Isogenies as a Cryptographic Primitive

David Jao (joint work with R. Venkatesan)

University of Waterloo

Workshop on Cryptography: Underlying Mathematics, Provability and Foundations

November 28, 2006

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications
- Security issues
 - Reduction proofs
 - Attacks

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications
- Security issues
 - Reduction proofs
 - Attacks

The Discrete Logarithm Problem

Definition

- Let G be a cyclic group of order n, generated by $g \in G$.
- The discrete logarithm of an element $h \in G$, denoted $\mathsf{DLOG}_g(h)$, is the residue class $\alpha \in \mathbb{Z}/n\mathbb{Z}$ satisfying

$$g^{\alpha}=h$$
.

- For additive groups, it's $\alpha P = Q$ instead of $g^{\alpha} = h$.
- Many cryptographic constructions require a group for which computing DLOG is hard.

DLOG in various groups

Any group of order *n*:

• $O(\sqrt{p})$ where p is the largest prime divisor of n [Pollard]

Multiplicative group of a finite field \mathbb{F}_q :

• $O(L_q(\frac{1}{3},c))$ where $L_q(\sigma,c) \stackrel{\mathsf{def}}{=} \exp(c(\log q)^{\sigma}(\log\log q)^{1-\sigma})$

Ideal class group of an imaginary quadratic field:

• $L_n(\frac{1}{2}, c)$ [Hafner, McCurley; Düllmann]

Elliptic curves (with some exceptions):

• $O(\sqrt{p})$ where p is the largest prime divisor of n.

Jacobians of hyperelliptic curves of genus g over a finite field \mathbb{F}_q :

- g = 2: $O(n^{1/2})$
- g = 3: $O(n^{4/9})$ [Gaudry, Thomé, Thériault, Diem]
- g = 4: $O(n^{3/8})$ [
- $g \ge \log q$: $O(L_n(\frac{1}{2}, c))$ [Adelman, DeMarrais, Huang; Enge, Gaudry]

Cryptographic protocols using DLOG & related problems

ElGamal encryption:

- Public key: g, g^{α} . Private key: α .
- Encrypt: Choose random r. Compute $c = m \cdot (g^{\alpha})^r$. Send (g^r, c) .
- Decrypt: Compute $m = \frac{c}{(g^r)^{\alpha}}$.

ECDSA:

- Public key: g, g^{α} . Private key: α .
- Sign: Choose random r. Compute k = x(rP), $s = (\text{Hash}(m) + \alpha k)/r$. Send (k, s).
- Verify: $x\left(\frac{\mathsf{Hash}(m)}{s} + \frac{k}{s}\alpha P\right) \stackrel{?}{=} k$.

Schnorr signatures:

- Public key: $g, g^{-\alpha}$. Private key: α .
- Sign: Choose random r. Compute $k = \mathsf{Hash}(m||g^r)$, $s = r + \alpha k \pmod{n}$. Send (k,s).
- Verify: $k \stackrel{?}{=} \operatorname{Hash}(m||g^s(g^{-\alpha})^k)$.

Communications complexity

- Transmitting two group elements takes 2 log n bits.
- Computing discrete logarithms takes
 - $O(\sqrt{n})$ time and O(1) space, for G = E,
 - ullet $O(L_q(rac{1}{3},c))$ time and space, for $G=\mathbb{F}_q^*$.
- Elliptic curves achieve fully exponential computational security and linear communications complexity as far as we know ...
- Finite fields can achieve exponential computational security and linear communications complexity, if you "cheat."
 - The trick is to use $G = \text{subgroup of } \mathbb{F}_q^*$.
 - Efficiency rapidly degrades as n increases.

NIST Digital Signature Algorithm:

Subgroup of	Field of
size <i>n</i>	size <i>q</i>
160 bits	1024 bits
224 bits	2048 bits
256 bits	3072 bits
384 bits	7680 bits
512 bits	15360 bits

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications
- Security issues
 - Reduction proofs
 - Attacks

Pairings

Definition

Let G_1, G_2, G_T be cyclic groups of prime order n.

A pairing is a function $e: G_1 \times G_2 \rightarrow G_T$ satisfying:

- $e(aP, bQ) = e(P, Q)^{ab}$ (bilinearity)
- $e(P, Q) \neq 1$ for $P, Q \neq 0$ (non-degeneracy)
- Note that G_1 and G_2 are additive groups, while G_T is multiplicative.

