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n Revisiting a basic problem:

q Given a random bit source. Generate uniformly random numbers in a 
given interval. New, simple algorithm:
n competitive in context of secure multiparty computation
n cryptographic relevance witnessed by Bleichenbacher’s attack on DSA

n Concrete security of provably secure PRGs
q Focus on DL-related assumptions
q New construction based on k-DDHI (k bounded Dec DH Inversion)
q Intermezzo: cryptanalysis of Dual Elliptic Curve Generator

n also done by Brown, and by Gjøsteen
n New, simple PRGs based on the DDH problem

q First “practically” tight reduction to DDH (except for loss due to hybrid 
lemma)

q DDH is as strong as DL (and DH) assumption, in practice => good 
concrete security, hence good performance

q Specific instances
n QR(p): group of quadratic residues
n Gq: arbitrary subgroup of Zp

*
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n Given a source of (uniform) random bits.

n Two folklore algorithms  for generating x ˛ [0,B).

Alg.1: pick x ˛ {0,1}n, using n random bits, until x<B

Alg.2: pick x˛ {0,1}n+k, using n+k random bits; output x mod 
B

n Properties:
q Alg.1: perfectly uniform; but wastes up to n bits on average (worst 

case B = 2n-1 + 1); Las Vegas algorithm
q Alg.2: statistical distance ∆<1/2k; wastes k bits exactly
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n Generate random x ˛ [0,B) bit by bit, starting from 
the most significant bit, comparing with most 
significant bits of B-1.

n Algorithm: let xi be next random bit
n if  xi > (B-1)i, start all over “too large”
n if xi = (B-1)i , continue with next bit “unsure”
n if xi < (B-1)i , complete x with random bits and stop “home free”

n Randomness complexity:  n bits plus some waste.
n Question: what’s the waste?
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n 1st computing the exact probability distribution and 
then the expected value is cumbersome

n We determine expected value E directly!
n Example: S = �i=0..� ri:

q S = �i=0..� ri = 1 + �i=0..� ri+1 =1+r S,   so S = 1/(1-r)

n Example: T = �i=0..� i ri:
q T = �i=0..� (1+i) ri+1 = r S + r T,  so T = r/(1-r)2

n By conditioning on the right event, this leads to:
q E = n + 2n/B  �i=2..n i(1-(B-1)n-i)/2i   < n + 3
q So, waste is bounded by a small constant!
q Averaged over all B, waste is approx. 1.11 random bits



Example:
Given random bits.

Generate random 
integers mod 13

Knuth-Yao 1976: 
minimize randomness 
complexity

Only wastes approx. 
0.58  random bits 
on average (over all B)
and <1 random bit
in the worst case.
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n Knuth-Yao actually prove that any probability 
distribution can be generated from random bits, 
wasting < 2 bits (on average).

n In context of secure multiparty computation:
q Generating random bits is expensive.
q But, also comparing bits, arithmetic with bits, etc.

n Our algorithm (and variants) strike a better balance 
than Knuth-Yao’s minimal waste algorithm, 
depending on the setting
q cheaper to make it oblivious
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n Given a random numbers x ˛ [0,B).
n How to extract as many random bits from x?
n Alg. (we found this in Barker-Kelsey 2005):

q compare bits of x and B, starting at most  
significant bit, until difference is found. 

q output all remaining bits of x, after position where 
difference occurs.

n Barker-Kelsey give no analysis
n We find:   E ≥ n – 2 + n/(2n-1)  >  n – 2,  for 

every bound B
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n Preferably M>>n and a fast PRG
n Focus on provably secure PRGs

q a PRG is called provably secure if “breaking” the PRG is as 
hard as solving a notoriously hard problem
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Factoring RSA

Strong
RSA

DL DH

DDH
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Bounded 
DDH-I

Theoretically:  different assumptions (for all we know …)
Practically: equivalent to factoring and DL, respectively

kaaa gggg ,...,,,
2/1

kaar gggg ,...,,,
2

(�; e)-Small 
Solution RSA

Best attack: 
solving DL 

Best attack:
factoring …

…
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If probability of successful 
guess < ½ + �/2 the PRG is   
(T, �)-secure
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n If T'/�' � T/�, reduction is tight
n If T'/�' >> T/�, reduction is not tight

n If the reduction is tight, a desired security level can be achieved 
for a relatively low value of security parameter n

reduction
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n Pseudorandom generator PRG: {0,1}n � {0, 1}M

n Distinguisher D: {0,1}M � {0, 1}

n Denote by Ul uniform distribution on {0, 1}2l, l > 0

n PRG is called (T, �)-secure if for all T-time 
distinguishers D

| Pr[D(PRG(Un)) = 1] – Pr[D(UM) = 1] | < �
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n Universal hash function used as extractor
n Good results, but assumption k-DDHI less 

standard
n k-DDHI:  distinguish
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n Proposed by Barker and Kelsey in a NIST draft standard [BK05]

n For prime p = 2256 + 2224 + 2192 + 296+1, let E(Fp) be an elliptic curve 
such that #E(Fp) is prime. Let P, Q �R E(Fp)

n sequence siQ is indistinguishable from sequence of uniformly 
random points under DDH assumption and x-logarithm assumption 
[Brown06]

n however, random bits are extracted from random points improperly
so the PRG is insecure  [G06, SS06]
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n Point siQ is mapped to output block lsb240(x(siQ))

n Output blocks with more preimages show up more often

n Blocks b �R {0, 1}240 have on average #E/(# of blocks) � 2256/2240 = 216

preimages

n Blocks lsb240(x(R)) with R �R E(Fp) have on average more than 216

preimages

n Thus, blocks lsb240(x(siQ)) have on average more than 216 preimages

.
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n For each output block bi count the number of preimages, i.e., count 
the number of points P such that bi = lsb240(x(P))

n If the average number of preimages is above 216, decide that the 
sequence is produced by the PRG;

n Otherwise, decide that the sequence is �truly random�

.
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n 330 files produced by Dual Elliptic Curve PRG have been tested
q each file consists of 4000 output blocks

n In 59% of files the average number of preimages is above 216

n Running time of the attack is about 3 hours on a 3GHz Linux 
machine with 1Gb of memory
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Fits normal distribution
N(65537.0, 255.6) 

