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Plan

Revisiting a basic problem:

- Given a random bit source. Generate uniformly random numbers in a
given interval. New, simple algorithm:

competitive in context of secure multiparty computation

cryptographic relevance witnessed by Bleichenbacher’s attack on DSA
Concrete security of provably secure PRGs
- Focus on DL-related assumptions
+= New construction based on k-DDHI (k bounded Dec DH Inversion)
« Intermezzo: cryptanalysis of Dual Elliptic Curve Generator

also done by Brown, and by Gjgsteen
New, simple PRGs based on the DDH problem

+ First “practically” tight reduction to DDH (except for loss due to hybrid
lemma)

- DDH is as strong as DL (and DH) assumption, in practice => good
concrete security, hence good performance

5 Specific instances
QR(p): group of quadratic residues
G,: arbitrary subgroup of Z,,



Random numbers in [0,B), 2% !1<B<2n

Given a source of (uniform) random bits.
Two folklore algorithms for generating x . [0,B).
Alg.1: pick x . {0,1}", using n random bits, until x<B

Alg.2: pick x ., {0,1}"K, using n+k random bits; output x mod
B

Properties:

« Alg.1: perfectly uniform; but wastes up to n bits on average (worst
case B = 2"1+ 1); Las Vegas algorithm

- Alg.2: statistical distance A<1/2%; wastes k bits exactly



Our algorithm

Generate random x . [0,B) bit by bit, starting from
the most significant bit, comparing with most
significant bits of B-1.

Algorithm: let x; be next random bit
if x,> (B-1),, start all over “too large”
Iif x;= (B-1), , continue with next bit “unsure”
if X, < (B-1),, complete x with random bits and stop “home free”

Randomness complexity: n bits plus some waste.
Question: what’s the waste?



Analysis of randomness complexity

1t computing the exact probability distribution and
then the expected value is cumbersome

We determine expected value E directly!
Example:S=%_, . r"

s S=2 5. rM=1+2_, . r'=14rS, soS=1/(1-r)
Example: T=%_, . ir"

o T=2 g (+)r'=rS+rT, soT=r/(1-r)?

By conditioning on the right event, this leads to:
« E=zn+2"B X_,  i(1-(B-1),.)/2' <n+3

+ S0, waste is bounded by a small constant!

- Averaged over all B, waste is approx. 1.11 random bits
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Context of secure multiparty computation

Knuth-Yao actually prove that any probability
distribution can be generated from random bits,
wasting < 2 bits (on average).

In context of secure multiparty computation:
+ @Generating random bits is expensive.
- But, also comparing bits, arithmetic with bits, etc.

Our algorithm (and variants) strike a better balance
than Knuth-Yao’s minimal waste algorithm,
depending on the setting

-+ _cheaper to make it oblivious



And, the other way around ...

Given a random numbers x , [0,B).
How to extract as many random bits from x?

Alg. (we found this in Barker-Kelsey 2005):

5 compare bits of x and B, starting at most
significant bit, until difference is found.

- output all remaining bits of x, after position where
difference occurs.

Barker-Kelsey give no analysis

We find: E=Zn-2+n/(2"-1) > n-2, for
every bound B



' Pseudorandom Generator (PRG)

n truly random bits (seed)

Pseudorandom generator:

deterministic algorithm

v

M bits that “look random” (pseudorandom sequence)

» Preferably M>>n and a fast PRG

» Focus on provably secure PRGs

« a PRG is called provably secure if “breaking” the PRG is as
hard as solving a notoriously hard problem




‘ Strong Assumptions at a Bargain !

Best attack:
factoring

Best attack:
solving DL

k

1/a a’ a
g'". 8.8 ,...8
g,g,8" ,...8°

Theoretically: different assumptions (for all we know ...)
Practically: equivalent to factoring and DL, respectively




‘ Provably secure PRGs

Pseudorandom sequence for
a truly random seed

Distinguisher:
running time at mostT

“I think that
 ——» you gave me a
pseudorandom
sequence”

Truly random sequence of

the same length It probability of successtul

guess < V2 + ¢/2 the PRG 1s
(T, €)-secure




‘ Provably secure PRGs (cont.)

