ix;) =B, (k) +B,x;
E(C, 1x;) =P, (k) +B, (k)x;




CIDS Trial

659 patients at risk of cardiac arrest

Randomised trial of amiodarone vs. implantable
cardioverter defibrillator

Cost data from first 430 patients

Costs collected every 90 days for 6.4 years (so K=26)

No censoring within first 10 intervals so can sum data
within first intervals to give a total of K=17 intervals.




Models

« Initially use  E(Cy Ix,) =B, +B X,

— The usual model for cost data (stratified model)

— Estimate parameters using inverse-probability and the
semi-parametric efficient estimator

e Then fit the model (for k>1) E(C, Ix.) =0, +pB,x,

— The usual model for longitudinal data (pooled model)

— Estimate parameters using inverse-probability and the
semi-parametric efficient estimator




CIDS Results

Model & Estimator Estimate

Stratified IPW 48728
Stratified Efficient 48300
Pooled IPW 48517
Pooled Efficient 40968
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Revised Model

« Graph shows both overall trends and seasonal variation
e.g. treatment effects larger in first quarter of the year

 Fit a revised model with treatment effect varying by year
of study and quarter (for k>1).

E(Cy IX;) = 0l

+x,(ITk <418, +I[4 <k <8IB, +I[8 <k <12]B, + [[12 <k <17]B,

+1[k =1,5,9,13,17]y, +1[k = 2,6,10,14]y, +I[k =3,7,11,15]y,)




Revised CIDS Results

Model & Estimator Estimate

Stratified IPW 48728
Stratified Efficient 48300
Pooled IPW 48517
Pooled Efficient 40968
Year-and-Quarter IPW 48726
Year-and-Quarter Efficient 40514




Key Points

Where the problem originated affects how we think about
it

In this example we were thinking about estimating a
difference in means rather than estimating the
parameters from a model

Developing a good model for the data is at least as
important as using fancy mathematics

Main contribution of my thesis was to apply very well
known statistical ideas to a fairly well-studied estimation
problem