Pairings

Definition

Let G_1 , G_2 , G_T be cyclic groups of prime order n.

A pairing is a function $e: G_1 \times G_2 \rightarrow G_T$ satisfying:

- $e(aP, bQ) = e(P, Q)^{ab}$ (bilinearity)
- $e(P, Q) \neq 1$ for $P, Q \neq 0$ (non-degeneracy)
- Note that G_1 and G_2 are additive groups, while G_T is multiplicative.
- Construction of pairings:
 - $G_1, G_2 \subset E$, of prime order n, where E is an elliptic curve over \mathbb{F}_q .
 - $G_T \subset \mathbb{F}_{q^k}^*$. This implies n divides $q^k 1$.
 - e equals the Weil pairing or Tate pairing.

Pairings

Definition

Let G_1 , G_2 , G_T be cyclic groups of prime order n.

A pairing is a function $e: G_1 \times G_2 \rightarrow G_T$ satisfying:

- $e(aP, bQ) = e(P, Q)^{ab}$ (bilinearity)
- $e(P, Q) \neq 1$ for $P, Q \neq 0$ (non-degeneracy)
- Note that G_1 and G_2 are additive groups, while G_T is multiplicative.
- Construction of pairings:
 - $G_1, G_2 \subset E$, of prime order n, where E is an elliptic curve over \mathbb{F}_q .
 - $G_T \subset \mathbb{F}_{q^k}^*$. This implies n divides $q^k 1$.
 - e equals the Weil pairing or Tate pairing.
- Define $\rho = \frac{\log q}{\log n}$.
- For best communications complexity, we want ρ to be small. Ideally $\rho=1.$

Pairing based cryptography

Short signatures [Boneh-Lynn-Shacham]:

- Public key: $P, \alpha P$.
- Private key: α .
- Sign: Compute $s = \alpha \cdot \mathsf{Hash}(m)$. Send s.
- Verify: $e(\alpha P, \mathsf{Hash}(m)) \stackrel{?}{=} e(P, s)$.

Secure if the *Diffie-Hellman problem* is hard.

Diffie-Hellman problem

Given $P, \alpha P, Q \in G$, compute αQ .

Note that only one group element is transmitted, as compared to two group elements for DLOG based signatures.

- However, this one element is of length $\rho \log n$.
- If ρ < 2, you save bandwidth.
- If $\rho = 2$, bandwidth is the same as before.

Pairing based cryptography (cont'd)

Identity based encryption [Boneh-Franklin]:

- Master key: $P, \alpha P$
- Private key: αQ where $Q = \mathsf{Hash}(\mathsf{ID})$.
- Encrypt: Choose random r, compute $c = e(\alpha P, rQ) \oplus m$, send (rP, c).
- Decrypt: $m = c \oplus e(rP, \alpha Q)$.

Secure if the bilinear Diffie-Hellman problem is hard.

Bilinear Diffie-Hellman problem

Given $P, aP, bP, Q \in G_i$, compute $e(P, Q)^{ab}$.

- Many other constructions possible . . .
 - Broadcast encryption and traitor tracing
 - Blind signatures
 - Aggregate signatures
 - etc.

Pairing-Friendly Elliptic Curves

For a random elliptic curve E, the smallest integer k satisfying $q^k \equiv 1 \mod n$ is of size O(n).

• \mathbb{F}_{q^k} , for k = O(n), cannot be efficiently implemented. Hence, random curves cannot be used.

Pairing-Friendly Elliptic Curves

For a random elliptic curve E, the smallest integer k satisfying $q^k \equiv 1 \mod n$ is of size O(n).

- \mathbb{F}_{q^k} , for k = O(n), cannot be efficiently implemented. Hence, random curves cannot be used.
- Supersingular elliptic curves:
 - ullet Curves are defined over \mathbb{F}_p or \mathbb{F}_{p^2}
 - $k \le 6$, $\rho = 1$.
 - Many computational optimizations possible.

Pairing-Friendly Elliptic Curves

For a random elliptic curve E, the smallest integer k satisfying $q^k \equiv 1 \mod n$ is of size O(n).