(T, e)-distinguisher for a
PRG: {0, 1}"— {0, 1}M
(T', €"-solver for a hard
reduction Problem with security
» parameter n
(e.g., DL problem in n-bit
finite field)

« It T/e"= T/e, reduction is tight
. It T7¢">> T/g, reduction is not tight

» If the reduction is tight, a desired security level can be achieved
for a relatively low value of security parameter n




Security of PRG: formal definition

Pseudorandom generator PRG: {0,1}" — {0, 1}M
Distinguisher D: {0,1}" — {0, 1}
Denote by U, uniform distribution on {0, 1}2, />0

PRG is called (T, ¢)-secure if for all T-time
distinguishers D

| PrID(PRG(U,)) =1]-Pr[D(U,) =1] | < €



‘Typical PRG




k-DDHI based PRG

o1

» Universal hash function used as extractor

» Good results, but assumption k-DDHI less
standard




'Dual Elliptic Curve PRG

» Proposed by Barker and Kelsey in a NIST draft standard [BK05]

~ For prime p =226 4 2224 4 2192 1. 2941, let E(F ) be an elliptic curve
such that #E(F ) is prime. Let P, Q <z E(F))

» sequence s,Q is indistinguishable from sequence of uniformly

random points under DDH assumption and x-logarithm assumption
[Brown06]

-~ however, random bits are extracted from random points improperly
so the PRG is insecure [G06, SS06]




‘ Distinguishing attack

block b, block b, block b,

- Point 5,Q is mapped to output block Isb,,,(x(5;Q))
-+ Qutput blocks with more preimages show up more often

- Blocks b < {0, 1}?*° have on average #E/# of blocks) =~ 2256/2240 — 216
preimages

- Blocks Isb,,o(x(R)) with R <5 E(F ) have on average more than 2'°
preimages

.~ Thus, blocks Isb,,,(x(s;Q)) have on average more than 2'¢ preimages




‘ The distinguishing attack 1s as follows...

block b, block b, block b,

» For each output block b; count the number of preimages, i.e., count
the number of points P such that b; = I1Sb,,,(Xx(P))

-+ If the average number of preimages is above 216, decide that the
sequence is produced by the PRG;

»  Otherwise, decide that the sequence is “truly random”




Simulation

frequency
4000 e
T . e
F 15:’ Fits normal distribution
1000 E ¥ N(65537.0, 255.6)
¢ %
i i3
2000 . L
i ! 216 = 65536
/ %
1000 4/ 1\\‘
3 §soo0 65500 €s0oo 66500 number of preimages

330 files produced by Dual Elliptic Curve PRG have been tested
¢ each file consists of 4000 output blocks

In 59% of files the average number of preimages is above 21°

Running time of the attack is about 3 hours on a 3GHz Linux
machine with 1Gb of memory



‘ Blum-Micali PRG

- Proposed by Blum and Micali [BM84], based on DL-problem in Zp*
+ Provably secure

» Qutputs only 1 bit per modular exponentiation

~  Let n=log,p. Suppose the BM PRG is not (T, €)-secure. Then the DL
problem can be solved in time T'= 64 n° (M/€)* T with success probability
g =1

T'/e' >> T/g, so reduction is not tight

3




‘ Blum-Micali PRG (cont.)

- All'inall, BM PRG is (T, €)-secure if

128 8 (M/e)* T < TDL(Zp*)’ .

