How to Tell Which of the Encrypted Numbers is Greater

Vladimir Kolesnikov

Bell Laboratories Murray Hill, New Jersey, USA

Joint work with Ian F. Blake (University of Toronto)

Contents

- S Background
- **S** The Two Millionaires Problem
- **S** Comparing Encrypted Numbers

Motivation

HAHA!! I'll set y := x - 0.01

A: I would like to buy those sleek Matrix sunglasses.

B: My prices are so low, I cannot tell them! Tell me how much money you have (x), and if it's more than my price (y), I'd sell it to you for y.

A: We better securely evaluate Greater Than (GT).

GT Uses:

Auction systems, bargaining Secure database mining Sales of electronic goods

Secure Function Evaluation (SFE)

- S When you don't trust your partner
- S Parties want to evaluate a function F on their inputs, but keep inputs private.
- S Assume secure channels between parties
- S Large research effort

Spectron Evaluation

SFE Models

Semi-honest

- Both players follow the protocol
- Observe communication, try to learn additional info

S Malicious

- Players can freely cheat
- Solutions can be obtained by "compilation" of a semihonest protocol

One Round SFE

- S Reduces opportunities for Alice to cheat
 - Can only substitute input and misinterpret output
 - Great when asymmetric trust among parties
 - E.g. Bank and Client
- **S** Reduces latencies
- Some applications require non-interactivity
 - Auctions
 - Mobile agents
 - Computing on Encrypted Data

One Round SFE

What i Alice lies about the output?
Idea: output values (0,1) are sent with authenticators

Strong Conditional OT (SCOT)

Learn: $S_{Q(x,y)}$

Learn: nothing

Tool: Additively Homomorphic Encryption

Encryption scheme, such that:

Given $E(m_1)$, $E(m_2)$ and public key, allows to compute $E(m_1 + m_2)$

We use scheme with large plaintext group.

The Paillier scheme satisfies our requirements

Can compute $E(cm_1 + m_2)$ from c, $E(m_1)$, $E(m_2)$

The GT-SCOT Protocol

Privacy in Auctions

Note to self: spam her with \$999 computer offers

I am auctioning my green computer

One hundred million dollars!

\$1000

Sorry

Deal!

Comparing Encrypted Numbers

Conditional Encrypted Mapping (CEM)

Q-CEM

Pair (Rmap, Rec) for Q is a Q-CEM

Definitional Choices

CEM: Rmap(s_0 , s_1 , e_0 , e_1 , pk), Rec(m, sk)

Strong notion of privacy

- Output of Rmap contains no statistical information other than the value $s_{O(x,v)}$
 - Strong composability
- Holds for all generated key pairs, valid inputs and randomness used in encryption
 - E.g. Adv does not benefit from maliciously choosing randomness when encrypting inputs

Definitional Choices

CEM: Rmap(s_0 , s_1 , e_0 , e_1 , pk), Rec(m, sk)

Do not specify security requirements of the encryption scheme

- One definition is useable in most settings
- Delay discussion of easy but tedious details (e.g. what if inputs contain decryption keys)
- Q-CEM with semantically secure encryption gives a protocol in the semi-honest model
 - can be modified to withstand malicious players (ZK or the light-weight CDS)

The GT-CEM Construction

ES_i is a randomized encoding of s_i

contains no other information

Randomized Mapping

Given
$$s_0$$
, s_1 $f(-1) = b-a = ES_0$ (1)
 ES_0 , ES_1 , $f(x) = ax + b$ $f(1) = a+b = ES_1$ (2)
 $f(0) = b = \frac{1}{2} (ES_0 + ES_1) = R'$

Assume s_0 , s_1 contain redundancy

Choose $R \in_R Z_N$. View R as blocks r_0 , r_1 : $R = r_0 2^k + r_1$

$$\mathsf{ES}_0 = ---\frac{\$_0}{-} - \cdot - -\frac{r_1}{-} - - -\frac{r_0}{-} - \cdot - -\frac{s_0}{-} - -$$

$$\mathsf{ES}_1 = ---\frac{r_0}{-} - \cdot - -\frac{\$_1}{-} - - -\frac{s_1}{-} - - -\frac{r_1}{-} - -$$

$$\mathsf{c} = 0 \quad \mathsf{c} \in_{\mathbb{R}} \{0,1\} \quad \mathsf{c} = 1$$

Set f = ax + b to satisfy (1),(2)

- f(-1), f(1) contain s_0 , s_1 and no extra information*
- $f(0) = \frac{1}{2} (ES_0 + ES_1) = \frac{1}{2} (s_0 2^k + r_1 + r_0 2^k + s_1) = \frac{1}{2} (R + ...) = R'$

Application: Purchasing Movies (Aiello, Ishai, Reingold 2001)

Resource Comparison

Factor nc or λc improvement in communication. Similar improvement in computation.

Protocol	Comparable Modular Multiplications			Communication	Comment
	client	server	total		
F01	$4nc\lambda\nu$	$24nc\lambda$	$32nc\lambda + 4nc\lambda\nu$	$4nc\lambda \nu$	
D00	$8n^2c\nu$	$12n^{2}c$	$12n^2c + 8n^2c\nu$	$8n^2c\nu$	
Our work	$16n\nu$	$16n\nu$	32n u	$2n\nu$	$c < \nu/2 - \lambda$

c-bit secrets are transferred based on comparison of n-bit numbers. λ and ν are the correctness and security parameter

Summary

- S Define several basic primitives
 - Strong Conditional Oblivious Transfer
 - Conditional Encrypted Mapping
- Sive new efficient *Greater-Than* protocols
- S Papers available online

Questions?