Multivariate Quadratic Hash

Jintai Ding*, Bo-yin Yang™*

University of Cincinnati*
Technical University of Darmstadt™
Institute of Information Science, Academia Sinica™*




. General Introduction

. General Multivariate Hash

. Special Implementations

. Conclusion




1

General Introduction

It is well-circulated joke that hash functions are the only
common cryptological primitives that are getting slower as
chips evolve.

One common feature of the currently used hash functions is

that it is indeed an area of art, where the design of the system
is based on rather complicated procedures and the security of
the system is very difficult to study from the theoretical point

of view.

The work of Wang et al on the collision of some well-known
and standard hash functions — SHA-1,MD5.

Even the work of Wang et al is still not well understood and
people are still trying to analyze the methods used in some
systematical way, ( The work of Sugita etc. using Groebner




basis)



One direction is to look for provably secure hash functions,
whose security relies on well-understood hard computational
problems.

One of the ideas is to use RSA moduli. This idea has the
problem that someone has to come up with the RSA modulus

you are using, which no doubt makes many people uneasy.

A different solution is LASH and similar ideas. These hashes
tend to be slower, although they have a saving grace in terms
of provable security. In these formulations, the designer seeks a
reduction of the security of the compression function to some
other intractable problem.

We propose our own version, which is based on the multivariate

quadratic (MQ) problem, and study how well it works.




1.1 The origin of the idea: Multivariate Public
Key Cryptosystems

- Cryptosystems based on multivariate functions over a finite
field instead of single variable functions.

e The cipher —-the public key is given as:
G(iCl, N iCn) — (Gl(acl, N iCn), N Gm(acl, N ZCn))

Here the (G; are multivariate polynomials over a small finite
field k . G can be viewed as a map: G : k™ — k™

e Encryption
Any plaintext M = (x7,...,x} ) has the ciphertext:

G(M) =Gz, ....x)) = (Y1, ..., u.).

Encryption: Evaluation of the values of polynomials.




e Decryption

To decrypt the ciphertext (y7,...,¥, ), we need to know the

hidden structure of G— the secret key, so that one can invert
the map G to find the plaintext (z/,..., 2} ).

n
Decryption relies on the hidden structure of the public
key




Multivariate Signature schemes

e To verify, check indeed if the signature and the hash value of
the plaintext satisfies the equations given by the public key.

Document (yi,...,¥,,), signature (z7,...,x, ), public key

G(iCl, ..,iCn) .

To verify, we need ro check:

(?

G271,y @) = (Y150 Urn).

e To sign, one need to find one solution of the equation above, or

to invert the map G.




Direct attack is to solve the set of polynomial equations:

G(z1, .oy n) = (Y1, s 0

(G1(x1y ey )y ooy G (T, oy ) = (YL eees Uiy )

because G and (y7, ..., 4., ) are known.




e Security Foundation.

- Solving a set of n randomly chosen quadratic equations

(nonlinear) with n variables over a finite field is NP-complete.

e [MQ Problem:] Solve the system P, = P, =--- = P,, =0,
where each P; is a quadratic polynomial in z1,...,z, and

coefficients and variables are in GF'(q).

e We believe that it is a hard problem on average.




e Quadratic Constructions MPKC.

1) Efficiency considerations of key size and computation

efficiency lead to mainly quadratic constructions.

G 5517 : ZQZZ]x o Zﬁlzxz + -

2) Mathematical structure consideration: any set of high degree
polynomial equations can be reduced to a set of quadratic

equations.

is equivalent to




e The Potentials.

[.) We have not yet seen how a quantum computer can be used
to attack MPKCs efficiently. (Post-quantum cryptography)

II.) We have seen the potential to build much more efficient

public key cryptosystems. (Passive RFID)




e MPKC s
- Sflash (Matsumoto-Imai-Minus) systems, accepted by

NESSIE as a security standard for low cost smart cards.
-Quartz, HFEv-Minus: NESSIE
-PMI+, IPHFE
-Rainbow; TTS, TRMC




e Our general assumption 1 (A1):
MQ problem is exponential in n when n = m.

If we choose the quadratic coefficients of P; randomly, then MQ

in this case is exponential.

e An even more general assumption 2 (A2):

MQ problem is exponential in n if 0 < fm/n =< «.

If we choose the quadratic coefficients of P; randomly, then MQ

in this case is exponential.




2 The general construction

One way function is gives by

F(xy,...x) = (fi(x1, s Tn), ooy (@1, oo, Tp)),

where f; is a randomly chosen quadratic polynomial over GF'(q). Here
all the coefficients are chosen randomly. We choose the case m/n =1/2
( one can change 1/2 into possiblely other values), and use this as a
compressor in a Merkle-Damgard iterated compression hash function. n
is an even number.

