Efficient Pseudorandom Generators Based on the DDH Assumption (mixed with some other results)

Berry Schoenmakers

Joint work with **Andrey Sidorenko** and (partly) with **Reza Rezaeian Farashahi**

Coding & Crypto group
TU Eindhoven, The Netherlands

Plan

- Revisiting a basic problem:
 - Given a random bit source. Generate uniformly random numbers in a given interval. New, simple algorithm:
 - n competitive in context of secure multiparty computation
 - cryptographic relevance witnessed by Bleichenbacher's attack on DSA
- Concrete security of provably secure PRGs
 - Focus on DL-related assumptions
 - New construction based on k-DDHI (k bounded Dec DH Inversion)
 - Intermezzo: cryptanalysis of Dual Elliptic Curve Generator
 - also done by Brown, and by Gjøsteen

New, simple PRGs based on the DDH problem

- First "practically" tight reduction to DDH (except for loss due to hybrid lemma)
- DDH is as strong as DL (and DH) assumption, in practice => good concrete security, hence good performance
- Specific instances
 - n QR(p): group of quadratic residues
 - _n G_q : arbitrary subgroup of Z_p^*

Random numbers in [0,B), $2^{n-1} < B < 2^n$

- Given a source of (uniform) random bits.
- Two folklore algorithms for generating $x \in [0,B)$.
- Alg.1: pick x $\{0,1\}^n$, using n random bits, until x<B
- Alg.2: pick $x \in \{0,1\}^{n+k}$, using n+k random bits; output $x \mod B$
- n Properties:
 - Alg.1: perfectly uniform; but wastes up to n bits on average (worst case $B = 2^{n-1} + 1$); Las Vegas algorithm
 - Alg.2: statistical distance $\Delta < 1/2^k$; wastes k bits exactly

Our algorithm

- n Generate random x [0,B) bit by bit, starting from the most significant bit, comparing with most significant bits of B-1.
- Algorithm: let x_i be next random bit

```
if x_i > (B-1)_i, start all over "too large"
```

- if $x_i = (B-1)_i$, continue with next bit "unsure"
- if $x_i < (B-1)_i$, complete x with random bits and stop "home free"
- Randomness complexity: n bits plus some waste.
- n Question: what's the waste?

Analysis of randomness complexity

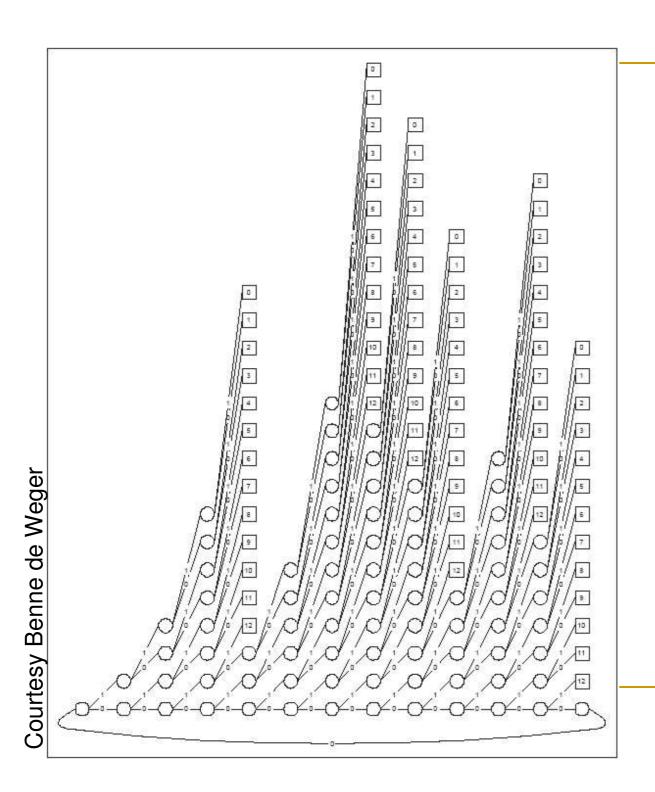
- 1st computing the exact probability distribution and then the expected value is cumbersome
- We determine expected value E directly!
- _n Example: $S = \sum_{i=0...\infty} r^i$:

$$S = \sum_{i=0,\infty} r^i = 1 + \sum_{i=0,\infty} r^{i+1} = 1 + r S$$
, so $S = 1/(1-r)$

n Example: $T = \sum_{i=0,\infty} i r^i$:

