
Isogenies as a Cryptographic Primitive

David Jao
(joint work with R. Venkatesan)

University of Waterloo

Workshop on Cryptography: Underlying Mathematics,
Provability and Foundations

November 28, 2006

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 1 / 33



Outline

1 Elliptic Curves
Elliptic Curve Cryptosystems
Pairing Based Cryptosystems

2 Isogenies
Construction
Applications

3 Security issues
Reduction proofs
Attacks

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 2 / 33



Outline

1 Elliptic Curves
Elliptic Curve Cryptosystems
Pairing Based Cryptosystems

2 Isogenies
Construction
Applications

3 Security issues
Reduction proofs
Attacks

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 2 / 33



Outline

1 Elliptic Curves
Elliptic Curve Cryptosystems
Pairing Based Cryptosystems

2 Isogenies
Construction
Applications

3 Security issues
Reduction proofs
Attacks

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 2 / 33



Outline

1 Elliptic Curves
Elliptic Curve Cryptosystems
Pairing Based Cryptosystems

2 Isogenies
Construction
Applications

3 Security issues
Reduction proofs
Attacks

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 3 / 33



The Discrete Logarithm Problem

Definition

Let G be a cyclic group of order
n, generated by g ∈ G .

The discrete logarithm of an
element h ∈ G , denoted
DLOGg (h), is the residue class
α ∈ Z/nZ satisfying

gα = h.

For additive groups, it’s αP = Q
instead of gα = h.

Many cryptographic
constructions require a group for
which computing DLOG is hard.
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DLOG in various groups

Any group of order n:

O(
√

p) where p is the largest prime divisor of n [Pollard]

Multiplicative group of a finite field Fq:

O(Lq(
1
3 , c)) where Lq(σ, c)

def
= exp(c(log q)σ(log log q)1−σ)

Ideal class group of an imaginary quadratic field:

Ln(
1
2 , c) [Hafner, McCurley; Düllmann]

Elliptic curves (with some exceptions):

O(
√

p) where p is the largest prime divisor of n.

Jacobians of hyperelliptic curves of genus g over a finite field Fq:

g = 2: O(n1/2)

g = 3: O(n4/9) [Gaudry, Thomé, Thériault, Diem]

g = 4: O(n3/8) [ ” ]

g ≥ log q: O(Ln(
1
2 , c)) [Adelman, DeMarrais, Huang; Enge, Gaudry]
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Cryptographic protocols using DLOG & related problems

ElGamal encryption:

Public key: g , gα. Private key: α.

Encrypt: Choose random r . Compute c = m · (gα)r . Send (g r , c).

Decrypt: Compute m =
c

(g r )α
.

ECDSA:

Public key: g , gα. Private key: α.

Sign: Choose random r . Compute k = x(rP),
s = (Hash(m) + αk)/r . Send (k, s).

Verify: x
(

Hash(m)
s + k

s αP
)

?
= k.

Schnorr signatures:

Public key: g , g−α. Private key: α.

Sign: Choose random r . Compute k = Hash(m||g r ), s = r + αk
(mod n). Send (k, s).

Verify: k
?
= Hash(m||g s(g−α)k).
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Communications complexity

Transmitting two group elements takes
2 log n bits.

Computing discrete logarithms takes

O(
√

n) time and O(1) space, for G = E ,
O(Lq(

1
3 , c)) time and space, for G = F∗

q.

Elliptic curves achieve fully exponential
computational security and linear
communications complexity as far as we know . . .

Finite fields can achieve exponential
computational security and linear
communications complexity, if you “cheat.”

The trick is to use G = subgroup of F∗
q.

Efficiency rapidly degrades as n increases.

NIST
Digital Signature Algorithm:

Subgroup of Field of
size n size q

160 bits 1024 bits
224 bits 2048 bits
256 bits 3072 bits
384 bits 7680 bits
512 bits 15360 bits
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Pairings

Definition

Let G1,G2,GT be cyclic groups of prime order n.
A pairing is a function e : G1 × G2 → GT satisfying:

e(aP, bQ) = e(P,Q)ab (bilinearity)

e(P,Q) 6= 1 for P,Q 6= 0 (non-degeneracy)

Note that G1 and G2 are additive groups, while GT is multiplicative.

