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Discrete Logarithm Problem

Given a cyclic group G with generator g, and power h of it, solve the
equation

h=g* forx.

DLOG is a hard problem which several cryptosystems are based on, for
example

— Diffie-Hellman

— El-Gamal

— Elliptic Curve Cryptography

The difficulty of DLOG is determined by the realization of a group: e.g.
trivial for Z/nZ but harder for (Z/pZ)*, and apparently harder yet for elliptic

curves.

Difficulty is determined by the largest prime divisor of n = #G. From now on
we assume n is a large prime.

We will consider the DLOG problem on a “black-box” group, i.e. one which
uses no specific features of its embedding. In this case, it is a theorem of
Nechaev, Shoup that no DLOG algorithm can run in time o(n'2).



Pollard p algorithm’s attributes

Uses birthday paradox to run in time ~ n1/2
(heuristically). Can this be proved?

Up to constant factors, the fastest known on general
groups, and the only with low storage requirements.

In particular, it is the fastest known algorithm for
general elliptic curve groups (i.e. aside from special
curves which have subexponential algorithms).

Therefore the n'2 running time is used to gauge the
relative bit-by-bit strengths of ECC vs. RSA
cryptosystems (e.g. 160-bit ECC ~ 1024-bit RSA).



The actual algorithm

Let g equal the generator,
h = g¥ the element whose
discrete logarithm (y) we
wish to recover.

Partition the group G into 3
random sets S,, S,, and S,
(each element of G has,
independently, a 1/3
probability of being in each
S))-
Set x,= h (or more generally

a random power g'h'z),
lterate x,,, = f(x,), where

(gx, x € 51;

= < hx, x € 5y;

2
.z, xr € S3.

5. Find a collision x, = x, (or more
properly x. = X,, to save on storage).

6. Use collision information to find y

(next slide).

Xic-1

Xm-2

Birthday Paradox
heuristic: expect
collision in time O(n'?).

However, the Birthday
Paradox does not
directly apply since the
successive x, are highly
correlated.
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What to do with a collision

(If you walk into your own back, you may learn something about yourself)

At each step, x, may be written as goy+bk

The iteration f(x) sends the coefficients (a,) to one of:

»  (o+1,B) [ The move x - hx ]
»  (a,p+1) [ X = gX ]
»  (20,2B) [ X = X2 ]
Given a collision x, = x_, we must have that . vy + B = @y + Om
Since the exponents are taken mod n, we can solve this:
— ﬁm _ /6k
y = Af — Oy,

provided that o, # o, (mod n). [Non-degeneracy condition]. Expect this with
high probability ~ 1-1/n. This is even more likely than a collision
(heuristically).

Note that if x, = X is the first collision and if o, = o, (degenerate) there, the
o’'s will be equal at any subsequent collision in the loop (because they evolve
the same way under the iterating function f).

Likewise (since each step is invertible) if the a’s are distinct at the first
collision, they remain distinct at all future collisions.



An estimate on the collision time

Theorem 1: Fix any p < 1. Then the Pollard p
algorithm finds a collision in time O,(n"?(log n)3)
with probability > p, where the probability is
taken over all partitions of G into the three

subsets S,, S,, and S.. (629(%1/2))

This is the first nontrivial rigorous result on the
runtime of the algorithm.

O(n'2) is the expected optimal collision time.

Montenegro observation improves this to
Op(n1/2(|og n)3/2)_



A complete runtime estimate

(for almost all n)

Multiplicative order of 2 modulo n:the least k > 0 for which 2k = 1 (mod n).

Theorem 2. Assume that the multiplicative order of 2 modulo n is
Q( log(n)?). Then the Pollard p collisions guaranteed by the previous
theorem are nondegenerate with probability 1 - O( log(n)®/ n).

Almost all primes have this property:
e.g. if 2 is a generator of (Z/nZ)", then the multiplicative order is n-1.

More precisely, at most O( log(X)®) such primes n exist in the interval
between X and 2X.