T =
$$\sum_{i=0...\infty} (1+i) r^{i+1} = r S + r T$$
, so T = $r/(1-r)^2$

- By conditioning on the right event, this leads to:
 - $_{\text{q}}$ E = n + 2ⁿ/B $\Sigma_{i=2..n}$ i(1-(B-1)_{n-i})/2ⁱ < n + 3
 - So, waste is bounded by a small constant!
 - Averaged over all B, waste is approx. 1.11 random bits



Knuth-Yao 1976: minimize randomness complexity

Only wastes approx.
0.58 random bits
on average (over all B)
and <1 random bit
in the worst case.

Example: Given random bits.

Generate random integers mod 13

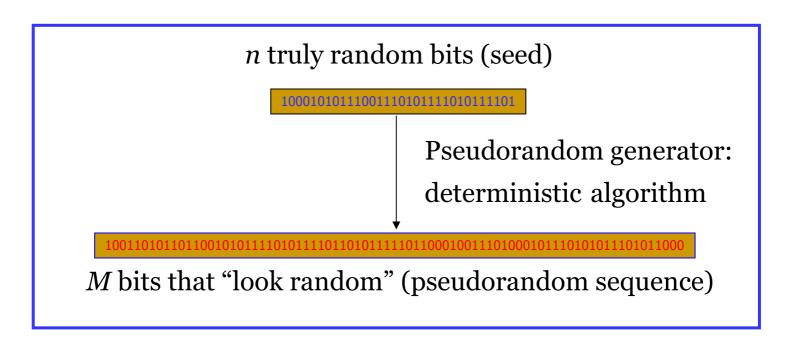
Context of secure multiparty computation

- Knuth-Yao actually prove that any probability distribution can be generated from random bits, wasting < 2 bits (on average).
- In context of secure multiparty computation:
 - ^q Generating random bits is expensive.
 - But, also comparing bits, arithmetic with bits, etc.
- Our algorithm (and variants) strike a better balance than Knuth-Yao's minimal waste algorithm, depending on the setting
 - cheaper to make it oblivious

And, the other way around ...

- Given a random numbers x [0,B).
- h How to extract as many random bits from x?
- Alg. (we found this in Barker-Kelsey 2005):
 - compare bits of x and B, starting at most significant bit, until difference is found.
 - output all remaining bits of x, after position where difference occurs.
- Barker-Kelsey give no analysis
- n We find: $E \ge n 2 + n/(2^n-1) > n 2$, for every bound B

Pseudorandom Generator (PRG)



- Preferably M>>n and a fast PRG
- n Focus on provably secure PRGs
 - a PRG is called provably secure if "breaking" the PRG is as hard as solving a notoriously hard problem

Strong Assumptions at a Bargain!