- \mathbb{F}_{q^k} , for k = O(n), cannot be efficiently implemented. Hence, random curves cannot be used.
- Supersingular elliptic curves:
 - ullet Curves are defined over \mathbb{F}_p or \mathbb{F}_{p^2}
 - $k \le 6$, $\rho = 1$.
 - Many computational optimizations possible.
- Complex Multiplication curves of low discriminant:
 - $k \le 12$, $\rho = 1$ [Miyaji-Nakabayashi-Takano, Barreto-Naehrig]
 - k arbitrary, $1 < \rho \le 2$ [Cocks-Pinch, Barreto-Lynn-Scott, Brezing-Weng]
 - Not as computationally efficient as supersingular curves, especially with k large.

Solving DLOG via pairings

Proposition

Let $e: G_1 \times G_2 \to G_T$ be a pairing. If you can solve DLOG on G_T , then you can solve DLOG on G_1 and G_2 .

Proof: Let $P, \alpha P \in G_1$. Choose $Q \in G_2$, $Q \neq 0$. Compute

- g = e(P, Q),
- $h = e(\alpha P, Q)$.

Note that $h = g^{\alpha}$ in G_T . Compute $DLOG_g(h) = \alpha$ to find α . \square

Solving DLOG via pairings

Proposition

Let $e: G_1 \times G_2 \to G_T$ be a pairing. If you can solve DLOG on G_T , then you can solve DLOG on G_1 and G_2 .

Proof: Let $P, \alpha P \in G_1$. Choose $Q \in G_2$, $Q \neq 0$. Compute

- g = e(P, Q),
- $h = e(\alpha P, Q)$.

Note that $h = g^{\alpha}$ in G_T . Compute $DLOG_g(h) = \alpha$ to find α . \square

- For supersingular elliptic curves, DLOG on $G_T = \mathbb{F}_{q^k}$ is easier than on $G_1 = E$ [Menezes-Okamoto-Vanstone].
 - DLOG on \mathbb{F}_{q^k} has $O(L_{q^k}(\frac{1}{3},c))$ security, and $k \leq 6$.
 - DLOG on E has $O(\sqrt{q})$ security.

Solving DLOG via pairings

Proposition

Let $e: G_1 \times G_2 \to G_T$ be a pairing. If you can solve DLOG on G_T , then you can solve DLOG on G_1 and G_2 .

Proof: Let $P, \alpha P \in G_1$. Choose $Q \in G_2$, $Q \neq 0$. Compute

- g = e(P, Q),
- $h = e(\alpha P, Q)$.

Note that $h = g^{\alpha}$ in G_T . Compute $DLOG_g(h) = \alpha$ to find α . \square

- For supersingular elliptic curves, DLOG on $G_T = \mathbb{F}_{q^k}$ is easier than on $G_1 = E$ [Menezes-Okamoto-Vanstone].
 - DLOG on \mathbb{F}_{q^k} has $O(L_{q^k}(\frac{1}{3},c))$ security, and $k \leq 6$.
 - DLOG on E has $O(\sqrt{q})$ security.
- For CM curves, k can grow as needed.
 - $k = O((\log q)^2)$ is needed to achieve overall $O(\sqrt{q})$ security.
 - G_T has size 1024, 2048, 3072, etc. bits for $\log n = 160, 224, 256, \ldots$

Comparison of cryptographic primitives

- Elliptic curve cryptography without pairings:
 - + Can achieve fully exponential computational security
 - Bandwidth is twice as much as with pairings
 - Cannot use optimized arithmetic of supersingular curves

Comparison of cryptographic primitives

- Elliptic curve cryptography without pairings:
 - + Can achieve fully exponential computational security
 - Bandwidth is twice as much as with pairings
 - Cannot use optimized arithmetic of supersingular curves
- Pairing based cryptography with CM curves:
 - + Intermediate bandwidth $(1 \le \rho \le 2)$
 - + For ho>1, can achieve fully exponential security, by increasing k
 - However, $\rho = 1$ is presently limited to $k \le 12$.
 - Implementation cost increases rapidly for fully exponential security

Comparison of cryptographic primitives

- Elliptic curve cryptography without pairings:
 - + Can achieve fully exponential computational security
 - Bandwidth is twice as much as with pairings
 - Cannot use optimized arithmetic of supersingular curves
- Pairing based cryptography with CM curves:
 - + Intermediate bandwidth $(1 \le \rho \le 2)$
 - +~ For $\rho>1,$ can achieve fully exponential security, by increasing \emph{k}
 - However, $\rho = 1$ is presently limited to $k \le 12$.
 - Implementation cost increases rapidly for fully exponential security
- Pairing based cryptography with supersingular curves:
 - + Bandwidth is half of that without pairings
 - + Can use optimized arithmetic of supersingular curves
 - − Cannot achieve fully exponential security because $k \le 6$ [MOV]

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications
- Security issues
 - Reduction proofs
 - Attacks

The Diffie-Hellman Problem

Discrete Logarithm Problem

Given $g, g^{\alpha} \in G$, compute α .