Construction of pairings:

G1,G2 ⊂ E , of prime order n, where E is an elliptic curve over Fq.
GT ⊂ F∗

qk . This implies n divides qk − 1.
e equals the Weil pairing or Tate pairing.

Define ρ = log q
log n .

For best communications complexity, we want ρ to be small. Ideally
ρ = 1.
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Pairing based cryptography

Short signatures [Boneh-Lynn-Shacham]:

Public key: P, αP.

Private key: α.

Sign: Compute s = α · Hash(m). Send s.

Verify: e(αP,Hash(m))
?
= e(P, s).

Secure if the Diffie-Hellman problem is hard.

Diffie-Hellman problem

Given P, αP,Q ∈ G , compute αQ.

Note that only one group element is transmitted, as compared to two
group elements for DLOG based signatures.

However, this one element is of length ρ log n.

If ρ < 2, you save bandwidth.

If ρ = 2, bandwidth is the same as before.
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Pairing based cryptography (cont’d)

Identity based encryption [Boneh-Franklin]:

Master key: P, αP

Private key: αQ where Q = Hash(ID).

Encrypt: Choose random r , compute c = e(αP, rQ)⊕m, send
(rP, c).

Decrypt: m = c ⊕ e(rP, αQ).

Secure if the bilinear Diffie-Hellman problem is hard.

Bilinear Diffie-Hellman problem

Given P, aP, bP,Q ∈ Gi , compute e(P,Q)ab.

Many other constructions possible . . .
Broadcast encryption and traitor tracing
Blind signatures
Aggregate signatures
etc.
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Pairing-Friendly Elliptic Curves

For a random elliptic curve E , the smallest integer k satisfying
qk ≡ 1 mod n is of size O(n).

Fqk , for k = O(n), cannot be efficiently implemented. Hence, random
curves cannot be used.

1 Supersingular elliptic curves:

Curves are defined over Fp or Fp2

k ≤ 6, ρ = 1.
Many computational optimizations possible.

2 Complex Multiplication curves of low discriminant:

k ≤ 12, ρ = 1 [Miyaji-Nakabayashi-Takano, Barreto-Naehrig]
k arbitrary, 1 < ρ ≤ 2 [Cocks-Pinch, Barreto-Lynn-Scott,
Brezing-Weng]
Not as computationally efficient as supersingular curves, especially with
k large.

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 12 / 33



Pairing-Friendly Elliptic Curves

For a random elliptic curve E , the smallest integer k satisfying
qk ≡ 1 mod n is of size O(n).

Fqk , for k = O(n), cannot be efficiently implemented. Hence, random
curves cannot be used.

1 Supersingular elliptic curves:

Curves are defined over Fp or Fp2

k ≤ 6, ρ = 1.
Many computational optimizations possible.

2 Complex Multiplication curves of low discriminant:

k ≤ 12, ρ = 1 [Miyaji-Nakabayashi-Takano, Barreto-Naehrig]
k arbitrary, 1 < ρ ≤ 2 [Cocks-Pinch, Barreto-Lynn-Scott,
Brezing-Weng]
Not as computationally efficient as supersingular curves, especially with
k large.

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 12 / 33



Pairing-Friendly Elliptic Curves

For a random elliptic curve E , the smallest integer k satisfying
qk ≡ 1 mod n is of size O(n).

Fqk , for k = O(n), cannot be efficiently implemented. Hence, random
curves cannot be used.

1 Supersingular elliptic curves:

Curves are defined over Fp or Fp2

k ≤ 6, ρ = 1.
Many computational optimizations possible.

