
Provable Collisions in the
Pollard ρρρρ Algorithm for

Discrete Logarithms

Stephen Miller
Rutgers University

Ramarathnam Venkatesan
Microsoft Research

Reference: Procedings of the 7th Algorithmic Number Theory Symposium (Berlin), Springer-Verlag, 2006, pp. 573-581.

Fields Institute Workshop on Cryptography:

Underlying Mathematics, Provability and Foundations

�������
1. Results on the Pollard ρ algorithm

2. Random walks on graphs

3. New constructions of expanders for crypto

�������
1. Results on the Pollard ρ algorithm

2. Random walks on graphs

3. New constructions of expanders for crypto

Discrete Logarithm Problem
• Given a cyclic group G with generator g, and power h of it, solve the

equation
h = gx for x.

• DLOG is a hard problem which several cryptosystems are based on, for
example

– Diffie-Hellman
– El-Gamal
– Elliptic Curve Cryptography

• The difficulty of DLOG is determined by the realization of a group: e.g.
trivial for �/n� but harder for (�/p�)*, and apparently harder yet for elliptic
curves.

• Difficulty is determined by the largest prime divisor of n = #G. From now on
we assume n is a large prime.

• We will consider the DLOG problem on a “black-box” group, i.e. one which
uses no specific features of its embedding. In this case, it is a theorem of
Nechaev, Shoup that no DLOG algorithm can run in time o(n1/2).

Pollard ρ algorithm’s attributes

• Uses birthday paradox to run in time � n1/2

(heuristically). Can this be proved?

• Up to constant factors, the fastest known on general
groups, and the only with low storage requirements.

• In particular, it is the fastest known algorithm for
general elliptic curve groups (i.e. aside from special
curves which have subexponential algorithms).

• Therefore the n1/2 running time is used to gauge the
relative bit-by-bit strengths of ECC vs. RSA
cryptosystems (e.g. 160-bit ECC � 1024-bit RSA).

The actual algorithm

1. Let g equal the generator,
h = gy the element whose
discrete logarithm (y) we
wish to recover.

2. Partition the group G into 3
random sets S1, S2, and S3
(each element of G has,
independently, a 1/3
probability of being in each
Sj).

3. Set x0 = h (or more generally
a random power gr1hr2).

4. Iterate xk+1 = f(xk), where

5. Find a collision xk = xm (or more
properly xi = x2i to save on storage).

6. Use collision information to find y
(next slide).

x0

x1

x2

xk-1

xk xm

xk+1

xm-1

xm-2

xk+2

Birthday Paradox
heuristic: expect
collision in time O(n1/2).

However, the Birthday
Paradox does not
directly apply since the
successive xk are highly
correlated.

What to do with a collision
(If you walk into your own back, you may learn something about yourself)

• At each step, xk may be written as gαky+βk

• The iteration f(x) sends the coefficients (α,β) to one of:
» (α+1,β) [The move x � hx]
» (α,β+1) [x � gx]
» (2α,2β) [x � x2]

• Given a collision xk = xm, we must have that
Since the exponents are taken mod n, we can solve this:

provided that αk ≠ αm (mod n). [Non-degeneracy condition]. Expect this with
high probability � 1-1/n. This is even more likely than a collision
(heuristically).

• Note that if xk = xm is the first collision and if αk = αm (degenerate) there, the
α’s will be equal at any subsequent collision in the loop (because they evolve
the same way under the iterating function f).

• Likewise (since each step is invertible) if the α’s are distinct at the first
collision, they remain distinct at all future collisions.

An estimate on the collision time

• Theorem 1: Fix any p < 1. Then the Pollard ρ
algorithm finds a collision in time Op(n1/2(log n)3)
with probability � p, where the probability is
taken over all partitions of G into the three
subsets S1, S2, and S3.

• This is the first nontrivial rigorous result on the
runtime of the algorithm.

• O(n1/2) is the expected optimal collision time.

• Montenegro observation improves this to
Op(n1/2(log n)3/2).

A complete runtime estimate
(for almost all n)

• Multiplicative order of 2 modulo n: the least k > 0 for which 2k ��1 (mod n).

• Theorem 2. Assume that the multiplicative order of 2 modulo n is
Ω(log(n)3). Then the Pollard ρ collisions guaranteed by the previous
theorem are nondegenerate with probability 1 - O(log(n)6 / n).

• Almost all primes have this property:
e.g. if 2 is a generator of (�/n�)*, then the multiplicative order is n-1.

• More precisely, at most O(log(X)5) such primes n exist in the interval
between X and 2X.

• So the theorem, in practice, proves the Pollard ρ runtime for random group
orders.