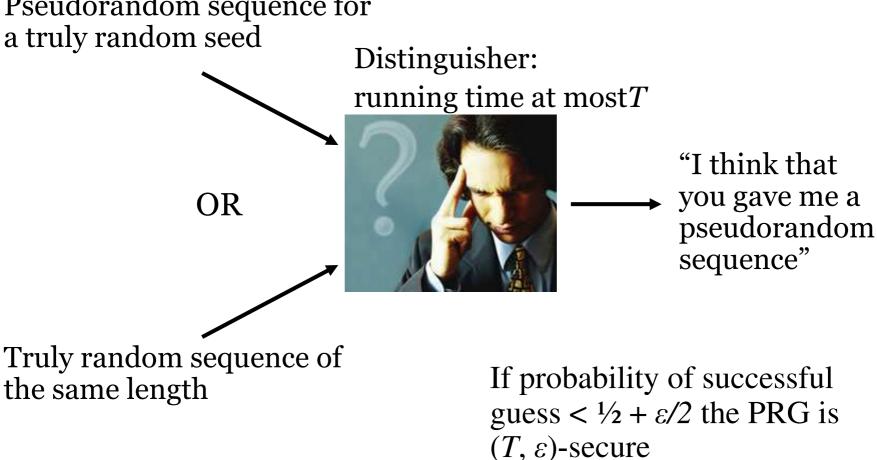
Strong RSA Best attack: **Factoring** RSA factoring (δ; e)-Small Solution RSA DDH Best attack: DL DH solving DL Bounded $g^{1/a}, g, g^{a^2}, ..., g^{a^k}$ $g^r, g, g^{a^2}, ..., g^{a^k}$ DDH-I

Theoretically: different assumptions (for all we know ...)
Practically: equivalent to factoring and DL, respectively

Provably secure PRGs

Pseudorandom sequence for

a truly random seed



Provably secure PRGs (cont.)

 (T, ε) -distinguisher for a PRG: $\{0, 1\}^n \rightarrow \{0, 1\}^M$

reduction

 (T', ε') -solver for a hard problem with security parameter n(e.g., DL problem in n-bit finite field)

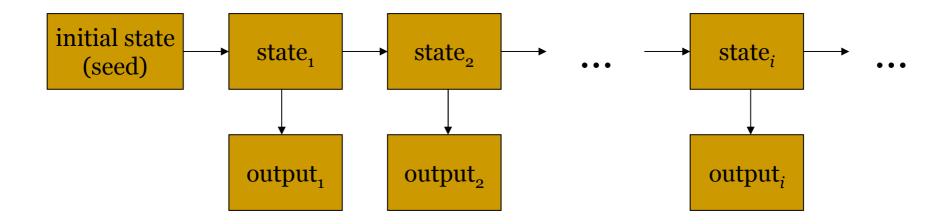
- If $T'/\varepsilon' \approx T/\varepsilon$, reduction is tight
- If $T'/\epsilon' >> T/\epsilon$, reduction is not tight
- If the reduction is tight, a desired security level can be achieved for a relatively low value of security parameter n

Security of PRG: formal definition

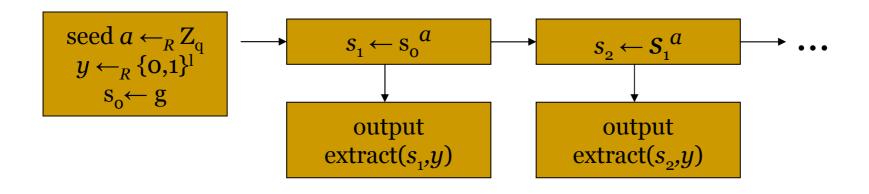
- ⁿ Pseudorandom generator PRG: $\{0,1\}^n \rightarrow \{0,1\}^M$
- n Distinguisher D: $\{0,1\}^M \rightarrow \{0,1\}$
- Denote by U_l uniform distribution on $\{0, 1\}^{2l}$, l > 0
- PRG is called (T, ε) -secure if for all T-time distinguishers D

$$|\Pr[D(\mathsf{PRG}(U_n)) = 1] - \Pr[D(U_M) = 1]| < \varepsilon$$

Typical PRG



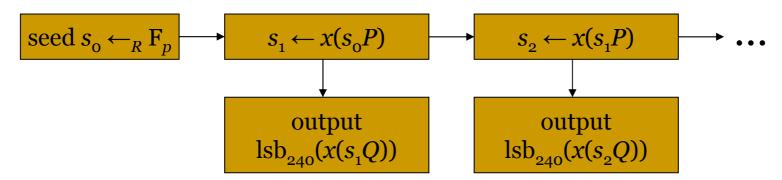
k-DDHI based PRG



- Universal hash function used as extractor
- Good results, but assumption k-DDHI less standard
- n k-DDHI: distinguish $g^{1/a}, g, g^{a^2}, \dots, g^{a^k}$ $g^r, g, g^{a^2}, \dots, g^{a^k}$