14-1



Claim 1.

With m = n/2, and randomly chosen F' = F(x1, ..., T, /2, xn+1, ..., 2y,
F' is impossible to invert or to find a second image for in polynomial time.

Proof under Al.

We need to solve the equation:

F=F(x1,.,Tn/2: Tpjot1s o Tn) = (Y1 s Y /2).

We can assume that we know already the value of xn/2 + 1, ..., x,, which
surely will not make the problem harder.
We need to solve

F(zq, ...,:En/g,ac;l/ﬂl, i) = (Y1 s Y /2),

where zn/2 + 1, ..., x,, are given constants, but in the evaluation process,
the quadratic part of x1,..., 2, /o stays random. Therefore the equation
remains difficult to solve with Al.

This shows that it is impossible to invert the hash.

14-2



Claim 2. Assume Al, the MQ problem with 2 > m/n > 1 is impos-
sible to solve in polynomial time.

Proof

We only need to deal with the case m = 2n. Any m = n problem
can be changed into a m = 2n problem by guessing \/n variables by
adding all the quadratic equations derived from these variables’ value we
guess. If our problem is polynomial, it implies that the m = n case is
not exponential, which is impossible.

14-3



Claim 3. With m = n/2, and randomly chosen F' = F(X,Y), where
X = (21,...0y/2),Y = (242, ..., Tp), The equation

F(X1,Y1) = F(X2,Ys),

is impossible to solve in polynomial time.

Proof with A1l

It follows the same argument. Namely we have n/2 equations and
2n variables, we can here assume that we know the values of the 3n/2
variables. In this case, it means that at least in one of the polynomial we
will have n/4 variables unknown, which we can assume to be the right
side. We can further assume that the value of the left hand polynomials
(or even all the variables) is known. Then this becomes a problem of
random polynomials with n/2 equations and n/4 variables. The proof
then follows from Claim 2 above.

This shows the collision free property of the hash.

14-4



A rough estimate of effort to solve these MQ problems, which is
derived from studying MPKCs:

1) 20 equations in 20 GF(256) variables: 289 cycles;

2) 24 equations in 24 GF(256) variables: 2°! cycles.

14-5



Practical implementations
1) Assuming 160-bit hashes (SHA-1), preliminary runs with a generic
function F"

e 40 GF(256) variables into 20: 5400 cycles/byte (6.0 cycles/mult)
e 80 GF(16) variables into 40: 19300 cycles/byte (3.2 cycles/mult)

2) Assuming 256-bit hashes (SHA-2), preliminary runs with a generic
function F’:

e 32 GF(2'9) variables into 16: 4800 cycles/byte (19 cycles/mult)
e 64 GF(256) variables into 32: 12500 cycles/byte (6.0 cycles/mult)
e 128 GF'(16) variables into 64: 53500 cycles/byte (3.2 cycles/mult)

14-6



e The coefficients of the map F' is taken from the binary expansion
of .

e Multiplication in GF(16) and GF(256) are implemented with ta-
bles. In fact, in GF(16), we implement a 4kBytes table with a
where we can multiply simultaneously one field element by two
others.

e Multiplication in GF(2°) is implemented via Karatsuba multipli-
cation over G F'(256).

14-7



3 Special constructions

3.1 Sparse polynomials

The idea is the same as above but we choose each of the above polynomial
to be a sparse one.

Assumption As n and m = kn goes to infinity, for any fixed 0 <
e < 1, a random sparse quadratic system with a randomly picked €
proportion of the coefficients being non-zero (and still random) will still
take time exponential in n to solve.

14-8



The key problem is that the ratio € of the nonzero terms.

1. How many we choose such that it is fast?

Answer: no more than maybe one in ten.

2. How many we choose such that it is secure?

Answer: a fixed percentage.

3. How do we choose the sparse terms?

Answer: probably randomly.

To store the formula in a sparse form takes extra space and time to
unscramble the storage, so it is never worthwhile to have ¢ > 1/6 or so
in practice.

14-9



In the examples in the following, about 3% of the coefficients are
non-zero (one in 30). To give one example, there is around 30 terms per
equation in a 40-variable quadratic form.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic
function F":

e 40 GF(256) variables into 20: 450 cycles/byte (6.4 cycles/mult)
e 80 GF(16) variables into 40: 1570 cycles/byte (3.6 cycles/mult)

14-10



Assuming 256-bit hashes (SHA-2), preliminary runs with a generic
function F’:

e 32 GF(2' variables into 16: 1520 cycles/byte (19 cycles/mult)
e 64 GF'(256) variables into 32: 3960 cycles/byte (6.4 cycles/mult)
e 128 GF(16) variables into 64: 11420 cycles/byte (3.6 cycles/mult)

There is no longer any proof of security because fixing half the vari-
ables in a random quadratic map is still a random quadratic map, or
at least a map whose quadratic part is all random, but fixing half the
variables at an attacker’s discretion in a random sparse map carries no
such reassurance.

