
����������	
���
����
���������
�
�

��
���
�����������

�����
��

������������

���
�������
���
�

Berry Schoenmakers

Joint work with Andrey Sidorenko and
(partly) with Reza Rezaeian Farashahi

Coding & Crypto group
TU Eindhoven, The Netherlands

Workshop on Cryptography Fields Institute - Toronto / Nov. 27-Dec. 1, 2006

	���
n Revisiting a basic problem:

q Given a random bit source. Generate uniformly random numbers in a
given interval. New, simple algorithm:
n competitive in context of secure multiparty computation
n cryptographic relevance witnessed by Bleichenbacher’s attack on DSA

n Concrete security of provably secure PRGs
q Focus on DL-related assumptions
q New construction based on k-DDHI (k bounded Dec DH Inversion)
q Intermezzo: cryptanalysis of Dual Elliptic Curve Generator

n also done by Brown, and by Gjøsteen
n New, simple PRGs based on the DDH problem

q First “practically” tight reduction to DDH (except for loss due to hybrid
lemma)

q DDH is as strong as DL (and DH) assumption, in practice => good
concrete security, hence good performance

q Specific instances
n QR(p): group of quadratic residues
n Gq: arbitrary subgroup of Zp

*

����
��������
����� !��!��"�#$%�%"�

n Given a source of (uniform) random bits.

n Two folklore algorithms for generating x ˛ [0,B).

Alg.1: pick x ˛ {0,1}n, using n random bits, until x<B

Alg.2: pick x˛ {0,1}n+k, using n+k random bits; output x mod
B

n Properties:
q Alg.1: perfectly uniform; but wastes up to n bits on average (worst

case B = 2n-1 + 1); Las Vegas algorithm
q Alg.2: statistical distance ∆<1/2k; wastes k bits exactly

&�����'
�����

n Generate random x ˛ [0,B) bit by bit, starting from
the most significant bit, comparing with most
significant bits of B-1.

n Algorithm: let xi be next random bit
n if xi > (B-1)i, start all over “too large”
n if xi = (B-1)i , continue with next bit “unsure”
n if xi < (B-1)i , complete x with random bits and stop “home free”

n Randomness complexity: n bits plus some waste.
n Question: what’s the waste?

����(
�
�
������
���

��
�������(

n 1st computing the exact probability distribution and
then the expected value is cumbersome

n We determine expected value E directly!
n Example: S = �i=0..� ri:

q S = �i=0..� ri = 1 + �i=0..� ri+1 =1+r S, so S = 1/(1-r)

n Example: T = �i=0..� i ri:
q T = �i=0..� (1+i) ri+1 = r S + r T, so T = r/(1-r)2

n By conditioning on the right event, this leads to:
q E = n + 2n/B �i=2..n i(1-(B-1)n-i)/2i < n + 3
q So, waste is bounded by a small constant!
q Averaged over all B, waste is approx. 1.11 random bits

Example:
Given random bits.

Generate random
integers mod 13

Knuth-Yao 1976:
minimize randomness
complexity

Only wastes approx.
0.58 random bits
on average (over all B)
and <1 random bit
in the worst case.

C
ou

rte
sy

 B
en

ne
 d

e
W

eg
er

)
������
��
���������������(��
�������
�

n Knuth-Yao actually prove that any probability
distribution can be generated from random bits,
wasting < 2 bits (on average).

n In context of secure multiparty computation:
q Generating random bits is expensive.
q But, also comparing bits, arithmetic with bits, etc.

n Our algorithm (and variants) strike a better balance
than Knuth-Yao’s minimal waste algorithm,
depending on the setting
q cheaper to make it oblivious

���!�����
�������(���
����*

n Given a random numbers x ˛ [0,B).
n How to extract as many random bits from x?
n Alg. (we found this in Barker-Kelsey 2005):

q compare bits of x and B, starting at most
significant bit, until difference is found.

q output all remaining bits of x, after position where
difference occurs.

n Barker-Kelsey give no analysis
n We find: E ≥ n – 2 + n/(2n-1) > n – 2, for

every bound B

	
���
����
���������
���	���

� ���������	
���
�������	�

� �
����������

�����	
��������	
���	
�����������

����	
���	
���������
���

	�����
�
��
����
�
���

��������������������������������

���

n Preferably M>>n and a fast PRG
n Focus on provably secure PRGs

q a PRG is called provably secure if “breaking” the PRG is as
hard as solving a notoriously hard problem

