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Why cost-effectiveness?

• Evidence-based medicine

– Improved Treatment

– Increased Cost!

• How to provide the best treatment within a 
finite budget 

– e.g. what should be funded by OHIP?



Background

• Clinical Trials

– Estimate difference in mean effectiveness between 

trial treatment and control (∆E)

– Estimate difference in mean cost between treatment 

and control (∆C)

• Balancing cost and effectiveness

– How to deliver best effectiveness within a finite 

budget?

– How to use the data



Cost-Effectiveness for Decision-

Making

• Key concept is Willingness-to-Pay (λ)
– How much is society willing to pay for a unit increase 

in effectiveness?

• Calculate Incremental Net Benefit

• Decision Rule
– Adopt treatment if INB(λ)>0

• In practice, INB is estimated so need to quantify 
uncertainty

INB( ) E Cλ = λ∆ − ∆



Aside – other summary statistics

• Initially, decisions were based on the 

Incremental Cost-Effectiveness Ratio (ICER)

• Adopt trial treatment if
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Censoring

• Calculating differences in means sounds 

straightforward

• In practice, patients will often withdraw from the 

trial early (censoring)

• Patients who survive longer are more likely to be 

censored

• Censoring is informative

– i.e. if we use information only from patients who 

completed the trial, we will get biased results



Cost Data

• Heavily skewed, difficult to model parametrically 

– means are sensitive to choice of distribution

• Must estimate mean, not median

• Cost data are autocorrelated

– costs at time of censoring are correlated with costs at 

end of study (informative censoring)



A non-parametric estimator

• If we had complete data

• With censored data, we use
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Reduce loss of information

• Collect cost data at multiple time points

– Time points a0, a1,…, aK

– Cik is the cost incurred by patient i in interval [ak-1, ak)

• Estimated difference in mean costs for interval k

• Total difference in mean costs: sum ∆Ck over k
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A semi-parametric estimator

• Can also fit a regression model

• Usually Zi1=1 Zi2=xi

• Could also include other covariates (e.g. age, gender)

• Estimate β by 
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Semi-parametric efficiency?

• Semi-parametric efficient estimator solves
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What were we thinking??!

• Why are we treating each interval separately?

• With 10 time intervals, we would be fitting 10 

models (a total of 20 parameters)

i1 i 1,1 1,2 iE(C | x ) x= β + β

i2 i 2,1 2,2 iE(C | x ) x= β + β

i3 i 3,1 3,2 iE(C | x ) x= β + β

i4 i 4,1 4,2 iE(C | x ) x= β + β

i5 i 5,1 5,2 iE(C | x ) x= β + β

i6 i 6,1 6,2 iE(C | x ) x= β + β

i7 i 7,1 7,2 iE(C | x ) x= β + β

i8 i 8,1 8,2 iE(C | x ) x= β + β

i9 i 9,1 9,2 iE(C | x ) x= β + β

i10 i 10,1 10,2 iE(C | x ) x= β + β



With longitudinal data, we would usually fit

If we were feeling adventurous, we might use 

smoothing functions

“Usual” models
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CIDS Trial

• 659 patients at risk of cardiac arrest

• Randomised trial of amiodarone vs. implantable 

cardioverter defibrillator

• Cost data from first 430 patients

• Costs collected every 90 days for 6.4 years (so K=26)

• No censoring within first 10 intervals so can sum data 

within first intervals to give a total of K=17 intervals.



Models

• Initially use

– The usual model for cost data (stratified model)

– Estimate parameters using inverse-probability and the 
semi-parametric efficient estimator

• Then fit the model (for k>1)

– The usual model for longitudinal data (pooled model)

– Estimate parameters using inverse-probability and the 
semi-parametric efficient estimator

ik i k,1 k,2 iE(C | x ) x= β + β

ik i 1 2 iE(C | x ) x= β + β



CIDS Results

D’OH!!

Model & Estimator Estimate SE 

Stratified IPW 48728 3970 

Stratified Efficient 48300 3943 

Pooled IPW 48517 3911 

Pooled Efficient 40968 5869 

 





Revised Model

• Graph shows both overall trends and seasonal variation

e.g. treatment effects larger in first quarter of the year

• Fit a revised model with treatment effect varying by year 
of study and quarter (for k>1).
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Revised CIDS Results

Model & Estimator Estimate SE 

Stratified IPW 48728 3970 

Stratified Efficient 48300 3943 

Pooled IPW 48517 3911 

Pooled Efficient 40968 5869 

Year-and-Quarter IPW 48726 3933 

Year-and-Quarter Efficient 40514 2946 

 



Key Points

• Where the problem originated affects how we think about 
it

• In this example we were thinking about estimating a 
difference in means rather than estimating the 

parameters from a model

• Developing a good model for the data is at least as 
important as using fancy mathematics

• Main contribution of my thesis was to apply very well 
known statistical ideas to a fairly well-studied estimation 

problem


