Mitigating Dictionary
Attacks on Password-
Protected Local Storage

Ran Canetti, Shai Halevi, Michael Steiner
IBM T. J. Watson Research Center

http://eprint.iacr.org/2006/276

Motivation

1 This is how we start our day at IBM:

1 Welcome - IBM Lotus Hotes

reale Actions Text Hep

el el
e

Calendar To Do List Personal Jourmal
8l
Meaw antry

| ":-:_'-I'.1

1 What happens when | type in my password?

2

Encrypted Local File

1 Notes’ startup does not rely on network
1 Configuration/credentials stored on local disk
1 Credentials are encrypted

1 Upon startup
1 Derive key from password
1 Use it to unlock the credentials
1 Then use credentials for everything else

What if | lose my laptop?

1 No worries, my credentials are protected
1 My top secret password (sh@1) to the rescue

1 What about users with weak passwords?
1 Attacker can mount off-line dictionary attack:

1 For each password in the dictionary
1 Derive a key from the password
1 Check if it decrypts the file

1 Is it possible to protect against it?
1 Without connectivity or secure hardware?

4

Other solutions (out of scope)

1 Relying on “secure hardware™:

1 Store secrets in secure hardware, use
password to unlock hardware
1 Restrict password-guessing attacks

1 Relying on the network:

1 Store secrets on server, use password to
authenticate to server, then get secrets

1 Mitigate on-line attacks
1 This work: what if you cannot do either?

5

Key-derivation from passwords

1 Common practice: use salt and a
deliberately-slow key derivation function

1 E.g., key = SHA165536(salt | passowrd)

1 Different salt values for different users, salt is
stored on disk.

1 Linear slow-down for the attacker
1 But 65536 must grow as computers get faster

1 Can we do better?

A Different Approach

1 A key-derivation protocol (user<laptop)
1 User does more than just providing password

1 Using “human-only solvable puzzles”
1 People can solve these puzzles
1 Computers cannot

1 User enter password, solves puzzles

1 Key is derived from both password and the
solutions to these puzzles

CAPTCHAs [Na96, vABHLO3]

1 Example: What's written here?

1 Can generate automatically with solution
1 Without any secret information

1 People can usually solve them

1 Solving them automatically is beyond the
state of the art

CAPTCHAs & pwds [PS02]

1 Limit on-line attacks in client-server setting

1 Server generates CAPTCHAs + answers,
sends to user

1 User sends back solutions, server checks

1 Then run pwd-based key-exchange protocol

1 Not applicable in our setting
1 Where to store the solutions?

Inkblot authentication [SS04]

1 A different type of puzzles: one user’s
solution is unpredictable by other users

What do you see in this picture?

1 Solutions used to generate a strong pwd

Is Inkblots the answer?

1 Nice work if you can get it...
1 Unpredictability from other people a tall order
1 Need “many bits” in each puzzle
1 People should remember their answers

1 How do we know that they are really
unpredictable?

1 Maybe with some demographic information
they become predictable...

This Work

1 A more robust protocol
1 Same protection when puzzles are inkblots
1 But strong protection even if solutions are

predictable by other people
1 Can use CAPTCHAs (or in between)

Our protocol

1 Many puzzles are stored on disk (z,...z,)

1 User’'s password is used to select a few
1 <ly,...1> < Expand(salt, password)

1 User is asked to solve these few puzzles
1 Solutions are s4,...,s,

1 Key is derived from password+solutions
1 Key « Extract(salt, s,,...,s, password)

1 Goal: attacker must solve MANY
puzzles to find the key

An example

1 Store 22° CAPTCHAs (fit on one DVD-R)

1 User needs to solve eight CAPTCHAs
1 <ly,...lg> < HMAC-SHA1__;(pwd)
1 Each index is 20-bit long

1 key « HMAC-SHA1_ »(S4,---,Sg, pwd)

1 An attacker that solves 10,000 CAPTCHAs
has < 1% chance of hitting four of the eight
CAPTCHAs that the honest user uses

Properties of puzzles

1 Automatically-generated problems
1 Z « G(aux), G is randomized
1 aux can be user-supplied input (family pics?)
1 Consistently solved by each human user
1 S < H(z), consistent across time*
1 Different users need not agree on an answer
1 But answers need not be unpredictable

1 Hard to solve for a machine

* Can we use fuzzy extractors to correct a few errors?