+��
�'��

�����
�
���������'����,

Factoring RSA

Strong
RSA

DL DH

DDH

�
�

�

�

�

�

Bounded
DDH-I

Theoretically: different assumptions (for all we know …)
Practically: equivalent to factoring and DL, respectively

kaaa gggg ,...,,,
2/1

kaar gggg ,...,,,
2

(�; e)-Small
Solution RSA

Best attack:
solving DL

Best attack:
factoring …

…

	�
-���(�
������	��

�
��
���
�����

����
����
�������
���

���������	
�����������
��
���������������

�

����	
���	
������������
��
�����������	
�����	

�!���
��������
�
����"�������
����	
���	
��
���������

If probability of successful
guess < ½ + �/2 the PRG is
(T, �)-secure

	�
-���(�
������	��
 ��
��.�

��#���$	
��
���
������
����
� %��&'#�()���&'#�()�

���#����$�
�"����
�������	�
��
�����*
��������
���
�����������
��+�+#��,���
�����
���$�
��
�
�
����
��	�

n If T'/�' � T/�, reduction is tight
n If T'/�' >> T/�, reduction is not tight

n If the reduction is tight, a desired security level can be achieved
for a relatively low value of security parameter n

reduction

+������(�
��	��/��
�������������
�

n Pseudorandom generator PRG: {0,1}n � {0, 1}M

n Distinguisher D: {0,1}M � {0, 1}

n Denote by Ul uniform distribution on {0, 1}2l, l > 0

n PRG is called (T, �)-secure if for all T-time
distinguishers D

| Pr[D(PRG(Un)) = 1] – Pr[D(UM) = 1] | < �

0(������	��

�
�
��������
����	�

�����(�����- ������.

�����(
�����-
������

.

n Universal hash function used as extractor
n Good results, but assumption k-DDHI less

standard
n k-DDHI: distinguish

1#���2���
���	���

���	 ���	 /�

��	&'#()

�

�'� �

�(� �'
� .

�����
�0�������(�
�

�-� �(
�

�����
�0�������-�
�

kaaa gggg ,...,,,
2/1

kaar gggg ,...,,,
2

n Proposed by Barker and Kelsey in a NIST draft standard [BK05]

n For prime p = 2256 + 2224 + 2192 + 296+1, let E(Fp) be an elliptic curve
such that #E(Fp) is prime. Let P, Q �R E(Fp)

n sequence siQ is indistinguishable from sequence of uniformly
random points under DDH assumption and x-logarithm assumption
[Brown06]

n however, random bits are extracted from random points improperly
so the PRG is insecure [G06, SS06]

��������������)��-��	��

���	 �'�	 1
 �(� ���'�� .

�����
���-2'����(���

�-� ���(��

�����
���-2'����-���

��
���'��
���'������1

n Point siQ is mapped to output block lsb240(x(siQ))

n Output blocks with more preimages show up more often

n Blocks b �R {0, 1}240 have on average #E/(# of blocks) � 2256/2240 = 216

preimages

n Blocks lsb240(x(R)) with R �R E(Fp) have on average more than 216

preimages

n Thus, blocks lsb240(x(siQ)) have on average more than 216 preimages

.

�����

���-2'����(���

�����

���-2'����-���

��
����(

�����
���-2'��������

.
��
�������
����-

0�����
���'��
���'������1��
��
��
��
�
*

n For each output block bi count the number of preimages, i.e., count
the number of points P such that bi = lsb240(x(P))

n If the average number of preimages is above 216, decide that the
sequence is produced by the PRG;

n Otherwise, decide that the sequence is �truly random�

.

�����

���-2'����(���

�����

���-2'����-���

��
����(

�����
���-2'��������

.
��
�������
����-

+�������
�

n 330 files produced by Dual Elliptic Curve PRG have been tested
q each file consists of 4000 output blocks

n In 59% of files the average number of preimages is above 216

n Running time of the attack is about 3 hours on a 3GHz Linux
machine with 1Gb of memory

�������
�����
�����

���������

Fits normal distribution
N(65537.0, 255.6)

216 = 65536

����#3����� 	��

n Proposed by Blum and Micali [BM84], based on DL-problem in Zp
*

n Provably secure

n Outputs only 1 bit per modular exponentiation

n Let n = log2p. Suppose the BM PRG is not (T, �)-secure. Then the DL
problem can be solved in time T' = 64 n3 (M/�)4 T with success probability
�' = 3

n T'/�' >> T/�, so reduction is not tight

���	����	 /
4 ��� ��

������5��6�
7-8

��� ��

������5��6�
7-8

.