So the theorem, in practice, proves the Pollard p runtime for random group
orders.

In general, one can quickly test if n has this property. If it doesn'’t, the
theorem works if the squaring step x2 is replaced by another small power
x2 for which a has large multiplicative order.
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Random Walks

The Pollard p iteration x,,, = f(x,) is definitely not a random walk, since it goes into
a loop after its first collision. This loop is a key feature of the algorithm.

However, since membership of x, in S;, S,, or S5 is random, the walk behaves
exactly as a random walk until the first collision occurs — thereafter it is decidedly
non-random.

Upshot: to prove collisions occur it suffices to consider random walks on G whose
steps have the form

X—gx, x— hx, and x— x2 (each with probability 1/3).

In analyzing a random walk on a cyclic group, we can use additive notation (i.e.
simply consider Z/nZ).

We consider the equivalent random walk on Z/nZ given by moves of the form
X X+1, X X+y, or X 2x (each with probability 1/3).

Our result: this random walk has mixing time (log n)3 (more precise on next slide).

— Mixing time is a measure of how many steps it takes for a random walk to become equidistributed, and
thereby “forget” where it started.

— Comparison: if one could make totally random walks (like in the Birthday paradox), the mixing time would
be 1.

— Without the squaring step the mixing time would be nPoYer ([Teske]).



Graph reformulation

* Define the Pollard p graph T" to have vertices
Z/nZ. and directed edges connecting x— x+1,

X— X+Y, and x— 2x for each x € Z/nZ.

* The previous random walk is now a random
walk on this graph, where we move from vertex
to vertex by picking one of the three edges that
starts there with equal probability = 1/3.

« We prove this walk has mixing time (log n)3, and
collisions in time O(n'2(log n)37?),



Brief Review of Graph Theory

Definitions: A graph I' is a collection of vertices V,
and (directed) edges E connecting the vertices.

A k-regular graph has exactly k edges meeting at
each vertex (k in, k out).

Adjacency operator A on L2(V) averages the
function over its neighbors

A (X) > 2, f(y)

The constant functions on V are eigenfunctions
with the trivial eigenvalue A, = k.



Operator Norm Mixing Lemma

Often people look at the spectral gap (for undirected graphs).
Our graph is directed, so instead we will look at restriction of A to the

orthogonal complement of ]], and its operator norm
[ = the most it distorts lengths ].

Lemma: Suppose that the operator norm of A’s restriction to {the orthogonal
complement of the constant function} is bounded by u < k. Let x be an
arbitrary vertex and S be an arbitrary subset of vertices of I. Then the
probability of a random walk of length r > log(2n)/log(k/u) starting from x
landing in S is between 2|S|/n and 3/2 |S|/n (i.e. (1£%2)-|S|/n).

This assumption is met for the Pollard p graphs, with k = 3 and
u = 3 - ¢/(log n)2 for some ¢>0 (see next slide). So the mixing happens for
r > (log n)3.

Method of proof: study action of A" on the characteristic function of {x},
which tells you where walks end. Take inner product with y, apply Cauchy-
Schwartz inequality, and finally the operator norm bound.




Operator Norm Bound for A

C

We need to show that HArestricted to 1+ H < 3 - (log n)?

l.e. that
JAfl < (38— s 1]
for all f € L2(V) which are orthogonal to 1.

Recall (Af)(x) = f(x+1) + f(x+y) + f(2x).

Look at basis of the orthogonal complement consisting of
nontrivial characters of (Z/nZ) given by
n, k=1

Xk(X) = g 2nikxn , K= 0. (Xk> Xe) = { 0, otherwise.
We write f = 2, ,, Cx, , SO that ||f|[[2=n X |c,|*

We have AXk = dek+X2k5 where dk = XK(1) + Xk(y)s
|d,| = 2|cos(m k(y-1)/n)|.



Operator Norm Bound for A (ctd.)

We compute:
JAFII? = (Af,Af) = (O ckAxr ) cAxk) =

> encr [{dix dexe) + (xzr X2e) + (dixe X2¢) + (Xok, dexe)]

BEEO T (a<2) N\ e |
< n (52 o +23° |ck||c%||d2k|) .