• In general, one can quickly test if n has this property. If it doesn’t, the
theorem works if the squaring step x2 is replaced by another small power
xa for which a has large multiplicative order.

�������
1. Results on the Pollard ρ algorithm

2. Random walks on graphs

3. New constructions of expanders for crypto

Random Walks
• The Pollard ρρρρ iteration xk+1 = f(xk) is definitely not a random walk, since it goes into

a loop after its first collision. This loop is a key feature of the algorithm.

• However, since membership of xk in S1, S2, or S3 is random, the walk behaves
exactly as a random walk until the first collision occurs – thereafter it is decidedly
non-random.

• Upshot: to prove collisions occur it suffices to consider random walks on G whose
steps have the form

x ���� gx , x ���� hx , and x ���� x2 (each with probability 1/3).

• In analyzing a random walk on a cyclic group, we can use additive notation (i.e.
simply consider �/n�).

• We consider the equivalent random walk on �/n� given by moves of the form
x ���� x+1, x ���� x+y, or x ���� 2x (each with probability 1/3).

• Our result: this random walk has mixing time (log n)3 (more precise on next slide).
– Mixing time is a measure of how many steps it takes for a random walk to become equidistributed, and

thereby “forget” where it started.

– Comparison: if one could make totally random walks (like in the Birthday paradox), the mixing time would
be 1.

– Without the squaring step the mixing time would be npower ([Teske]).

Graph reformulation

• Define the Pollard ρ graph ΓΓΓΓ to have vertices
�/n� and directed edges connecting x���� x+1,
x���� x+y, and x���� 2x for each x ���� ����/n����.

• The previous random walk is now a random
walk on this graph, where we move from vertex
to vertex by picking one of the three edges that
starts there with equal probability = 1/3.

• We prove this walk has mixing time (log n)3, and
collisions in time O(n1/2(log n)3/2).

Brief Review of Graph Theory

• Definitions: A graph Γ is a collection of vertices V,
and (directed) edges E connecting the vertices.

• A k-regular graph has exactly k edges meeting at
each vertex (k in, k out).

• Adjacency operator A on L2(V) averages the
function over its neighbors

A: f(x) � �x�y f(y)

• The constant functions on V are eigenfunctions
with the trivial eigenvalue λtriv = k.

Operator Norm Mixing Lemma
• Often people look at the spectral gap (for undirected graphs).

• Our graph is directed, so instead we will look at restriction of A to the

orthogonal complement of ����, and its operator norm

[= the most it distorts lengths].

• Lemma: Suppose that the operator norm of A’s restriction to {the orthogonal
complement of the constant function} is bounded by µ < k. Let x be an
arbitrary vertex and S be an arbitrary subset of vertices of Γ. Then the
probability of a random walk of length r � log(2n)/log(k/µ) starting from x
landing in S is between ½|S|/n and 3/2 |S|/n (i.e. (1±½)�|S|/n).

• This assumption is met for the Pollard ρ graphs, with k = 3 and
µ = 3 - c/(log n)2 for some c>0 (see next slide). So the mixing happens for
r � (log n)3.

• Method of proof: study action of Ar on the characteristic function of {x},
which tells you where walks end. Take inner product with χS, apply Cauchy-
Schwartz inequality, and finally the operator norm bound.

• We need to show that
i.e. that

for all f � L2(V) which are orthogonal to ����.

• Recall (Af)(x) = f(x+1) + f(x+y) + f(2x).

• Look at basis of the orthogonal complement consisting of
nontrivial characters of (�/n�) given by
χk(x) = e 2 π i k x/n , k ≠ 0.

• We write f = �k≠0 ckχk , so that �f�2 = n � |ck|2.

• We have Aχk = dkχk+χ2k, where dk = χk(1) + χk(y),
|dk| = 2|cos(π k(y-1)/n)|.

Operator Norm Bound for A

• We compute:

• This needs to be 	 n (9 – c/(log n)2) � |ck|2

• The savings is gained from the second sum and
the following quadratic form bound:
– if

– then

• This can be viewed as a “reciprocal” Hilbert
inequality (continued…).

Operator Norm Bound for A (ctd.)

(|dk|	2)

Quadratic Form Bound
• Let � be the set of k between –n/4 and n/4 (mod n). Then

λk = |cos(πk/n)| 	 1 for k � �, and λk 	 sqrt(1/2) for k ∉ �.

• So we need to show

where εk = indicator function of k �
�.

• Let γk > 0. Then

and so the quadratic form is bounded by the diagonal quadratic form

• At this point, one needs simply to chose the γk such that the expression in parentheses is
	 2 - Ω((log n)-2).

