Concurrently-Secure Blind

!'_ Signatures...

Carmit Hazay Jonathan Katz

Yehuda Lindell Chiu-Yuen Koo
Bar-Ilan University University of Maryland

i Blind Signatures [Chaum]

» Enables a user to obtain a signature from a
sigher on a message, without the signer later
being able to “link” this message/signature to

this particular user
» Motivation: e-cash, e-voting

- Useful when values need to be certified, yet
anonymity should be preserved

i Example: e-cash (simplified)

» Bank has public key PK

» User:
- Sends its account information to the bank
» Obtains a signature o on a “coin” c (e.g., a
random string)
» When the user later presents (c, o) to a
merchant, the merchant can verify ¢

-~ Should be infeasible to trace (c, o) to a particular
user

i Example: e-voting (simplified)

» Registration authority has public key PK

» Voter:
. Proves she is a valid voter...
-~ Obtains signature o, on public key pk; (generated
and used for this application only)
» Voter can later cast her vote v (on a public
bulletin board) by posting (pk;, c;, Vv, ©)
-~ Should be infeasible to trace a public key to a
particular voter

i Requirements

» Need to consider security requirements of
both the signer and the user
. Protection of signer: Unforgeability
-~ Protection of user: Blindness

i Unforgeability

» Intuitively:

- lfileroaficigeabidity fiotestatel avitihsiineatbosest)
slaureintetinationitvdtioukkebariof sasilgle faythe user
tobutuhbig ubsigipatefier enmesdatighingt
messages

» Note: these interactions might be

Eay S WRbw a protocol secure against

parEfhttacks, but not concurrent ones
. Concurrent

i Blindness

» Intuitively:

. Malicious signer should be unable to link a
(message, signature) pair to any particular
execution of the protocol

- A bit messy to formalize...

Well, sort
of...

i Blindness (“standard” def'n)

-~ (Malicious) signer outputs|PK,|m,, m;

» Random bit b selected; signer interacts

concurrently with U(m,), U(m,_,)

n

n

If either user-instance aborts, signer gets nothing

If neither user-instances aborts, signer gets the
messages m,, m, and their signatures

» Pr[Signer guesses b] — V2 = negl

i Necessity of dealing with abort

» Say sigher can induce a message-dependent
abort

. l.e., can act so that user aborts if using m, but
not if using m,
» Consider the following attack:

. Act as above in first session; act honestly in
second session

. Learning whether users abort or not enables
correct guess of b

. Leads to “real-world” attack

i Extending blindness def'n

» It is not clear how to extend the “stand-
alone” definition to the general case of
polynomially-many users

. Issue is how to deal with aborts...

» In retrospect, not intuitively clear that the
“standard” definition provides a good model
even in the two-user case

i Rethinking the definition

» Let us recall what we want...

- Signer should be unable to link (m;, ;) with any
particular completed session, any better than
random guessing

- Equivalently (2-user case), want:

Pr[guess b | both sessions completed] — V2 = negl

. Furthermore, in applications the messages are
chosen by the wuser, not the signer, and from a
known distribution

i A new defini% coudve
uniform over
two messages

. Signer outputs PK, 9

- {m.} chosen according to 2

. Signer interacts with U(m,), ..., U(m,); given (m, G,
for completed sessions in random permuted order

. Signer succeeds if it identifies a message/signature
pair with its correct session

- Require: for all p,

Pr[Succ A #completed = p] — 1/p (Pr[#completed = p])
< neg|

i Prior work I

» Blind signatures introduced by Chaum

- Chaum’s construction later proved secure by
[BNPS02] based on the “one-more-RSA”
assumption in the RO model

» Provably-secure schemes (RO model)

. [PS96] — logarithmically-many sigs

- [P97] —poly-many sigs

- [AO01, BNPS02, BO3] — concurrently-secure

i Prior work II

» Provably-secure schemes (standard model)

» [JLO97] — using generic secure 2PC

» [CKWO04] — efficient protocol
. Both give sequential unforgeability only

i Prior work III

'LO3] — impossibility of concurrently-secure
vlind signatures (without setup)!

» Lindell’s impossibility result has recently
motivated the search for concurrently-secure
signatures /n the CRS mode/

. E.g., [O06, KZ'06, F'06]

. Circumventing [LO3] explicitly mentioned as
justification for using a CRS

i Is a CRS really necessary...?

» The impossibility result seems to suggest so...