This needs to be < n (9 — c¢/(log n)2) X |

The savings is gained from the second sum and
the following quadratic form bound:

—if Qz1,...,xn 1) = 0L |zl |k Ak, where Ay = | cos(mk/n)|
—then Q@120 1)l < (1- sy ) Shcha?

This can be viewed as a “reciprocal” Hilbert
inequality (continued...).



Quadratic Form Bound

Let S be the set of k between —n/4 and n/4 (mod n). Then
A, = [cos(mk/n)| < 1 fork € S, and A, < sqrt(1/2) fork ¢ S.

So we need to show Z |$I<;H~/E2k:‘5k; < (1 (logn)2> Zxk

where g, = indicator function of k € S.
Lety,>0. Then 0 < (ypzp £ 75 @ok)® = Ypap + v, 23, £ 22k Top

and so the quadratic form is bounded by the diagonal quadratic form

1 2 2 _ —2

B) > L. (5k:7k T €2k Y5y )
At this point, one needs simply to chose the v, such that the expression in parentheses is
< 2-Q((log n)?).

In a moment we will choose v, between 1 and 1.5. Observe that with such small y, our desired inequality
automatically holds unless both k and 2-'k lie in the residues in S (mod n).

So we take v, to be 1 for k ¢ S, and otherwise equal to 1-sd/(log n)? , in which 2s is the exact power of 2

dividing k (viewed as an integer in [-n/4,n/4]). Here d is a constant.

_ 1)d _
Itis easy to check that Vi + ’ngz ~ 1- 2(1Ogn)2 +1+ 2((1‘Zg ))2 < 2-Q((logn)™?)
because if you double the integer representing 2-'k between —n/4 and n/4, you get exactly the integer
representing k in that range. So s(k) = s(2-'k)+1.



Putting Together: Graph Mixing Theorem

Theorem: Let x be any vertex and S be any subset of vertices of I.

Then there exists an explicit constant ¢ such that the probability that
{a random walk of length > c¢(log n)3 starting at x ends in S}
is between %2|S|/n and 3/2 |S|/n.

This implies the collision time estimate of O(n'2(log n)3) as follows:

Let S = the set of the firstt = | n'2] iterates x4,--+, X; of the random walk.

We may assume that |S| = t, for otherwise a collision has already occurred.

Let r = c(log n)® above. Then the probability of X, , Xi,ors Xte3rs s Xeakr [YING
in S are each independently at least 1/(3t).

Choose k = 3bt, b fixed. The probability that none of those points liesin S is
bounded by (1-1/(3t))3t ~ e, which can be arbitrarily small if b is large.

Thus, with high probability > 1-e™®, there is a collision in time O(n'2(log n)3).

Montenegro’s observation: if t = | n'2(log n)*? |, then the collision

exponent is reduced to O(n'2(log n)32).
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Brief History of Expander Graphs

Definitions vary: usually undirected graphs with A < ¢ A, for some

positive constant ¢ < 1. Random walks mix rapidly. mv
Originally shown to exist by counting methods by Pinsker: There are
far more graphs than there are non-expander graphs.

Margulis (70s, 80s), Lubotzky-Phillips-Sarnak (1986) give first
constructions.

LPS “Ramanujan graphs” use the (known) Ramanujan conjectures
in their proof. The Ramanujan conjectures in number theory are a
statement about optimal cancellation in random sums.

Other constructions: Reingold-Vadhan-Wigderson “Zig-Zag”,
algebraic geometry. Have algebraic flavor.

Unfortunately existing constructions are not suitable for
implementation (either too slow, or too large a probability of
returning quickly to a previously visited node because undirected).



A simpler version: “GRH Graphs”

New, conditional construction of expander graphs.

Let Q be a large integer.

Let S={primesp < (logQ)B,ptQ},forB>2.

Define the graph I" to have
— vertices V=(Z/QZ)'.