Diffie-Hellman Problem

Given $g, g^{\alpha}, h \in G$, compute h^{α} .

- Think of α as a function mapping g to g^{α} .
- Discrete Logarithm Problem: Find the function.
- Diffie-Hellman Problem: Find the value of the function at h.
- Note that α as a function is a group homomorphism.

Definition

An *isogeny* is a group homomorphism $\phi \colon E_1 \to E_2$ between elliptic curves.

A scalar α , when viewed as a homomorphism, is an isogeny: $\alpha \colon E \to E$ sending P to αP .

Definition

An *isogeny* is a group homomorphism $\phi \colon E_1 \to E_2$ between elliptic curves.

A scalar α , when viewed as a homomorphism, is an isogeny: $\alpha \colon E \to E$ sending P to αP .

Main idea

Definition

An *isogeny* is a group homomorphism $\phi \colon E_1 \to E_2$ between elliptic curves.

A scalar α , when viewed as a homomorphism, is an isogeny: $\alpha \colon E \to E$ sending P to αP .

Main idea

Replace the scalar isogeny $\alpha \colon E \to E$ with some non-scalar isogeny $\phi \colon E_1 \to E_2$.

Introduced by Couveignes in 1997 (eprint 2006/291)

Definition

An *isogeny* is a group homomorphism $\phi \colon E_1 \to E_2$ between elliptic curves.

A scalar α , when viewed as a homomorphism, is an isogeny: $\alpha \colon E \to E$ sending P to αP .

Main idea

- Introduced by Couveignes in 1997 (eprint 2006/291)
- Questions raised in that work:

Definition

An *isogeny* is a group homomorphism $\phi \colon E_1 \to E_2$ between elliptic curves.

A scalar α , when viewed as a homomorphism, is an isogeny: $\alpha \colon E \to E$ sending P to αP .

Main idea

- Introduced by Couveignes in 1997 (eprint 2006/291)
- Questions raised in that work:
 - Can we evaluate an isogeny on an input point efficiently?

Definition

An *isogeny* is a group homomorphism $\phi \colon E_1 \to E_2$ between elliptic curves.

A scalar α , when viewed as a homomorphism, is an isogeny: $\alpha \colon E \to E$ sending P to αP .

Main idea

- Introduced by Couveignes in 1997 (eprint 2006/291)
- Questions raised in that work:
 - Can we evaluate an isogeny on an input point efficiently?
 - 2 Can we efficiently select a random isogeny with uniform probability?

An isogeny is a rational morphism. Each coordinate is a quotient of polynomials.

Definition

The *degree* of an isogeny is the degree of the polynomials appearing in the coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

An isogeny is a rational morphism. Each coordinate is a quotient of polynomials.

Definition

The *degree* of an isogeny is the degree of the polynomials appearing in the coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

Isogenies of low degree

An isogeny is a rational morphism. Each coordinate is a quotient of polynomials.

Definition

The *degree* of an isogeny is the degree of the polynomials appearing in the coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

- Isogenies of low degree
- Isogenies from a curve to itself (e.g. scalars)

An isogeny is a rational morphism. Each coordinate is a quotient of polynomials.

Definition

The *degree* of an isogeny is the degree of the polynomials appearing in the coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

- Isogenies of low degree
- Isogenies from a curve to itself (e.g. scalars)
- Short compositions of isogenies of the above type