“Human-only solvable puzzles”

1 Fairly weak requirements
1 Need not be CAPTCHAs

1 Don’t need to generate puzzle+solution
1 Not necessarily one right solution

1 Need not be Inkblot

1 One user’s solution not necessarily
unpredictable by other users

1 Can be many things in between

Toy Examples

2€ % -
L A
T/
% o}
; /
/

Andrew Yao Um Kulthum Helen Keller Tom Cruise

1 Which of these pictures doesn't belong?

Hardness of puzzles

1 What we need: hard to distinguish the
“real solution” from a “random solution”

1 (G,H) is u-hard if there exists distribution
R with u bits of min-entropy such that
1 Z « G() is a random puzzle
1 S < H(z) is the right solution
1 8'& R(z2) is a random solution
1 Attacker (PPT) cannot tell (z,s) from (z,s’)

Challenge: design good puzzles

1 Need “many bits of hardness” for a
construction to be useful

1 Else user is bothered with many puzzles

1 Aside: must we store puzzles on disk?

1 User f(salt,pwd) as randomness to
generate the puzzles?
1 Say, fis a random oracle

1 Puzzles must be hard even if attacker knows
the randomness

Security Analysis

Adversarial model for protocol

1 Attacker: not just PPT TM
1 Can also get help from people

1 Protocol has access to human help, why
not the attacker?

1 This is a realistic attack

1 Used against deployed CAPTCHA systems

1 Attackers ship CAPTCHAs to their own
web-sites, ask their visitors to solve them

Modeling “human attackers”

1 People can do many things
1 Outside the model: invite target to dinner,
get her to disclose her password
1 We assume: attacker only uses humans
as puzzle-solvers

1 Attacker has oracle access to H
1 Or a “noisy version” of it (?)
1 Makes analysis possible
1 Keep in mind that it is not entirely realistic

Formal adversarial model

1 Attacker: efficient automated program
(PPT TM) with puzzle-solving oracle

1 Resources: time, number of queries
1 E.g., polynomial-time, sub-linear # of queries

1 Goal: distinguish key from random

Notions of security (1)

1 Indistinguishability ([BR93]-style)

1 Attacker gets key, puzzles, salt, needs to
decide if key is real or random

1 Will focus on this notion in this talk

1 Bound attacker’'s advantage in terms of:
1 Parameters (n puzzles on disk, user solves ¢)
1 Size of password dictionary (|D|=d)
1 Number of oracle queries (g<n queries)
1 Hardness of puzzles vs. key-length

Notions of security (2)

1 UC: define “ideal functionality” that only allows
a limited number of password guesses:
1 Parameters: D: dictionary, p: #-of-pwd-guesses

1 Init(pw,aux) from user U
store pw, generate and store random key
Send aux to adversary

1 Check that pweD, else give it to adversary
1 Recover(pw’) from anyone

1 If pw’=pw then return key to U

1 Password(pw’) from adversary
If already made p such queries then ignore
Else if pw'=pw return key to adversary

A “generic” attack

1 An attack with complexity ~ |D|-2
1 Attacker does not solve puzzles
1 Works even in the random-oracle model

1 Assume: given a puzzle z, attacker can
generate a list of 2* potential solutions
1 The right solution is in the list
1 But the attacker does not know where

1 This Is consistent with a u-hard puzzle
1 And realistic attackers often have this ability

The attack setup

1 Attacker gets (z,, 2, ..., Z.), salt (if any),
and an alleged m-bit key k*
1 Can make <q queries to puzzle-solving oracle

