# Private Approximation of Search Problems

**Amos Beimel** 

Based on Joint works with Paz Carmi, Renen Hallak, Kobbi Nissim, and Enav Weinreb

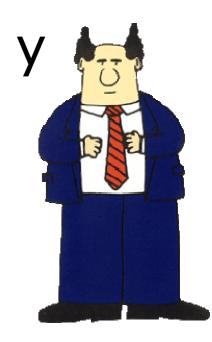
# Let's compute f(x, y)!





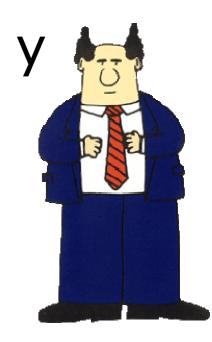
# No! You will learn too much information on my input!





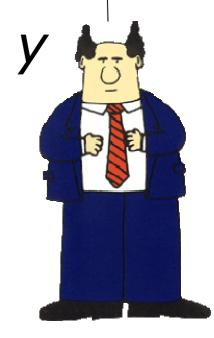
# Haven't you heard of secure function evaluation?





# Sure I've heard of it...But for f it will be inefficient





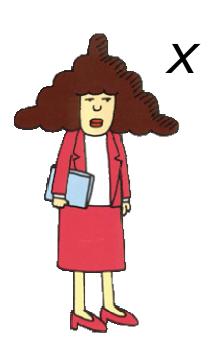
# That's not a problem! We can approximate f by $f^*$ and do SFE on $f^*$ !

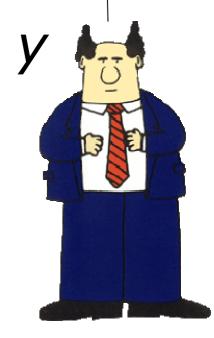




# Hmmmm...

I don't know...





# What can go wrong?

#### Example:

 $f^*(x, y)$  reveals Bob's input.

$$f(134, 285) = 64$$
  
 $f*(134, 285) = 64.285$ 

$$f(847, 121) = 26$$
  
 $f*(847, 121) = 26.121$ 



#### **Talk Overview**



- Background and Previous Work
- Definitions for Search Problems
- i Impossibility Result for Vertex Cover
- Algorithms that Leak (Little) Information
  - Positive Result for MAX-3SAT
- Problems in P
- Conclusions and Open Problems

### **Private Approximation**

[FeigenbaumIshaiMalkinNissimStraussWright01]

f\* is a **private approximation** for f:

- $f^*$  is an approximation of f.
- $f^*(x)$  gives no more information about x then f(x).

#### Privacy definitions:

If f(x)=f(x') then  $f^*(x)$  and  $f^*(x')$  should be **indistinguishable**.

# Positive results [FIMNSW]

#### Hamming distance:

- Private approximation in communication  $O(\sqrt{n})$ .
- Improved to polylog(n) [IndykWoodruff06]

#### Permanent:

Private approximation in polynomial time.

# PA of NP-Hard Functions [HaleviKrauthgamerKushilevitzNissim01]

Vertex Cover

Input: undirected graph  $G = \langle E, V \rangle$ .

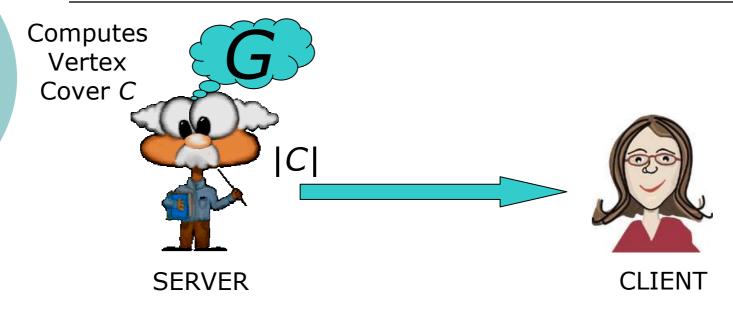
A set  $C \subseteq V$  is a **vertex cover** of G if for every  $\langle u, v \rangle \in E$ ,  $u \in C$  or  $v \in C$ .

#### Functional:

Return **size** of minimum vertex cover.

\* We'll discuss search version later.

#### Abstract Client-Server Model



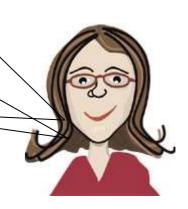
- i Impossibility in client-server model ⇒ Impossibility in multiparty.
- Possibility in client-server model ⇒ Possibility in multiparty using SFE (Yao,GoldreichMicaliWigderson).

#### Client-Server Model



"Himmondd.,"
but it is
hard to
compute."

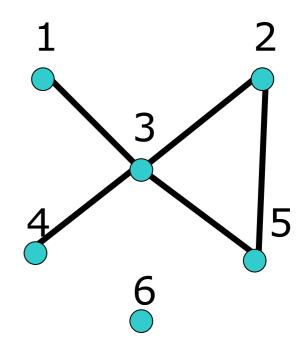
"So, "Why why approximation of your graph?"