- ...butin fact, [LO4] only rules out simulation-based
security (with black-box reductions)

» Question: can we circumvent the impossibility
result by using game-based definitions?

i Main result

» We show the first concurrently-secure blind
signature scheme

.~ Standard assumptions, no trusted setup

» Remark: work of [BS05] could seemingly be
used as well

-~ Would require super-poly hardness assumptions,
something we avoid here

i Perspective

Impossibility results must be interpreted
carefully...

i The construction

» Preliminaries
» Fischlin’s approach to blind signatures

» A partial solution

- (Using complexity leveraging)
» The PRS cZK protocol
» The full solution

i Preliminaries I

. ZAPs [DNOO]

-~ 2-round WI proofs for NP; 1st message
independent of statement

. Constructions given in
[DNOO,BOV03,G0S06a,GOS06Db]

i Preliminaries II

» Ambiguous commitment (cf. [DNO2])

» Two types of keys
» One type gives perfect hiding; other type gives
perfect binding (with trapdoor for extraction)

. Easy constructions based on standard number-
theoretic assumptions (e.g., DDH)

i Fischlin’s approach

» Previous blind signature schemes define a
protocol to generate some "“standard”
signature
. “Blinding” [Chaum, ...]

. Secure computation approach
» Fischlin takes a different route

i Fischlin’s approach

CRS: pk, r

Signer(SK) User(PK, m)
com = Com(m)

c = Signg(com) -

> C=Ey(com | o)
NIZK proof m:
{C correct for m}

i Removing the CRS...

» Removing r:
» Use ZAP instead of NIZK
- Need to introduce “extra” witness in protocol
. Use Feige-Shamir trick...

» Removing pk:
~ Want semantic security, yet extraction!
. Use complexity leveraging...

. Commitment scheme that is hiding for PPT
adversaries, but allows extraction in time T(k)

. Other components should have T(k)-time security

i A partial solution

PK: pk’I YOI Y]_I r

Signer User(m)
com = Com(m)

c = Signg.{com) -

>

C, = Com*(com | o)
C, = Com*(0k)

ZAP T

{C, correct for m} or
{C, correct for y,/y.}

WI-PoK: X, or X,

i Toward a full solution...

» In our full solution, we use (a modification of)
the cZK protocol of [PRS02]

-~ Modified to be an argument of knowledge (in
stand-alone sense)

- (Unfortunately...) we cannot use cZK as a “black-
box” but instead must use specific properties of

the PRS simulation strategy
.~ Look-aheads and straight-line simulation

. Fixed schedule

i Main idea

» Instead of using complexity leveraging, use
an ambiguous commitment scheme

. Signer includes commitment key as part of its
public key

.~ To prevent cheating, signer must give cZK proof
that the key is of the correct type

Signer

c = Signg.{com)

com = Com(m)

o

>

cZK: pk* correct

User(m)

C = Com,«(com | &)
ZAP T

{C correct for m} or
{pk* correct}

i Proof?

- Fairly straightforward to show the following:

. Given user U who interacts with the (honest)
signer and outputs n+1 signatures on distinct
messages with non-neg probability...

- ...can construct forger F who interacts with a
(standard) signing oracle and outputs n+1
signatures on distinct messages with non-neg
probability

» Problem:
- F might make >n queries (even if U does not)!

i Modification

» The signer will append a random nonce to
what is being signed

» The forger F we construct will still output n+1
sighatures but make >n oracle queries...

- ...but the signatures output by F are (in some
sense) /ndependent of the nonces used during
rewinding

- With high probability, one of the signatures
output by F will be a forgery

i The protocol

PK: pk’, pk*, r

Signer User(m)
com = Com(m)

nc e {0,1}%

o = Slgnsk{ nC|kOm) nc, o

> C = Com(nc|com|o)
/AP T:

{C correct for m} or
CZK: pk* correct > rphk* correct}

i Analysis (unforgeability)

» @Given a user who outputs n+1 forgeries:
. Simlate cZK protocol...

. Replace pk* by a commitment key that allows
extraction...

-~ With roughly equal probability, we obtain a forger
F who outputs n+1 valid signatures on distinct
messages

» But makes more than n signing queries!

* Analysis (unforgeability)

nclcom

o

i Analysis (blindness)

» Key point: if any sessions are successful, then
pk* is (with overwhelming probability) a key
that gives perfectly-hiding commitment
- S0 C leaks no information!

. Perfect hiding needed here

» By extracting the witness for pk*, can give a
ZAP independent of m

» EtC...

i Conclusion

» Concurrently-secure blind signatures are
possible without setup assumptions
. If we are satisfied with game-based definitions...

» Is the use of cZK inherent?

- In particular, can we improve the round
complexity?

. One bottleneck is the lack of secure (standard)
signatures...

» Can we hope for efficient protocols?