2 Complex Multiplication curves of low discriminant:

k ≤ 12, ρ = 1 [Miyaji-Nakabayashi-Takano, Barreto-Naehrig]
k arbitrary, 1 < ρ ≤ 2 [Cocks-Pinch, Barreto-Lynn-Scott,
Brezing-Weng]
Not as computationally efficient as supersingular curves, especially with
k large.

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 12 / 33



Solving DLOG via pairings

Proposition

Let e : G1 × G2 → GT be a pairing. If you can solve DLOG on GT , then
you can solve DLOG on G1 and G2.

Proof: Let P, αP ∈ G1. Choose Q ∈ G2, Q 6= 0. Compute

g = e(P,Q),

h = e(αP,Q).

Note that h = gα in GT . Compute DLOGg (h) = α to find α. �

1 For supersingular elliptic curves, DLOG on GT = Fqk is easier than on
G1 = E [Menezes-Okamoto-Vanstone].

DLOG on Fqk has O(Lqk ( 1
3 , c)) security, and k ≤ 6.

DLOG on E has O(
√

q) security.

2 For CM curves, k can grow as needed.

k = O((log q)2) is needed to achieve overall O(
√

q) security.
GT has size 1024, 2048, 3072, etc. bits for log n = 160, 224, 256, . . . .
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Comparison of cryptographic primitives

1 Elliptic curve cryptography without pairings:

+ Can achieve fully exponential computational security
− Bandwidth is twice as much as with pairings
− Cannot use optimized arithmetic of supersingular curves

2 Pairing based cryptography with CM curves:

+ Intermediate bandwidth (1 ≤ ρ ≤ 2)
+ For ρ > 1, can achieve fully exponential security, by increasing k

− However, ρ = 1 is presently limited to k ≤ 12.

− Implementation cost increases rapidly for fully exponential security

3 Pairing based cryptography with supersingular curves:

+ Bandwidth is half of that without pairings
+ Can use optimized arithmetic of supersingular curves
− Cannot achieve fully exponential security because k ≤ 6 [MOV]
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The Diffie-Hellman Problem

Discrete Logarithm Problem

Given g , gα ∈ G , compute α.

Diffie-Hellman Problem

Given g , gα, h ∈ G , compute hα.

Think of α as a function mapping g to gα.

Discrete Logarithm Problem: Find the function.

Diffie-Hellman Problem: Find the value of the function at h.

Note that α as a function is a group homomorphism.
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Isogenies

Definition

An isogeny is a group homomorphism φ : E1 → E2 between elliptic curves.

A scalar α, when viewed as a homomorphism, is an isogeny: α : E → E
sending P to αP.

Main idea

Replace the scalar isogeny α : E → E with some non-scalar isogeny
φ : E1 → E2.

Introduced by Couveignes in 1997 (eprint 2006/291)

Questions raised in that work:
1 Can we evaluate an isogeny on an input point efficiently?
2 Can we efficiently select a random isogeny with uniform probability?
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1. Evaluating isogenies

An isogeny is a rational morphism. Each coordinate is a quotient of
polynomials.

Definition

The degree of an isogeny is the degree of the polynomials appearing in the
coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

1 Isogenies of low degree

2 Isogenies from a curve to itself (e.g. scalars)

3 Short compositions of isogenies of the above type

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 18 / 33



1. Evaluating isogenies

An isogeny is a rational morphism. Each coordinate is a quotient of
polynomials.

Definition

The degree of an isogeny is the degree of the polynomials appearing in the
coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

1 Isogenies of low degree

2 Isogenies from a curve to itself (e.g. scalars)

3 Short compositions of isogenies of the above type

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 18 / 33



1. Evaluating isogenies

An isogeny is a rational morphism. Each coordinate is a quotient of
polynomials.

Definition

The degree of an isogeny is the degree of the polynomials appearing in the
coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

1 Isogenies of low degree

2 Isogenies from a curve to itself (e.g. scalars)

3 Short compositions of isogenies of the above type

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 18 / 33



1. Evaluating isogenies

An isogeny is a rational morphism. Each coordinate is a quotient of
polynomials.