) = a Exp[1.9229 (nIn 2)3(In (nIn 2))23],
4.7 - 10 time units (DES encryptions)

where
TDL(Zp
a~

. For M=220 T/e =280 BM PRG is (T, €)-secure if n> 61000

» High seed length n implies poor efficiency
. the cause is a far from tight reduction

» We propose a PRG with a much better security reduction
- based on the DDH assumption (stronger than DL assumption)
-+ output of n bits per iteration




Decisional Diftie-Hellman (IDDH) problem

G=<g> is a multiplicative group of prime order g

Algorithm A solves the DDH problem in G with
advantage ¢ iff for a random triple (a, b, r)

| Pr(A(g, g g% g®) =1) - Pr(A(g, 9%, 8> 9N =1) | 2 ¢

For concrete analysis:
« DDH problem is assumed to be as hard as the DL problem



DDH generator (intuition)

G=<g> multiplicative group of prime order g
Let a — Z, be a fixed integer

Let Double, ,(b) = (g?, g2°) [NR97]

s forunknown b <4 Z_ the output is pseudorandom under the DDH
assumption in G

5 “doubles” the input

|s Double a pseudorandom generator?

¢ No! It produces pseudorandom group elements rather than
pseudorandom bits
¢ Gonverting group elements into bits is a non-trivial problem

Double cannot be iterated to produce as much randomness as
required by the application



‘ DDH generator (construction)

» enum is a bijection “enumerating ” the elements of group G:
enum. G X Z/—) qu Z/

-+ Public parameters for DDH generator: x, y —p G

» Qutputs |g| = log, g pseudorandom bits per step

. Seed length |g] + 2]/




Security of the DDH generator

DDH generator produces pseudorandom integers from Z,
- If gapprox. 2" then it produces pseudorandom bits directly

- for an arbitrary g, additional effort has to be made to convert
random numbers into random bits (from [0,q) to bits)

Theorem. Assume that O< (2" — q)/2" < & (for simplicity). Then (T,
¢)-distinguisher for the DDH generator implies (7, ne/M — 0)-
solver for the DDH problem in G

+ proof is based on the hybrid argument



Proof idea

Given a 4-tuple (x,y,X,Y)
Hybrid H, = (uy,u,,...,u y,0utputy,...,output, )
= (Vy,Vs,...,V) k=M/n

Solver generates hybrids:

- Pick jat random.

5 Pick random VisVoyeensVig. Pick rx,,ry, at random.

< Set (sq,rxy) = enum(X,rx,)

o Set (v, ryy) = enum(Y,ry,)

s Continue as in PRG to produce (v,;,---;V)
(X,y,X,Y) is DDH tuple iff output ~ H,(else H, ;)



'PRG: instance based on QR(p)

+ pis a safe prime: p= 2g+ 1, gprime
+ G=QR(p), |G| =

»  There exists a buectlon from Gto Z,(Chevassut et al. 2005;
Cramer-Shoup 2003, and ... ?):

x,ifx<gq;

enum (x)= {

p—x,ifx>q.

-~ Public parameters x, y «—, G

.+ Extracts n bits per iteration (2 modular exponentiations)




PRG, (cont.)

What seed length, n, guarantees security?
- recall that for Blum-Micali PRG n > 61000
Assume that 0< (2" — g)2" < ne2M (g close to 2")

PRG, is (T, €)-secure if 2MT/ne < T, (QR))

For M =220, T/e =280, PRG, is (T, €)-secure if...
n> 1600

The seed length nis short because the reduction is (almost) tight
- PRG, is much more efficient than Blum-Micali PRG

« PRG;, is based on a stronger assumption (the DDH
assumption)

+ Limitation: works only for specific subgroup of Zp*



‘ PRG,: instance based on any subgroup

© pis aprime
-+ Gis a (prime) order subgroup of 2, |G| = q, (p— 1) = ql
. tisanelementof Z, of order/ sot=1

- Letenum,: G x Z,— Z,x Z,be the following bijection:
enum,(x, n) = (x ' mod q, x t div q)

-~ Public parameters x, y <5 G




Conclusions

General, simple construction of PRGs based on DDH assumption

Two specific instances of the new PRG are presented
¢ subgroup of quadratic residues modulo prime p — seed length |p|
s arbitrary order q subgroup of Z," -- seed length 2|p| -|q]

Secure parameter n=|p| is about the same for PRG1 and PRG 2:
« n=1600

Open problem: how to use an elliptic curve group?
¢ would result in considerably shorter seeds

For more details see http://eprint.iacr.org/2006/321