Example of an isogeny

- p = 7925599076663155737601
- $E_1: y^2 = x^3 + 12046162683058694734 * x + 7901506751297038348133 in GF(p)$
- E_2 : $y^2 = x^3 + (3021319262486407622796 * u + 4101162511412606196442) * x + (7040333493178698383420 * u + 1745772756766632103431) in <math>GF(p^2)$
- $(132935307228615056538 * u + 3530390499615039152484) * x^5 + (463749471837649230273 * u +$ $(4285381276738035289332 * u + 2268033696082534919907) * x^2 + (1160928171089162069604 * u +$ 4478674184021543260793) * x + (3220829138361157238167 * u + 4664892256879213165649))/(x⁶ + $(2646061772402770501474 * u + 287756053078893159265) * x^5 + (1945985508507744496834 * u +$ 64809305521586899531) * x^4 + (4591727489633569666202 * u + 1570102870983786495532) * x^3 + $(1500460390828721967700 * u + 6921704443614513097635) * x^2 + (1297386801518789580736 * u +$ $2850698740908333936400) * x + (3945372319876153578002 * u + 361974201101530900968)), (x^9 * y + 361974201101530900968))$ $(3969092658604155752211 * u + 4394433617949917607698) * x^8 * v + (6535035589862015193348 * u +$ $(2303968995096096349661 * u + 3345680927799022267788) * x^5 * y + (2433277735802437441789 * u +$ 4918593070183032256585) * $x * y + (8333818603777677580 * u + 6166744817175250513803) * y)/(x^9 + x^9 + y^9 + y$ $(3969092658604155752211 * u + 4394433617949917607698) * x^8 + (4721985388582885753052 * u +$ 3330515032350346336461) * x^7 + (3559772126678288264097 * u + <math>6153422006988745781765) * x^6 + $(1902940951990305913452 * u + 832145497772529583998) * x^5 + (2553891553651967378833 * u +$ 549429624397957274232) * x^4 + (5821041363528144243281 * u + 4895514527158720628918) * x^3 + $(7465572282966743894034 * u + 123645603788466192332) * x^2 + (4752216567890970620978 * u +$ 497829871306819801522) * x + (6192295778031003334018 * u + 4253951270570522230194)))

What does it mean to select a random isogeny with uniform probability?

0. Assume we are only interested in pairing friendly curves.

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.
 - The number of supersingular elliptic curves over \mathbb{F}_q is finite.

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.
 - The number of supersingular elliptic curves over \mathbb{F}_q is finite.
 - For each pair of curves, the set of functions between that pair is finite.

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.
 - The number of supersingular elliptic curves over \mathbb{F}_q is finite.
 - For each pair of curves, the set of functions between that pair is finite.
- 2. CM curves of low discriminant

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.
 - The number of supersingular elliptic curves over \mathbb{F}_q is finite.
 - For each pair of curves, the set of functions between that pair is finite.
- 2. CM curves of low discriminant
 - CM curves only admit isogenies to other curves of the same field discriminant.

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.
 - The number of supersingular elliptic curves over \mathbb{F}_q is finite.
 - For each pair of curves, the set of functions between that pair is finite.
- 2. CM curves of low discriminant
 - CM curves only admit isogenies to other curves of the same field discriminant.
 - The number of CM curves of a given discriminant is finite.

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.
 - The number of supersingular elliptic curves over \mathbb{F}_q is finite.
 - For each pair of curves, the set of functions between that pair is finite.
- 2. CM curves of low discriminant
 - CM curves only admit isogenies to other curves of the same field discriminant.
 - The number of CM curves of a given discriminant is finite.
 - For each pair of curves, the set of functions between that pair is finite.

What does it mean to select a random isogeny with uniform probability?

- 0. Assume we are only interested in pairing friendly curves.
- 1. Supersingular curves
 - Supersingular curves only admit isogenies to other supersingular curves.
 - The number of supersingular elliptic curves over \mathbb{F}_q is finite.
 - For each pair of curves, the set of functions between that pair is finite.
- 2. CM curves of low discriminant
 - CM curves only admit isogenies to other curves of the same field discriminant.
 - The number of CM curves of a given discriminant is finite.
 - For each pair of curves, the set of functions between that pair is finite.

A random isogeny means: pick a random pair of curves, and select a random isogeny within that pair.

Theorem (Jao, Miller, Venkatesan)

Assuming the generalized Riemann hypothesis, a random composition of polynomially many isogenies of polynomially bounded degree produces a near-uniform distribution of isogenies among CM curves of a given discriminant.

Theorem (Jao, Miller, Venkatesan)

Assuming the generalized Riemann hypothesis, a random composition of polynomially many isogenies of polynomially bounded degree produces a near-uniform distribution of isogenies among CM curves of a given discriminant.

Theorem (Mestre, Pizer)

A random composition of polynomially many isogenies of degree \leq 3 produces a near-uniform distribution of isogenies among supersingular curves of a given characteristic.