Definition

The degree of an isogeny is the degree of the polynomials appearing in the
coordinate functions.

The only known examples of isogenies that can be efficiently evaluated are:

1 Isogenies of low degree

2 Isogenies from a curve to itself (e.g. scalars)

3 Short compositions of isogenies of the above type

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 18 / 33



Example of an isogeny

p = 7925599076663155737601

E1 : y2 = x3 + 12046162683058694734 ∗ x + 7901506751297038348133 in GF(p)

E2 : y2 = x3 + (3021319262486407622796 ∗ u + 4101162511412606196442) ∗ x + (7040333493178698383420 ∗ u +

1745772756766632103431) in GF(p2)

φ : E1 → E2 given by φ(x, y) = ((x7 + (2646061772402770501474 ∗ u + 287756053078893159265) ∗ x6 +

(132935307228615056538 ∗ u + 3530390499615039152484) ∗ x5 + (463749471837649230273 ∗ u +

1073811655050424931224) ∗ x4 + (2474785317056152334847 ∗ u + 1839199255709390890698) ∗ x3 +

(4285381276738035289332 ∗ u + 2268033696082534919907) ∗ x2 + (1160928171089162069604 ∗ u +

4478674184021543260793) ∗ x + (3220829138361157238167 ∗ u + 4664892256879213165649))/(x6 +

(2646061772402770501474 ∗ u + 287756053078893159265) ∗ x5 + (1945985508507744496834 ∗ u +

64809305521586899531) ∗ x4 + (4591727489633569666202 ∗ u + 1570102870983786495532) ∗ x3 +

(1500460390828721967700 ∗ u + 6921704443614513097635) ∗ x2 + (1297386801518789580736 ∗ u +

2850698740908333936400) ∗ x + (3945372319876153578002 ∗ u + 361974201101530900968)), (x9 ∗ y +

(3969092658604155752211 ∗ u + 4394433617949917607698) ∗ x8 ∗ y + (6535035589862015193348 ∗ u +

7790532914920049821109) ∗ x7 ∗ y + (1421987375027510985091 ∗ u + 47681237267235708636) ∗ x6 ∗ y +

(2303968995096096349661 ∗ u + 3345680927799022267788) ∗ x5 ∗ y + (2433277735802437441789 ∗ u +

3351794627925587500553) ∗ x4 ∗ y + (1516026795707698480046 ∗ u + 818260455738162732467) ∗ x3 ∗ y +

(1027058177737636125614 ∗ u + 3693613550368489401398) ∗ x2 ∗ y + (4508645841065025978909 ∗ u +

4918593070183032256585) ∗ x ∗ y + (8333818603777677580 ∗ u + 6166744817175250513803) ∗ y)/(x9 +

(3969092658604155752211 ∗ u + 4394433617949917607698) ∗ x8 + (4721985388582885753052 ∗ u +

3330515032350346336461) ∗ x7 + (3559772126678288264097 ∗ u + 6153422006988745781765) ∗ x6 +

(1902940951990305913452 ∗ u + 832145497772529583998) ∗ x5 + (2553891553651967378833 ∗ u +

549429624397957274232) ∗ x4 + (5821041363528144243281 ∗ u + 4895514527158720628918) ∗ x3 +

(7465572282966743894034 ∗ u + 123645603788466192332) ∗ x2 + (4752216567890970620978 ∗ u +
497829871306819801522) ∗ x + (6192295778031003334018 ∗ u + 4253951270570522230194)))
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2. Selecting random isogenies

What does it mean to select a random isogeny with uniform probability?

0. Assume we are only interested in pairing friendly curves.

1. Supersingular curves

Supersingular curves only admit isogenies to other supersingular curves.
The number of supersingular elliptic curves over Fq is finite.
For each pair of curves, the set of functions between that pair is finite.

2. CM curves of low discriminant

CM curves only admit isogenies to other curves of the same field
discriminant.
The number of CM curves of a given discriminant is finite.
For each pair of curves, the set of functions between that pair is finite.