— edges connecting v to pv, foreachv € Vand p € S.
— (I is the Cayley graph of the group (Z/QZ)" with respect to
the generating set S).

Theorem — Assuming GRH, I' is an expander: its
nontrivial eigenvalues satisfy the bound

IA| = O(k72+1/B), [k = degree = A, ]



Sketch of Proof

The graph is a Cayley graph of G = (Z/QZ)", and so characters G of are
eigenfunctions of A:

(AX)(Q) = 2Lses X(89) = (Lses X(8))-x(9)
In our case, the eigenvalue is

A = Zoes LX) +x(0"] = 2Re X s x(p).

Since G is abelian, there are as many characters as eigenfunctions, so the
entire spectrum is obtained this way.

Trivial character: trivial eigenvalue = degree = k.

Nontrivial character: bound |A| = O(k'/2+1/B),
This follows from GRH (it is a problem about primes in progressions).
All one needs for some expansion is
IA| < k-(1-c/(log Q)rower)
— E.g. when y is the quadratic character, this is basically the question of finding
the least prime nonresidue mod Q — a difficult analytic problem.

Could also use Lindel6f Hypothesis to get weaker bounds.



Generalization to other groups

« Argument applies also to other groups from
number theory.

« Example (just mentioned in Couveignes’ talk):

— Let G =7 be the ideal class group of an order in an
iImaginary quadratic number field Q(-D).

— Let S = ideal classes represented by prime ideals of
norm O((log D)B), B>2.

— Then (assuming GRH) the Cayley graph generated by
G and S is an expander. In particular S generates G!

» uses Hecke’s theory of Grossencharacter L-functions,
cancellation of Fourier coefficients of 8-functions.

— This is connected to elliptic curves: G represents
ordinary elliptic curves, and S represents computable
Isogenies between them.

— Connection proves the [JMV] isogeny result from David
Jao’s talk (continued...).



Random Reducibility of EC DLOG

* In elliptic curve crypto, curves are randomly selected
based on the field and point count. /s this justified?

» Using previous graph, we show it is — modulo technical
assumptions which do not arise in practice:

Jao, M-, Venkatesan (2004): Assuming GRH, the DLOG
problem on ECs over the same field with the same point
count is “random reducible” in the following sense:

Given any algorithm A that solves DLOG on a
fraction of curves in a “level”, one can
probabilistically solve DLOG on any curve in the
same level with polylog(q) queries to A with random

iInputs.

“Level” means same End(E) — doesn’t matter in practice. Hence this shows that
the difficulty of DLOG is solely determined by the ground field and point count.




Another style of expanders

* Notion of additive reversalization:

— Suppose that A = Alis the adjacency matrix of an undirected graph with good
separation: |[|Af|| < c||f|| forany f L 1, where ¢ < k = degree.

— If P is any permutation, then
I(AP+ PTA) fI| < [[APf| +|PTAfIl < cllPfII+IAfIL < cllfll +cll f]]

so its operator normon f L 1 is bounded by 2c (vs. A;;, = 2K).
— This still has significant eigenvalue separation.

« Idea—even if A has bad eigenvalue separation, AP+(AP)! might have
excellent separation.

« Application: the circle graph on Z/nZ, with edges connecting x-1 <+ X <
x+1, has the poorest possible spectral gap ~ 1/n.

— Apply permutation P: x i r-x, with (r,n)=1.
— Get good separation (next slide).

« This shows a fundamental randomness property of integers: adding and
multiplying mixes very quickly. Since these are basic operations, it has
some applications.

* One of them is the Pollard p expansion used earlier in this talk.



Making stream ciphers: Goal is speed

« Theorem: Let N and r be relatively prime integers > 1. Form a 4-regular
graph on Z/N7Z by connecting x to r(x+1) and r(x-1).