14-11



3.2 Sparse composition factor

The idea is that any quadratic map can be written as f o L, where f is
a certain standard form and L is an invertible linear map. Now we will
choose L to be sparse. The obvious standard form for characteristic 2
fields is to start with the standard form (“rank form”).

fi(x1, ., Tn) = T1T2 + T34 + -+ - Ty 1Ty -

14-12



Let k£ be a field of characteristic 2. A quadratic form in n variables
over k is defined by @ = >, ;< DijTiT;, pij € F"
Any quadratic form over k is equivalent to

T+v

Q' = szyz+ Z a,]:UJJracjijrbjyj +chzk

1=1 J=v—+1

with ¢, # 0 and 2v + 27 +d < n.

When 2v + 27 +d = n, the form Q' is regular. The number d is
the deficiency of the form and the form ¢’ is completely regular, if @)’ is
regular and its deficiency is zero, which corresponding the case that the
corresponding symmetric form is non-degenerate. A randomly chosen is
in general expected to completely regular.

14-13



We will use this to give a general characterization of a quadratic
function. Any quadratic function f(xq,...,72,) can be written in the

form
f(iCl, ..,iCn) = Z Qg Lid -+ Z bzibz +C

1<i<j<2n 1<i<2n

where a;;,b;, c are in k. We know that through a linear transformation
of the form L(z;) = x; + d;, if the quadratic part is non degenerate, we
can have that

f(Ll(ibl,..,ibn)) = Z a,ngCZ'ZCj —I—C/.

1<i<j<2n

From the theorem above we know that there is a linear map L9 such that

f((LQ O Ll)(ZEl, ,iCn)) = Z L2;—1T2; + ZZEZQ + C/,

1<i<n €S

where S is a set consisting of pairs in the form of (25 — 1, 2j).

14-14



The simplest form this kind of function is surely

f((L2 o L1)(@1,..,2n)) = Z Toi—1T2; + €,

1<i<n

and its difference from others in some sense are something of the linear
nature, which can be neglected in some way. From this we conclude that
a general quadratic function can be represented as: F' o L, where

/
F = E To;—1T2; + C,

1<i<n

which is the basis we will use to build our hash function.

14-15



In this particular instance, there is something that leaps out at us.
starting with X; := (x1,...,2,), we compute f;(X7), then transform
X1 — Xo := Ly(X7), where Ly has three randomly chosen entries in
each row, and fo(X) := f1(X2). Continue in this vein and do X, —
X3 := L3(X2), f3(X) := f1(X3), and so on and so forth.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic
function F’:

e 40 GF(256) variables into 20: 890 cycles/byte (6.4 cycles/mult)
e 80 GF(16) variables into 40: 1570 cycles/byte (3.6 cycles/mult)

Assuming 256-bit hashes (SHA-2), preliminary runs with a generic
function F':

e 64 GF'(256) variables into 32: 3960 cycles/byte (6.4 cycles/mult)
e 128 GF(16) variables into 64: 11420 cycles/byte (3.6 cycles/mult)

14-16



3.2.1 Other Attacks

There are many specialized attacks in multivariate public key cryptog-
raphy, that one may think to use to attack our systems. But one should
realize that due to the property of random polynomials, from what we
can see, all but one of them is now inapplicable to attack our hash.

There is a special multivariate attack to solve under-defined systems
of equations (Courtois,Goubin,Meier, Tacier) that applies to this situa-
tion where there is a lot many more variables than equations, but for
fields other than ¢ = 2 it has proved to be rather useless if we just plug
in the numbers into the formulas.

There are the usual attacks of linear and differential cryptanalysis to
think of, but quadratic equations are so far removed from linearity that
it is hard to imagine such attacks working.

14-17



3.3 The challenge

How to study the security of the special constructions?

14-18



4 Conclusion

We present the idea of using randomly polynomials, and randomly poly-
nomials with sparse property to build hash functions.

For the case of randomly polynomials, we present the provable secu-
rity of the system and for the case of sparse construction, we present the
main security assumptions and the theoretical challenge in its provable
security.

Our work mainly is to point out a new direction in developing hash
function whose security relies on a clear hard problems and therefore
easier to study and understand, our work is just the beginning of this new
direction and much work need to be done. We believe the multivariate
hash has a very strong potential in practical applications.

14-19



Thanks and questions?

14-20