Dual Elliptic Curve PRG

- Proposed by Barker and Kelsey in a NIST draft standard [BK05]
- For prime $p = 2^{256} + 2^{224} + 2^{192} + 2^{96} + 1$, let $E(F_p)$ be an elliptic curve such that $\#E(F_p)$ is prime. Let $P, Q \leftarrow_R E(F_p)$



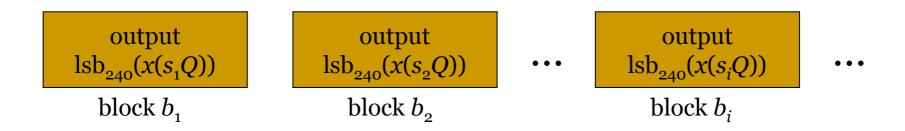
- sequence s_iQ is indistinguishable from sequence of uniformly random points under DDH assumption and x-logarithm assumption [Brown06]
- however, random bits are extracted from random points improperly so the PRG is insecure [G06, SS06]

Distinguishing attack

 $\begin{array}{|c|c|c|c|c|c|}\hline \text{output} & \text{output} \\ \text{lsb}_{240}(x(s_1Q)) & \text{lsb}_{240}(x(s_2Q)) & \cdots & \text{lsb}_{240}(x(s_iQ)) \\ \hline \text{block } b_1 & \text{block } b_2 & \text{block } b_i \\ \hline \end{array}$

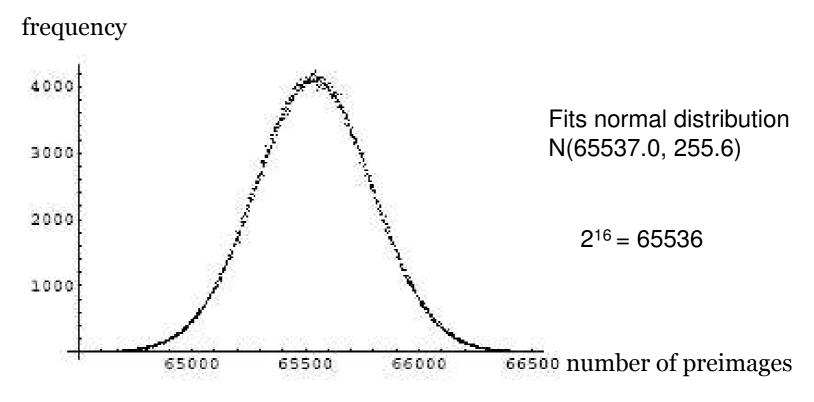
- Point s_iQ is mapped to output block $lsb_{240}(x(s_iQ))$
- Output blocks with more preimages show up more often
- Blocks $b \leftarrow_R \{0, 1\}^{240}$ have on average #E/(# of blocks) $\approx 2^{256}/2^{240} = 2^{16}$ preimages
- Blocks $lsb_{240}(x(R))$ with $R \leftarrow_R E(F_p)$ have on average more than 2^{16} preimages
- Thus, blocks $lsb_{240}(x(s_iQ))$ have on average more than 2^{16} preimages

The distinguishing attack is as follows...



- For each output block b_i count the number of preimages, i.e., count the number of points P such that $b_i = lsb_{240}(x(P))$
- If the average number of preimages is above 2¹⁶, decide that the sequence is produced by the PRG;
- Otherwise, decide that the sequence is "truly random"

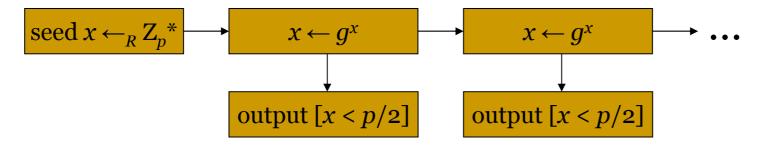
Simulation



- 330 files produced by Dual Elliptic Curve PRG have been tested
 each file consists of 4000 output blocks
- n In 59% of files the average number of preimages is above 2¹⁶
- Running time of the attack is about 3 hours on a 3GHz Linux machine with 1Gb of memory