A random isogeny means: pick a random pair of curves, and select a
random isogeny within that pair.
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2. Selecting random isogenies (cont’d)

Theorem (Jao, Miller, Venkatesan)

Assuming the generalized Riemann hypothesis, a random composition of
polynomially many isogenies of polynomially bounded degree produces a
near-uniform distribution of isogenies among CM curves of a given
discriminant.

Theorem (Mestre, Pizer)

A random composition of polynomially many isogenies of degree ≤ 3
produces a near-uniform distribution of isogenies among supersingular
curves of a given characteristic.

Theorem (Enge)

An isogeny of degree d can be obtained in quasi-linear time.

Corollary: Random isogenies can be efficiently constructed and evaluated
by composing random low degree isogenies together with random scalars.
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ElGamal encryption with isogenies

Isogeny Diffie-Hellman problem

Let φ : E1 → E2 be an isogeny. Given P,Q ∈ E1 and φ(P) ∈ E2, compute
φ(Q) ∈ E2.

ElGamal encryption:

Public key: P ∈ E1, φ(P) ∈ E2.

Private key: φ.

Encryption: Choose random r . Compute c = m + rφ(P). Send
(rP, c).

Decryption: Compute m = c − φ(rP).

Provably secure assuming that Isogeny Diffie-Hellman is hard.
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Short signatures

Isogeny equivariance

Let φ : E1 → E2 be an isogeny. There is a unique dual isogeny φ̂ : E2 → E1

such that
e(φ(P),Q) = e(P, φ̂(Q))

for P ∈ E1 and Q ∈ E2.

A short signature scheme using isogenies:

Public key: P ∈ E1, φ(P) ∈ E2.

Private key: φ.

Sign: Compute s = φ̂(Hash(m)). where Hash(m) ∈ E2. Send s.

Verify: e(φ(P),Hash(m))
?
= e(P, s).

Provably secure assuming that Dual Isogeny Diffie-Hellman is hard.

Dual Isogeny Diffie-Hellman

Given P ∈ E1 and φ(P),Q ∈ E2, compute φ̂(Q) ∈ E1.
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Identity based encryption

Identity based encryption using isogenies:

Master key: P ∈ E1, φ(P) ∈ E2

Private key: φ̂(Q) where Q = Hash(ID) ∈ E2.

Encrypt: Choose random r , compute c = e(φP, rQ)⊕m, send
(rP, c).

Decrypt: m = c ⊕ e(rP, φ̂(Q)).

Provably secure assuming that Isogeny Bilinear Diffie-Hellman is hard.

Isogeny Bilinear Diffie-Hellman

Given P, rP,Q ∈ E1 and φ(P) ∈ E2, compute e(φ(P), rQ).
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Relationship to discrete logarithms

Theorem

An algorithm A which solves Isogeny Diffie-Hellman with non-negligible
probability can solve Diffie-Hellman with non-negligible probability.

Sketch of proof:

Let (P, αP,Q) be a Diffie-Hellman triple.

Construct a random, efficiently computable isogeny φ.

Evaluate A on (P, φ(αP),Q).

Eventually A will return φ(αQ).

Compute φ−1φ(αQ) = αQ.

Theorem

An algorithm A which solves Dual Isogeny Diffie-Hellman with
non-negligible probability can solve Diffie-Hellman with non-negligible
probability.
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Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:
1 Isogeny stage: Find any isogeny ψ : E1 → E2.
2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).
For supersingular curves over Fq, we have N = O(

√
q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:
1 Isogeny stage: Find any isogeny ψ : E1 → E2.
2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).
For supersingular curves over Fq, we have N = O(

√
q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:

1 Isogeny stage: Find any isogeny ψ : E1 → E2.
2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).
For supersingular curves over Fq, we have N = O(

√
q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:
1 Isogeny stage: Find any isogeny ψ : E1 → E2.