Theorem (Jao, Miller, Venkatesan)

Assuming the generalized Riemann hypothesis, a random composition of polynomially many isogenies of polynomially bounded degree produces a near-uniform distribution of isogenies among CM curves of a given discriminant.

Theorem (Mestre, Pizer)

A random composition of polynomially many isogenies of degree \leq 3 produces a near-uniform distribution of isogenies among supersingular curves of a given characteristic.

Theorem (Enge)

An isogeny of degree d can be obtained in quasi-linear time.

Theorem (Jao, Miller, Venkatesan)

Assuming the generalized Riemann hypothesis, a random composition of polynomially many isogenies of polynomially bounded degree produces a near-uniform distribution of isogenies among CM curves of a given discriminant.

Theorem (Mestre, Pizer)

A random composition of polynomially many isogenies of degree \leq 3 produces a near-uniform distribution of isogenies among supersingular curves of a given characteristic.

Theorem (Enge)

An isogeny of degree d can be obtained in quasi-linear time.

Corollary: Random isogenies can be efficiently constructed and evaluated by composing random low degree isogenies together with random scalars, and

Outline

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications
- Security issues
 - Reduction proofs
 - Attacks

ElGamal encryption with isogenies

Isogeny Diffie-Hellman problem

Let $\phi: E_1 \to E_2$ be an isogeny. Given $P, Q \in E_1$ and $\phi(P) \in E_2$, compute $\phi(Q) \in E_2$.

ElGamal encryption:

- Public key: $P \in E_1$, $\phi(P) \in E_2$.
- Private key: ϕ .
- Encryption: Choose random r. Compute $c = m + r\phi(P)$. Send (rP, c).
- Decryption: Compute $m = c \phi(rP)$.

Provably secure assuming that Isogeny Diffie-Hellman is hard.

Short signatures

Isogeny equivariance

Let $\phi\colon E_1\to E_2$ be an isogeny. There is a unique dual isogeny $\hat{\phi}\colon E_2\to E_1$ such that

$$e(\phi(P),Q)=e(P,\hat{\phi}(Q))$$

for $P \in E_1$ and $Q \in E_2$.

A short signature scheme using isogenies:

- Public key: $P \in E_1$, $\phi(P) \in E_2$.
- Private key: ϕ .
- Sign: Compute $s = \hat{\phi}(\mathsf{Hash}(m))$. where $\mathsf{Hash}(m) \in E_2$. Send s.
- Verify: $e(\phi(P), \mathsf{Hash}(m)) \stackrel{?}{=} e(P, s)$.

Provably secure assuming that Dual Isogeny Diffie-Hellman is hard.

Dual Isogeny Diffie-Hellman

Given $P \in E_1$ and $\phi(P), Q \in E_2$, compute $\hat{\phi}(Q) \in E_1$.

Identity based encryption

Identity based encryption using isogenies:

- Master key: $P \in E_1$, $\phi(P) \in E_2$
- Private key: $\hat{\phi}(Q)$ where $Q = \mathsf{Hash}(\mathsf{ID}) \in E_2$.
- Encrypt: Choose random r, compute $c = e(\phi P, rQ) \oplus m$, send (rP, c).
- Decrypt: $m = c \oplus e(rP, \hat{\phi}(Q))$.

Provably secure assuming that Isogeny Bilinear Diffie-Hellman is hard.

Isogeny Bilinear Diffie-Hellman

Given $P, rP, Q \in E_1$ and $\phi(P) \in E_2$, compute $e(\phi(P), rQ)$.

Outline

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications
- Security issues
 - Reduction proofs
 - Attacks

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

Sketch of proof:

• Let $(P, \alpha P, Q)$ be a Diffie-Hellman triple.

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

- Let $(P, \alpha P, Q)$ be a Diffie-Hellman triple.
- ullet Construct a random, efficiently computable isogeny ϕ .

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

- Let $(P, \alpha P, Q)$ be a Diffie-Hellman triple.
- ullet Construct a random, efficiently computable isogeny ϕ .
- Evaluate A on $(P, \phi(\alpha P), Q)$.

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

- Let $(P, \alpha P, Q)$ be a Diffie-Hellman triple.
- ullet Construct a random, efficiently computable isogeny ϕ .
- Evaluate A on $(P, \phi(\alpha P), Q)$.
- Eventually A will return $\phi(\alpha Q)$.