• In a moment we will choose γk between 1 and 1.5. Observe that with such small γk our desired inequality
automatically holds unless both k and 2-1k lie in the residues in � (mod n).

• So we take γk to be 1 for k ∉ �, and otherwise equal to 1-sd/(log n)2 , in which 2s is the exact power of 2
dividing k (viewed as an integer in [-n/4,n/4]). Here d is a constant.

• It is easy to check that
because if you double the integer representing 2-1k between –n/4 and n/4, you get exactly the integer
representing k in that range. So s(k) = s(2-1k)+1.

Putting Together: Graph Mixing Theorem

• Theorem: Let x be any vertex and S be any subset of vertices of ΓΓΓΓ.
Then there exists an explicit constant c such that the probability that

{a random walk of length � c(log n)3 starting at x ends in S}
is between ½|S|/n and 3/2 |S|/n.

• This implies the collision time estimate of O(n1/2(log n)3) as follows:
• Let S = the set of the first t = �n1/2� iterates x1,����, xt of the random walk.

• We may assume that |S| = t, for otherwise a collision has already occurred.

• Let r = c(log n)3 above. Then the probability of xt+r, xt+2r, xt+3r, ����, xt+kr lying
in S are each independently at least 1/(3t).

• Choose k = 3bt, b fixed. The probability that none of those points lies in S is
bounded by (1-1/(3t))3bt � e-b, which can be arbitrarily small if b is large.

• Thus, with high probability ���� 1-e-b, there is a collision in time O(n1/2(log n)3).

• Montenegro’s observation: if t = �n1/2(log n)3/2�, then the collision

exponent is reduced to O(n1/2(log n)3/2).

�������
1. Results on the Pollard ρ algorithm

2. Random walks on graphs

3. New constructions of expanders for crypto

Brief History of Expander Graphs
• Definitions vary: usually undirected graphs with λ 	 c λtriv for some

positive constant c < 1. Random walks mix rapidly.

• Originally shown to exist by counting methods by Pinsker: There are
far more graphs than there are non-expander graphs.

• Margulis (70s, 80s), Lubotzky-Phillips-Sarnak (1986) give first
constructions.

• LPS “Ramanujan graphs” use the (known) Ramanujan conjectures
in their proof. The Ramanujan conjectures in number theory are a
statement about optimal cancellation in random sums.

• Other constructions: Reingold-Vadhan-Wigderson “Zig-Zag”,
algebraic geometry. Have algebraic flavor.

• Unfortunately existing constructions are not suitable for
implementation (either too slow, or too large a probability of
returning quickly to a previously visited node because undirected).

A simpler version: “GRH Graphs”

• Let Q be a large integer.

• Let S = { primes p < (log Q)B , p � Q } , for B > 2.

• Define the graph Γ to have
– vertices V=(����/Q����)*.
– edges connecting v to pv, for each v �
�
�
�
V and p �
�
�
�
S.
– (Γ is the Cayley graph of the group (����/Q����)* with respect to

the generating set S).

• Theorem – Assuming GRH, Γ is an expander: its
nontrivial eigenvalues satisfy the bound

|λ| = O(k1/2+1/B). [k = degree = λtriv]

New, conditional construction of expander graphs.

Sketch of Proof
• The graph is a Cayley graph of G = (����/Q����)*, and so characters G of are

eigenfunctions of A:

(Aχ)(g) = �s����S χ(sg) = (�s����S χ(s))�χ(g)

• In our case, the eigenvalue is

λχ = �p����S [χ(p) + χ(p-1)] = 2 Re �p����S χ(p).

• Since G is abelian, there are as many characters as eigenfunctions, so the
entire spectrum is obtained this way.

• Trivial character: trivial eigenvalue = degree = k.

• Nontrivial character: bound |λ| = O(k1/2+1/B).
This follows from GRH (it is a problem about primes in progressions).
All one needs for some expansion is

|λ| < k�(1-c/(log Q)power)

– E.g. when χ is the quadratic character, this is basically the question of finding
the least prime nonresidue mod Q – a difficult analytic problem.

• Could also use Lindelöf Hypothesis to get weaker bounds.

Generalization to other groups
• Argument applies also to other groups from

number theory.
• Example (just mentioned in Couveignes’ talk):

– Let G = ���� be the ideal class group of an order in an
imaginary quadratic number field ����(-D).

– Let S = ideal classes represented by prime ideals of
norm O((log D)B), B>2.

– Then (assuming GRH) the Cayley graph generated by
G and S is an expander. In particular S generates G!

• uses Hecke’s theory of Grossencharacter L-functions,
cancellation of Fourier coefficients of θ-functions.