Blum-Micali PRG

- Proposed by Blum and Micali [BM84], based on DL-problem in Z_p^*
- Provably secure



- Outputs only 1 bit per modular exponentiation
- Let $n = \log_2 p$. Suppose the BM PRG is not (T, ε) -secure. Then the DL problem can be solved in time $T' = 64 \, n^3 \, (M/\varepsilon)^4 \, T$ with success probability $\varepsilon' = 1/2$
- $T'/\varepsilon' >> T/\varepsilon$, so reduction is not tight

Blum-Micali PRG (cont.)

polynomial in n

All in all, BM PRG is (T, ε) -secure if

subexponential in n

128 $n^3 (M/\varepsilon)^4 T < T_{DL}(Z_p^*)$

where

$$T_{\rm DL}(Z_p^*) = a \, {\rm Exp}[1.9229 \, (n \, {\rm In} \, 2)^{1/3} ({\rm In} \, (n \, {\rm In} \, 2))^{2/3}],$$

 $a \approx 4.7 \cdot 10^{-5} \, {\rm time} \, {\rm units} \, ({\rm DES \, encryptions})$

- For $M = 2^{20}$, $T/\varepsilon = 2^{80}$, BM PRG is (T, ε) -secure if n > 61000
- High seed length n implies poor efficiency
 - q the cause is a far from tight reduction
- We propose a PRG with a much better security reduction
 - based on the DDH assumption (stronger than DL assumption)
 - output of *n* bits per iteration

Decisional Diffie-Hellman (DDH) problem

- $_{\rm n}$ $G=\langle g\rangle$ is a multiplicative group of prime order q
- Algorithm A solves the DDH problem in G with advantage ε iff for a random triple (a, b, r)

$$/ \Pr(A(g, g^a, g^b, g^{ab}) = 1) - \Pr(A(g, g^a, g^b, g^r) = 1) / \ge \varepsilon$$

- For concrete analysis:
 - **DDH problem is assumed to be as hard as the DL problem**

DDH generator (intuition)

- $_{n}$ $G=\langle g\rangle$ multiplicative group of prime order q
- Let $a \leftarrow Z_q$ be a fixed integer
- Let **Double**_{g,a}(b) = (g^b , g^{ab}) [NR97]
 - for unknown $b \leftarrow_R Z_q$ the output is pseudorandom under the DDH assumption in G
 - q "doubles" the input
- Is **Double** a pseudorandom generator?
 - No! It produces pseudorandom group elements rather than pseudorandom bits
 - Converting group elements into bits is a non-trivial problem
 - Double cannot be iterated to produce as much randomness as required by the application

DDH generator (construction)

enum is a bijection "enumerating" the elements of group G:

enum:
$$G \times Z_I \rightarrow Z_q \times Z_I$$

Public parameters for DDH generator: $x, y \leftarrow_R G$



- Outputs $|q| = \log_2 q$ pseudorandom bits per step
- Seed length |q| + 2|/|

Security of the DDH generator

- $_{\rm n}$ DDH generator produces pseudorandom integers from Z_q
 - if q approx. 2ⁿ then it produces pseudorandom bits directly
 - for an arbitrary q, additional effort has to be made to convert random numbers into random bits (from [0,q) to bits)
- *Theorem*. Assume that $0 < (2^n q)/2^n < \delta$ (for simplicity). Then (T, ϵ) -distinguisher for the DDH generator implies $(T, n\epsilon/M \delta)$ -solver for the DDH problem in G
 - proof is based on the hybrid argument