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

- Let $(P, \alpha P, Q)$ be a Diffie-Hellman triple.
- ullet Construct a random, efficiently computable isogeny ϕ .
- Evaluate \mathcal{A} on $(P, \phi(\alpha P), Q)$.
- Eventually A will return $\phi(\alpha Q)$.
- Compute $\phi^{-1}\phi(\alpha Q) = \alpha Q$.

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

- Let $(P, \alpha P, Q)$ be a Diffie-Hellman triple.
- ullet Construct a random, efficiently computable isogeny ϕ .
- Evaluate \mathcal{A} on $(P, \phi(\alpha P), Q)$.
- Eventually A will return $\phi(\alpha Q)$.
- Compute $\phi^{-1}\phi(\alpha Q) = \alpha Q$.

Theorem

An algorithm $\mathcal A$ which solves Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

Sketch of proof:

- Let $(P, \alpha P, Q)$ be a Diffie-Hellman triple.
- ullet Construct a random, efficiently computable isogeny ϕ .
- Evaluate A on $(P, \phi(\alpha P), Q)$.
- Eventually A will return $\phi(\alpha Q)$.
- Compute $\phi^{-1}\phi(\alpha Q) = \alpha Q$.

Theorem

An algorithm $\mathcal A$ which solves Dual Isogeny Diffie-Hellman with non-negligible probability can solve Diffie-Hellman with non-negligible probability.

Outline

- Elliptic Curves
 - Elliptic Curve Cryptosystems
 - Pairing Based Cryptosystems
- 2 Isogenies
 - Construction
 - Applications
- Security issues
 - Reduction proofs
 - Attacks

Method #1: Find the isogeny.

• Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).

- Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).
- Let $\phi \colon E_1 \to E_2$ be an isogeny. Finding the isogeny involves two steps:

- Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).
- Let $\phi \colon E_1 \to E_2$ be an isogeny. Finding the isogeny involves two steps:
 - **1 Isogeny stage:** Find **any** isogeny $\psi: E_1 \to E_2$.

- Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).
- Let $\phi \colon E_1 \to E_2$ be an isogeny. Finding the isogeny involves two steps:
 - **1 Isogeny stage:** Find **any** isogeny $\psi: E_1 \to E_2$.
 - **2 DLOG stage:** Find the scalar α such that $\alpha \psi = \phi$.

- Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).
- Let $\phi: E_1 \to E_2$ be an isogeny. Finding the isogeny involves two steps:
 - **1 Isogeny stage:** Find **any** isogeny $\psi: E_1 \rightarrow E_2$.
 - **2 DLOG stage:** Find the scalar α such that $\alpha \psi = \phi$.
- DLOG stage takes $O(\sqrt{n})$ operations.

- Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).
- Let $\phi \colon E_1 \to E_2$ be an isogeny. Finding the isogeny involves two steps:
 - **1 Isogeny stage:** Find **any** isogeny $\psi: E_1 \rightarrow E_2$.
 - **② DLOG stage:** Find the scalar α such that $\alpha \psi = \phi$.
- DLOG stage takes $O(\sqrt{n})$ operations.
- Isogeny stage requires $O(\sqrt{N})$ operations, where N is the number of possible curves [Galbraith-Hess-Smart].

- Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).
- Let $\phi \colon E_1 \to E_2$ be an isogeny. Finding the isogeny involves two steps:
 - **1 Isogeny stage:** Find **any** isogeny $\psi: E_1 \rightarrow E_2$.
 - **2 DLOG stage:** Find the scalar α such that $\alpha \psi = \phi$.
- DLOG stage takes $O(\sqrt{n})$ operations.
- Isogeny stage requires $O(\sqrt{N})$ operations, where N is the number of possible curves [Galbraith-Hess-Smart].
 - For CM curves of low discriminant D, we have $N = O(\sqrt{D})$ and $O(\sqrt{N}) = O(D^{1/4})$.