– This is connected to elliptic curves: G represents
ordinary elliptic curves, and S represents computable
isogenies between them.

– Connection proves the [JMV] isogeny result from David
Jao’s talk (continued…).

Random Reducibility of EC DLOG
• In elliptic curve crypto, curves are randomly selected

based on the field and point count. Is this justified?
• Using previous graph, we show it is – modulo technical

assumptions which do not arise in practice:

Jao, M-, Venkatesan (2004): Assuming GRH, the DLOG
problem on ECs over the same field with the same point
count is “random reducible” in the following sense:

Given any algorithm A that solves DLOG on a
fraction of curves in a “level”, one can
probabilistically solve DLOG on any curve in the
same level with polylog(q) queries to A with random
inputs.

“Level” means same End(E) – doesn’t matter in practice. Hence this shows that
the difficulty of DLOG is solely determined by the ground field and point count.

Another style of expanders
• Notion of additive reversalization:

– Suppose that A = At is the adjacency matrix of an undirected graph with good
separation: �Af� 	 c�f� for any f � ����, where c < k = degree.

– If P is any permutation, then

so its operator norm on f � ���� is bounded by 2c (vs. λtriv = 2k).

– This still has significant eigenvalue separation.

• Idea – even if A has bad eigenvalue separation, AP+(AP)t might have
excellent separation.

• Application: the circle graph on �/n�, with edges connecting x-1
 x

x+1, has the poorest possible spectral gap � 1/n.

– Apply permutation P: x � r�x, with (r,n)=1.

– Get good separation (next slide).

• This shows a fundamental randomness property of integers: adding and
multiplying mixes very quickly. Since these are basic operations, it has
some applications.

• One of them is the Pollard ρ expansion used earlier in this talk.

Making stream ciphers: Goal is speed

• Theorem: Let N and r be relatively prime integers > 1. Form a 4-regular
graph on �/N� by connecting x to r(x+1) and r(x-1).
Then the eigenvalues of the adjacency matrix either satisfy:

– λ = 4 cos(2πk/N) for those k with r�k = k (mod N) or
– |λ| 	 4 – c(log N)-2 for some c > 0.

• For group theoretic reasons, a bounded set of affine transformations on
�/N� cannot have fixed eigenvalue separation, so the logs are
necessary.

• Related graph: take (x+1)r, (x-1)r instead. This seems to have bounded
separation (above constraints do not apply).

• This graph is used in a new stream cipher (“MV3”) which is twice as fast
as RC4, and whose statistical properties can be proven from the
expansion.
[Keller, M-,Mironov,Venkatesan – CT-RSA 2007]

(Good expanders if N=2^k; fast nonlinearity
on machine hardware)

Conclusions:
• Mathematics of expanders can be used to prove
common beliefs about important crypto algorithms.

• Pollard ρρρρ algorithm finds collisions in
O(n1/2(log n)3/2) time with arbitrarily high probability.

• For typical primes n, this collision is
nondegenerate, i.e. the algorithm solves DLOG with
high probability in this many steps.

• EC crypto selection practice of relying on point
count is justified, assuming GRH.

• Principles from the proofs can be used to design
other expanders with cryptographic applications.

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

++++ f
A

xfyxfxf)2()()1(

n
ikx

k exf
π

χχ ==)(then If k

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

++++ kkkk A
xyxx χχχχ)2()()1(

��χ��χ��

� ����	��
	χ���
�χ���
�

����
������π �����
��
��

><

=�

AfAf

cf kk

,
compute want toWe

 generalIn χ

=

>< �� kkkk cAcA χχ ,

else and if,0, Using njiji ≠>=< χχ

=

>< �� kkkk cAcA χχ ,

� �	��� 	����	�	��� � �	��	

���������	 ��� 		

� ���� �!�����

• Key bound: we show that

for all f � L2(V) which are orthogonal to ����.

• This is equivalent to

• Method of Proof:
– Recall (Af)(x) = f(x+1) + f(x+y) + f(2x).

– Look at basis of the orthogonal complement
consisting of nontrivial characters of (�/n�) given by
χk(x) = e 2 π i k x /n , k ≠ 0.

– We write f = �k≠ 0 ckχk , so that �f�2 = n � |ck|2.

– We have Aχk = dkχk+χ2k, where dk = χk(1) + χk(y),
|dk| = 2|cos(π k(y-1)/n)|.

Operator Norm Bound for A

• We compute:

• The savings is gained from the second sum
and the following quadratic form bound:
– if

– then

• This can be viewed as a “reciprocal” Hilbert
inequality.

Operator Norm Bound for A (ctd.)

(|dk|	2)