1 Needs to distinguish between:
1 “Random”: k* is random,

1 “Real”: k*<—Extract(salt, s;,,...,s;, pwd), where
<iq,...i,><—Expand(salt, pwd) and s, is the right
solution for z,

Generic attack, phase 1
1 ForeachpeD

1 Compute <iy,...i>«Expand(salt, p)

1 Generate 2" solutions for each z;
1 For a total of 2 solution-vectors

1 Keep only those solution-vectors with
Extract(salt, s,,...,s,, p)=k"

1 These are the “consistent vectors”
1 So far, didn’t make any oracle queries
1 If m> e, can already distinguish

Generic attack, phase 2

1 Query the puzzle-solver upto g times

1 Purge vectors (s,,...,S, p) for which any
of the solutions is not the right one

1 Choose queries to maximize mutual-info
between the answer and your decision

1 Or use some greedy strategy

Generic attack, phase 3

1 Count remaining solution-vectors that are
consistent with each password

1 Maximume-likelihood: are these numbers
more likely for “real” or “random™?

1 The point: once we ask on “too many
puzzles” for a password, we expect to
have zero remaining consistent solutions
In the “random” case

The moral

1 Attacker must query its oracle on many
puzzles that are mapped to right pwd
1 We prove: not just a feature of this attack

1 As long as remaining un-queried puzzles
have more pseudo-entropy than key-length,
key Is secure

1 Many many details/open problems
1 Some examples next, more on ePrint

The function Expand

actual dictionary

potential

® o000 0 0 @ 0 00
passwords

@
degree ¢ “ (e-g- {051}160)

“Almost covered”.
un-queried puzzles
contain < m-bits of
hardness

o 0600 00 puzzles

queries that the
attacker makes

1 Goal: attacker’'s queries “almost cover”
only small fraction of the actual dictionary

KK]

The function Expand (2)
1 Vlarge enough D, V |Q|=q (q<n),

a-cover(Q) is a very small fraction of D

1 If we were talking about cover(Q): the
neighbor-set of any large subset of D contains
more that |Q| neighbors (expansion)

1 Since we want a-cover(Q): same holds even
when dropping many edges

1 As long as the degree remains > m/u
1 Similar to fault-tolerant expansion

Constructing Expand

1 Huge pwd-universe ({0,1}160)
=> no deterministic construction
1 Deterministic construction for small D? (open?)
1 Randomized construction?

1 Expand as a truly random function

1 Standard analysis using Chernoff

1 Ugly bound, but useful in specific cases
1 Expand as ¢n-wise independent

1 Use n-th moment inequality

Constructing Expand (2)

1 Can we do better?
1 Speculation: ¢ independent random linear
maps over GF(2) work well

1 Old result of Alon et al. (“linear hashing yields
small buckets”): a linear map over GF(2)
works well for g=¢=1, and |D|=n

The function Extract

1 Extracts m-bit key from puzzle solutions

1 Key is pseudo-random as long as >m
bits of pseudo-min-entropy are left in
un-queried puzzles

1 Strong randomness extractor is sufficient
1 From m*>m bits of min-entropy, extracts a key
that is & away from uniform m-bit sting
1 ¢* - number of puzzles needed to get m* bits
of pseudo-min-entropy

Security Statement

1 Assuming puzzles are u-hard (and fixing
parameters n, ¢, m, D, ¢, o), an attacker

makeing g queries has advantage at most

4 -
Z*) + negligible

a-cover(q,D) + &(

Caveat Emptor

Non-malleability of puzzles

1 Current analysis allows the attacker to
query its humans only on puzzles that are
stored on the disk

1 To remove this restriction, puzzles need to
be non-malleable
1 Not clear how to define/achieve non-mal

1 Even if we don’t care about human-solvable,
e.g., non-malleable OWFs, PRGs, ...

Some open problems

1 Design good puzzle systems

1 Design of Expand function
1 Should be good (fault-tolerant) expander

1 Better protocols (< storage, > security, etc.)
1 (Non)-malleability of puzzles

1 Better modeling of the attacker

1 Better UC analysis