- Regular Diffie-Hellman on an elliptic curve takes $O(\sqrt{n})$ operations to solve (birthday paradox).
- Let $\phi \colon E_1 \to E_2$ be an isogeny. Finding the isogeny involves two steps:
 - **1 Isogeny stage:** Find **any** isogeny $\psi: E_1 \rightarrow E_2$.
 - **② DLOG stage:** Find the scalar α such that $\alpha \psi = \phi$.
- DLOG stage takes $O(\sqrt{n})$ operations.
- Isogeny stage requires $O(\sqrt{N})$ operations, where N is the number of possible curves [Galbraith-Hess-Smart].
 - For CM curves of low discriminant D, we have $N = O(\sqrt{D})$ and $O(\sqrt{N}) = O(D^{1/4})$.
 - For supersingular curves over \mathbb{F}_q , we have $N=O(\sqrt{q})$ and $O(\sqrt{N})=O(q^{1/4})$.

For CM curves of low discriminant D, the isogeny stage takes $O(D^{1/4})$ operations, and the DLOG stage takes $O(n^{1/2})$ operations.

- $O(D^{1/4}) \ll O(n^{1/2})$, since D must be small.
- Open question: Construct a pairing friendly curve of large *D*.
- System is secure because DLOG stage is intractable.

For CM curves of low discriminant D, the isogeny stage takes $O(D^{1/4})$ operations, and the DLOG stage takes $O(n^{1/2})$ operations.

- $O(D^{1/4}) \ll O(n^{1/2})$, since D must be small.
- Open question: Construct a pairing friendly curve of large *D*.
- System is secure because DLOG stage is intractable.

For supersingular curves, the isogeny stage takes $O(q^{1/4})$ operations, and the DLOG stage takes $O(L_n(\frac{1}{3},c))$ operations.

- $O(q^{1/4}) \gg O(L_n(\frac{1}{3},c)).$
- System is conjecturally more secure than DLOG alone.
- System is *not less secure* than Diffie-Hellman.

Method #2: Evaluate the isogeny on points without finding the isogeny.

- Recall that you are given $P, Q \in E_1$ and $\phi(P) \in E_2$.
- Suppose $Q = \alpha P$. Find α using a DLOG solver.
- Then $\phi(Q) = \phi(\alpha P) = \alpha \phi(P)$. Knowing α , you can compute $\phi(Q)$.

Method #2: Evaluate the isogeny on points without finding the isogeny.

- Recall that you are given $P, Q \in E_1$ and $\phi(P) \in E_2$.
- Suppose $Q = \alpha P$. Find α using a DLOG solver.
- Then $\phi(Q) = \phi(\alpha P) = \alpha \phi(P)$. Knowing α , you can compute $\phi(Q)$.

- This does not contradict the proof that Isogeny Diffie-Hellman is at least as secure as Diffie-Hellman.
- Requires a new discrete logarithm computation (of subexponential complexity) each time you break a message.

Method #2: Evaluate the isogeny on points without finding the isogeny.

- Recall that you are given $P, Q \in E_1$ and $\phi(P) \in E_2$.
- Suppose $Q = \alpha P$. Find α using a DLOG solver.
- Then $\phi(Q) = \phi(\alpha P) = \alpha \phi(P)$. Knowing α , you can compute $\phi(Q)$.

$$P \xrightarrow{\phi} \phi(P)$$

$$\alpha \qquad \qquad \alpha$$

$$Q \xrightarrow{\psi} \phi(Q)$$

- This does not contradict the proof that Isogeny Diffie-Hellman is at least as secure as Diffie-Hellman.
- Requires a new discrete logarithm computation (of subexponential complexity) each time you break a message.
- Even index calculus algorithms require subexponential time and space per invocation.

Security reductions

Legend:

- \bullet DL = Discrete Logarithm
- PI = Pairing Inversion
- DH = Diffie-Hellman
- IDH = [Dual] Isogeny Diffie-Hellman
- BDH = Bilinear Diffie-Hellman
- IBDH = Isogeny Bilinear Diffie-Hellman

Conclusions and open questions

- Isogenies on supersingular curves:
 - + Achieves fully exponential security, assuming that Isogeny Diffie-Hellman is of exponential difficulty.
 - + Can use optimized arithmetic of supersingular curves.
 - + Provably not less secure than regular Diffie-Hellman.
 - Same bandwidth as without using pairings (because of $q^{1/4}$ security).
 - Can break individual messages using DLOG.
- Isogenies on CM curves of low discriminant:
 - + Provably not less secure than regular Diffie-Hellman.
 - With low discriminants, does not appear to be any more secure.
 - Can break individual messages using DLOG.
- Open questions:
 - ? Need pairing friendly curves of high discriminant for added security.
 - ? Quantify the security relationship between Isogeny Diffie-Hellman and other DLOG based problems.