����#3����� 	�����
��.�

n All in all, BM PRG is (T, �)-secure if

128 n3 (M/�)4 T < TDL(Zp
*)

where
TDL(Zp

*) = a Exp[1.9229 (n ln 2)1/3(ln (n ln 2))2/3],
a � 4.7 9 10-5 time units (DES encryptions)

n For M = 220, T/� = 280, BM PRG is (T, �)-secure if n > 61000

n High seed length n implies poor efficiency
q the cause is a far from tight reduction

n We propose a PRG with a much better security reduction
q based on the DDH assumption (stronger than DL assumption)
q output of n bits per iteration

polynomial in n

subexponential in n

����
�
����������#������� ��������
����

n G=<g> is a multiplicative group of prime order q

n Algorithm A solves the DDH problem in G with
advantage � iff for a random triple (a, b, r)

| Pr(A(g, ga, gb, gab) = 1) : Pr(A(g, ga, gb, gr) = 1) | ≥ �

n For concrete analysis:
q DDH problem is assumed to be as hard as the DL problem

����'������
����������
��

n G=<g> multiplicative group of prime order q

n Let a � Zq be a fixed integer

n Let Doubleg,a(b) = (gb, gab) [NR97]
q for unknown b �R Zq the output is pseudorandom under the DDH

assumption in G
q “doubles” the input

n Is Double a pseudorandom generator?
q No! It produces pseudorandom group elements rather than

pseudorandom bits
q Converting group elements into bits is a non-trivial problem

n Double cannot be iterated to produce as much randomness as
required by the application

����'������
����
�
������
��

n enum is a bijection “enumerating ” the elements of group G:
enum: G × Zl � Zq × Zl

n Public parameters for DDH generator: x, y �R G

n Outputs |q| = log2 q pseudorandom bits per step

n Seed length |q| + 2|l|

���	����	 /�#
��#��
�	 /�

.��#������ ������
�#����

��#��
��� �����

�, �
�

�������

��#������ ������
�#����

���#��
��� �����

�, �
�

�������

+������(�
����������'������
�

n DDH generator produces pseudorandom integers from Zq
q if q approx. 2n then it produces pseudorandom bits directly
q for an arbitrary q, additional effort has to be made to convert

random numbers into random bits (from [0,q) to bits)

Theorem. Assume that 0< (2n – q)/2n < � (for simplicity). Then (T,
�)-distinguisher for the DDH generator implies (T, n�/M – �)-
solver for the DDH problem in G
q proof is based on the hybrid argument

	�

������

n Given a 4-tuple (x,y,X,Y)
n Hybrid Hj = (u1,u2,…,uj-1,output1,…,outputk-j+1)

= (v1,v2,…,vk) k=M/n

n Solver generates hybrids:
q Pick j at random.
q Pick random v1,v2,…,vj-1. Pick rx0,ry0 at random.
q Set (s1,rx1) = enum(X,rx0)
q Set (vj, ry1) = enum(Y,ry0)
q Continue as in PRG to produce (vj+1,…,vk)

n (x,y,X,Y) is DDH tuple iff output ~ Hj (else Hj+1)

	��$/���
��������
���
��4����

n p is a safe prime: p = 2q + 1, q prime
n G = QR(p), |G| = q
n There exists a bijection from G to Zq (Chevassut et al. 2005;

Cramer-Shoup 2003, and . ?):

n Public parameters x, y �R G

n Extracts n bits per iteration (2 modular exponentiations)

≤
=

− >
�
�
�

(

�
�� ;
� �

#�
�� +

� � �
�

 � � �
����

���	����	 /� .�� ����(��
��

����� ����(�

��

�� ����(��
��

����� ����(�

��

	��$ ��
��.�

n What seed length, n, guarantees security?
q recall that for Blum-Micali PRG n > 61000

n Assume that 0< (2n – q)/2n < n�/2M (q close to 2n)

n PRG1 is (T, �)-secure if 2MT/n� < TDL(QRp)

n For M = 220, T/� = 280, PRG1 is (T, �)-secure if.
n > 1600

n The seed length n is short because the reduction is (almost) tight
q PRG1 is much more efficient than Blum-Micali PRG
q PRG1 is based on a stronger assumption (the DDH

assumption)
q Limitation: works only for specific subgroup of Zp

*

	��"/���
��������
���
����(
��'�
��

n p is a prime
n G is a (prime) order subgroup of Zp

*, |G| = q, (p – 1) = ql
n t is an element of Zp

* of order l, so tl = 1

n Let enum2: G × Zl � Zq × Zl be the following bijection:
enum2(x, r) = (x tr mod q, x tr div q)

n Public parameters x, y �R G

���	����	 /�#
��#��
�	 /�

.��#������ ����-��
�#����

��#��
��� ����-�

�, �
�

�������

��#������ ����-��
�#����

���#��
��� ����-�

�, �
�

�������

)
����
�
�

n General, simple construction of PRGs based on DDH assumption

n Two specific instances of the new PRG are presented
q subgroup of quadratic residues modulo prime p – seed length |p|
q arbitrary order q subgroup of Zp

* -- seed length 2|p| -|q|

n Secure parameter n=|p| is about the same for PRG1 and PRG 2:
q n � 1600

n Open problem: how to use an elliptic curve group?
q would result in considerably shorter seeds

n For more details see http://eprint.iacr.org/2006/321