Proof idea

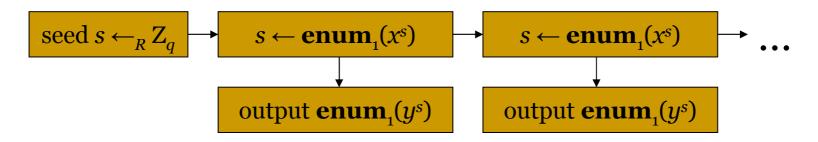
- Given a 4-tuple (x,y,X,Y)
- n Hybrid $H_j = (u_1, u_2, ..., u_{j-1}, output_1, ..., output_{k-j+1})$ = $(v_1, v_2, ..., v_k)$ k=M/n
- Solver generates hybrids:
 - q Pick j at random.
 - Pick random v_1, v_2, \dots, v_{i-1} . Pick rx_0, ry_0 at random.
 - Set $(s_1,rx_1) = enum(X,rx_0)$
 - Set $(v_i, ry_1) = enum(Y, ry_0)$
 - Continue as in PRG to produce $(v_{i+1},...,v_k)$
- $_{n}$ (x,y,X,Y) is DDH tuple iff output $\sim H_{j}$ (else H_{j+1})

PRG1: instance based on QR(p)

- p is a safe prime: p = 2q + 1, q prime
- G = QR(p), |G| = q
- There exists a bijection from G to Z_q (Chevassut et al. 2005; Cramer-Shoup 2003, and ...?):

enum₁
$$(x) = \begin{cases} x, & \text{if } x \leq q; \\ p - x, & \text{if } x > q. \end{cases}$$

Public parameters $x, y \leftarrow_R G$



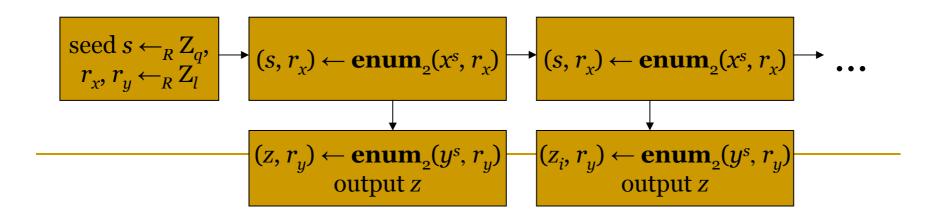
 \sim Extracts *n* bits per iteration (2 modular exponentiations)

PRG₁ (cont.)

- What seed length, n, guarantees security?
 - recall that for Blum-Micali PRG n > 61000
- Assume that $0 < (2^n q)/2^n < n\varepsilon/2M$ (q close to 2^n)
- PRG₁ is (T, ε) -secure if $2MT/n\varepsilon < T_{DL}(QR_p)$
- For $M = 2^{20}$, $T/\varepsilon = 2^{80}$, PRG₁ is (T, ε) -secure if... n > 1600
- The seed length *n* is short because the reduction is (almost) tight
 - PRG₁ is much more efficient than Blum-Micali PRG
 - PRG₁ is based on a stronger assumption (the DDH assumption)
 - Limitation: works only for specific subgroup of Z_p^*

PRG₂: instance based on any subgroup

- p is a prime
- n G is a (prime) order subgroup of Z_p^* , |G| = q, (p-1) = ql
- t is an element of Z_p^* of order I, so $t^l = 1$
- Let **enum**₂: $G \times Z_l \rightarrow Z_q \times Z_l$ be the following **bijection**: **enum**₂ $(x, r) = (x t^r \mod q, x t^r \operatorname{div} q)$
- n Public parameters x, $y \leftarrow_R G$



Conclusions

- General, simple construction of PRGs based on DDH assumption
- Two specific instances of the new PRG are presented
 - subgroup of quadratic residues modulo prime p seed length |p|
 - arbitrary order q subgroup of Z_p^* -- seed length 2|p| |q|
- Secure parameter n=|p| is about the same for PRG1 and PRG 2:
 - $_{\rm q}$ $n \approx 1600$
- Open problem: how to use an elliptic curve group?
 - would result in considerably shorter seeds
- For more details see http://eprint.iacr.org/2006/321