2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).
For supersingular curves over Fq, we have N = O(

√
q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:
1 Isogeny stage: Find any isogeny ψ : E1 → E2.
2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).
For supersingular curves over Fq, we have N = O(

√
q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:
1 Isogeny stage: Find any isogeny ψ : E1 → E2.
2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).
For supersingular curves over Fq, we have N = O(

√
q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:
1 Isogeny stage: Find any isogeny ψ : E1 → E2.
2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).
For supersingular curves over Fq, we have N = O(

√
q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.

Regular Diffie-Hellman on an elliptic curve takes O(
√

n) operations to
solve (birthday paradox).

Let φ : E1 → E2 be an isogeny. Finding the isogeny involves two steps:
1 Isogeny stage: Find any isogeny ψ : E1 → E2.
2 DLOG stage: Find the scalar α such that αψ = φ.

DLOG stage takes O(
√

n) operations.

Isogeny stage requires O(
√

N) operations, where N is the number of
possible curves [Galbraith-Hess-Smart].

For CM curves of low discriminant D, we have N = O(
√

D) and
O(
√

N) = O(D1/4).

For supersingular curves over Fq, we have N = O(
√

q) and

O(
√

N) = O(q1/4).

David Jao (University of Waterloo) Isogenies as a cryptographic primitive November 28, 2006 29 / 33



Attacking the Isogeny Diffie-Hellman problem

Method #1: Find the isogeny.
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Attacking the Isogeny Diffie-Hellman problem (cont’d)

For CM curves of low discriminant D, the isogeny stage takes O(D1/4)
operations, and the DLOG stage takes O(n1/2) operations.

O(D1/4) � O(n1/2), since D must be small.

Open question: Construct a pairing friendly curve of large D.

System is secure because DLOG stage is intractable.

For supersingular curves, the isogeny stage takes O(q1/4) operations, and
the DLOG stage takes O(Ln(

1
3 , c)) operations.

O(q1/4) � O(Ln(
1
3 , c)).

System is conjecturally more secure than DLOG alone.

System is not less secure than Diffie-Hellman.
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Attacking the Isogeny Diffie-Hellman problem

Method #2: Evaluate the isogeny on points without finding the isogeny.

Recall that you are given P,Q ∈ E1 and φ(P) ∈ E2.

Suppose Q = αP. Find α using a DLOG solver.

Then φ(Q) = φ(αP) = αφ(P). Knowing α, you can compute φ(Q).

P

α

��

φ // φ(P)

α

��
Q

φ
// φ(Q)

This does not contradict the proof that Isogeny Diffie-Hellman is at
least as secure as Diffie-Hellman.

Requires a new discrete logarithm computation (of subexponential
complexity) each time you break a message.

Even index calculus algorithms require subexponential time and space
per invocation.
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Security reductions

DLGi

{{wwwwwwww
DHGi

{{vvvvvvvvv

DLGT PIoo IDH

ccGGGGGGGGG
oo IBDHoo

{{vvvvvvvvv
BDHoo

ccGGGGGGGGG

DHGT

ccGGGGGGGGG

Legend:

DL = Discrete Logarithm

PI = Pairing Inversion

DH = Diffie-Hellman

IDH = [Dual] Isogeny Diffie-Hellman

BDH = Bilinear Diffie-Hellman

IBDH = Isogeny Bilinear Diffie-Hellman
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Conclusions and open questions

1 Isogenies on supersingular curves:

+ Achieves fully exponential security, assuming that Isogeny
Diffie-Hellman is of exponential difficulty.

+ Can use optimized arithmetic of supersingular curves.
+ Provably not less secure than regular Diffie-Hellman.
− Same bandwidth as without using pairings (because of q1/4 security).
− Can break individual messages using DLOG.

2 Isogenies on CM curves of low discriminant:

+ Provably not less secure than regular Diffie-Hellman.
− With low discriminants, does not appear to be any more secure.
− Can break individual messages using DLOG.

3 Open questions:

? Need pairing friendly curves of high discriminant for added security.
? Quantify the security relationship between Isogeny Diffie-Hellman and

other DLOG based problems.
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