216 = 65536
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n Proposed by Blum and Micali [BM84],  based on DL-problem in Zp
*

n Provably secure

n Outputs only 1 bit per modular exponentiation

n Let n = log2p. Suppose the BM PRG is not (T, �)-secure. Then the DL 
problem can be solved in time T' = 64 n3 (M/�)4 T with success probability 
�' = 3

n T'/�' >> T/�, so reduction is not tight
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n All in all, BM PRG is (T, �)-secure if 

128 n3 (M/�)4 T < TDL(Zp
*)

where
TDL(Zp

*) = a Exp[1.9229 (n ln 2)1/3(ln (n ln 2))2/3], 
a � 4.7 9 10-5 time units (DES encryptions)

n For M = 220, T/� = 280, BM PRG is (T, �)-secure if n > 61000

n High seed length n implies poor efficiency
q the cause is a far from tight reduction

n We propose a PRG with a much better security reduction
q based on the DDH assumption (stronger than DL assumption)
q output of n bits per iteration

polynomial in n

subexponential in n
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n G=<g> is a multiplicative group of prime order q

n Algorithm A solves the DDH problem in G with 
advantage � iff for a random triple (a, b, r)

| Pr(A(g, ga, gb, gab) = 1) : Pr(A(g, ga, gb, gr) = 1) | ≥ �

n For concrete analysis:
q DDH problem is assumed to be as hard as the DL problem
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n G=<g> multiplicative group of prime order q

n Let a � Zq be a fixed integer

n Let Doubleg,a(b) = (gb, gab) [NR97]
q for unknown b �R Zq the output is pseudorandom under the DDH 

assumption in G 
q “doubles” the input

n Is Double a pseudorandom generator?
q No! It produces pseudorandom group elements rather than 

pseudorandom bits
q Converting group elements into bits is a non-trivial problem

n Double cannot be iterated to produce as much randomness as 
required by the application
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n enum is a bijection “enumerating ” the elements of group G:
enum: G × Zl � Zq × Zl

n Public parameters for DDH generator:  x, y �R G

n Outputs |q| = log2 q pseudorandom bits per step

n Seed length |q| + 2|l|
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n DDH generator produces pseudorandom integers from Zq
q if q approx. 2n then it produces pseudorandom bits directly
q for an arbitrary q, additional effort has to be made to convert 

random numbers into random bits (from [0,q) to bits)

Theorem. Assume that 0< (2n – q)/2n < � (for simplicity). Then (T, 
�)-distinguisher for the DDH generator implies (T, n�/M – �)-
solver for the DDH problem in G
q proof is based on the hybrid argument
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n Given a 4-tuple (x,y,X,Y)
n Hybrid Hj = (u1,u2,…,uj-1,output1,…,outputk-j+1)    

= (v1,v2,…,vk)     k=M/n

n Solver generates hybrids:
q Pick j at random. 
q Pick random v1,v2,…,vj-1. Pick rx0,ry0 at random. 
q Set (s1,rx1) = enum(X,rx0)
q Set (vj, ry1) = enum(Y,ry0)
q Continue as in PRG to produce (vj+1,…,vk)

n (x,y,X,Y) is DDH tuple iff output ~ Hj (else Hj+1)
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n p is a safe prime:  p = 2q + 1, q prime
n G = QR(p), |G| = q
n There exists a bijection from G to Zq (Chevassut et al. 2005; 

Cramer-Shoup 2003, and . ?):

n Public parameters x, y �R G

n Extracts n bits per iteration (2 modular exponentiations)
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n What seed length, n, guarantees security?
q recall that for Blum-Micali PRG n > 61000

n Assume that 0< (2n – q)/2n < n�/2M      ( q close to 2n )

n PRG1 is (T, �)-secure if 2MT/n� < TDL(QRp)

n For M = 220, T/� = 280, PRG1 is (T, �)-secure if.
n > 1600

n The seed length n is short because the reduction is (almost) tight
q PRG1 is much more efficient than Blum-Micali PRG
q PRG1 is based on a stronger assumption (the DDH 

assumption) 
q Limitation: works only for specific subgroup of Zp

*
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n p is a prime
n G is a (prime) order subgroup of Zp

*, |G| = q, (p – 1) = ql
n t is an element of  Zp

* of order l, so tl = 1

n Let enum2: G × Zl � Zq × Zl be the following bijection:
enum2(x, r) = (x tr mod q, x tr div q)

n Public parameters x, y �R G
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n General, simple construction of PRGs based on DDH assumption

n Two specific instances of the new PRG are presented
q subgroup of quadratic residues modulo prime p – seed length |p|
q arbitrary order q subgroup of Zp

*  -- seed length 2|p| -|q| 

n Secure parameter n=|p| is about the same for PRG1 and PRG 2: 
q n � 1600

n Open problem: how to use an elliptic curve group?
q would result in considerably shorter seeds

n For more details see http://eprint.iacr.org/2006/321