Then the eigenvalues of the adjacency matrix either satisfy:

— A = 4 cos(2nk/N) for those k with r-k = k (mod N) or

. |7\‘| < 4 — C(|Og N)'2 forsomec >0 (Good expanders if N=2"k; fast nonlinearity
— ) on machine hardware)

« For group theoretic reasons, a bounded set of affine transformations on
Z/NZ cannot have fixed eigenvalue separation, so the logs are

necessary.

+ Related graph: take (x+1)", (x-1)" instead. This seems to have bounded
separation (above constraints do not apply).

« This graph is used in a new stream cipher (“MV3”) which is twice as fast
as RC4, and whose statistical properties can be proven from the
expansion.

[Keller, M-,Mironov,Venkatesan — CT-RSA 2007]



Conclusions:

* Mathematics of expanders can be used to prove
common beliefs about important crypto algorithms.

* Pollard p algorithm finds collisions in
O(n'2(log n)32) time with arbitrarily high probability.

* For typical primes n, this collision is
hondegenerate, I.e. the algorithm solves DLOG with
high probability in this many steps.

« EC crypto selection practice of relying on point
count is justified, assuming GRH.

* Principles from the proofs can be used to design
other expanders with cryptographic applications.



Ja+D+fx+y)+f(2x) | = f

A
In general f = Z . X.
We want to compute
< Af,Af >
ikx
<AY X A x> If f=x, then , (x)=¢ "
D e [(drxk, dexe) + (Xzk, X20} + {duXe, Xa) + (Xzk: dexe)]
ke ££0
v
, e ZAD+Z, (x4 )+ 2,(20) | = b2
Using < y,, ¥, >=0,if i # jand nelse A

<= n(5) el +2)  lenllealldas| ) - XKk
where d, =%, (1)+x,(y),
|d, |=2]|cos(m k(y-1)/n)].

One has that |d;| = 2|COb(L;_ll)| = 2Aky-1)-



Let n be an odd mteger and A = |cos(mh/n)| tor k € 4L/ni.
Consider the quadratic form @ : R"~! — R given by

n—1

Q@1 Tue1) = Y T Top Mk (3.1)

k=1
n which the subscripts are interpreted modulo n.

Proposition 3.1. There exists an absolute constant ¢ > 0 such that

n—1
C 0
< AZCka ’AZCka > |Q($1a . -1:1:?1—1” < (1 — m) Ty . [:3.3)

< n LEL ek |* 4+ 2\)

We now need a lemma on
quadratic from
minimization

W C [
IAfIl < (3— “Dgﬂ_}z) | £ (3.8)
Note that |d;.| = 2)A,_1), and that y—1 and 2 are invertible in Z/nZ,
by assumption in (3.7). The result now follows from (3.2) with the
choice of Ty(,_1)x = |ckl.



Operator Norm Bound for A

« Key bound: we show that

Jafll < (83— i) 1
for all f € L2(V) which are orthogonal to T.

* Thisis eqUivalent to ||Arestricted to 11 || S 3 (logcn)2

 Method of Proof:
— Recall (Af)(x) = f(x+1) + f(x+y) + f(2x).

— Look at basis of the orthogonal complement
consisting of nontrivial characters of (Z/nZ) given by

Xk(x) — e 2nikx/n, k #0. (XK, Xe) = { g’) ]cftiefwise.
— We write f = X, Cxx » SO that [|f|[2 = n X |¢, />

|dy| = 2|cos(w k(y-1)/n)|.




Operator Norm Bound for A (ctd.)

« We compute:

JAFI? = (Af,Af) = (D ckAxn, ) ckAxk) =

Z ck Co [(drXk, dexe) + (X2k, X20) + {(dr Xk, X20) + (X2k, deXe)]
L0 (dd<2) "\ / | —

< n(52\ck\2—I—QZ\ckHc%Hdgk\).

* The savings is gained from the second sum
and the following quadratic form bound:

—1f Qxi,...,zh_1) = Zz;ll T) Top A\, Wwhere A\ = | cos(wk/n)|
c n—1
_then Q(71,...,2n1)] < (1_W) Zk:lxz°

* This can be viewed as a “reciprocal” Hilbert
inequality.