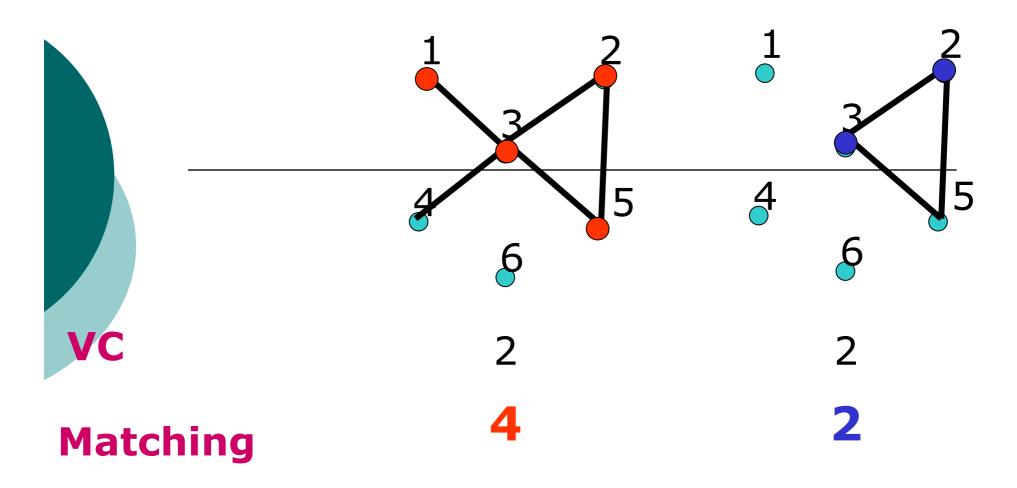


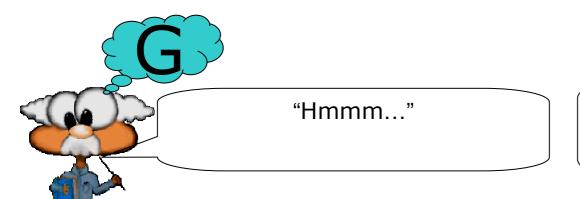
**CLIENT** 

# Maximal Matching Approximation

- Find maximal matching.
- i Its vertices form a cover.
- solution size is at most 2 times the optimal solution.







"So, tell me an approximation!"



# Impossibility results [HKKN]

- If NP ⊄ BPP there is no polynomial private n¹-ε-approximation algorithm for vertex cover size.
- Impossibility results for other NP-complete functions:
  - MAX-SAT

Vertex cover in planer graphs.

#### Talk Overview





- Background and Previous Work
- **Definitions for Search Problems**
- i Impossibility Result for Vertex Cover
- ; Algorithms that Leak (Little) Information
  - Positive Result for MAX-3SAT
- : Problems in P
- Conclusions and Open Problems

# Search problems

- Function one output for every input.
- Search many solutions for one input.

Example: vertex cover

Return a vertex cover of the graph (a set of vertices).

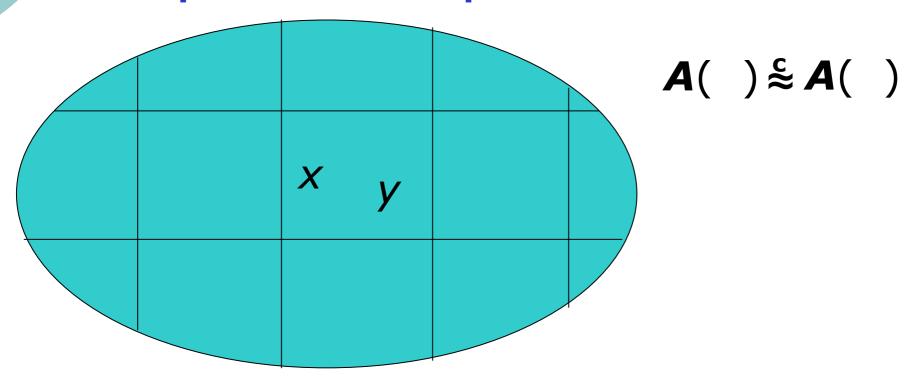
- What is the right definition of privacy?
- What pairs of inputs should not be distinguished by the output?

# Step 1: Privacy w.r.t. a Relation

R – Equivalence relation over the inputs

**A** – Probabilistic algorithm

 $\bf A$  is **private with respect to**  $\bf R$  if:



# Step 2: Defining the Relation

Let P be a search problem.

Let S(x) be the set of solutions for the input x.

We say that  $x \approx_{\mathbf{P}} y$  if x and y have the same set of solutions, that is, S(x)=S(y).

# Example – Vertex Cover (Search)

 $G_1 \approx_{VC} G_2$  if they have the same set of minimum vertex covers.

; 14 is a private approximation algorithm for vertex cover

A jan approximation algorithm for

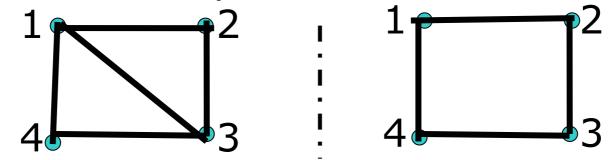
Vertex cover.
$$G_1 \approx_{VC} G_2 \quad \mathbf{5} \quad \mathbf{A}(G_1) \approx^{\mathbf{4}} \mathbf{A}(G_2)$$

Can his be done efficiently?

vertex cover sets:  $\{2,3\}$  and  $\{3,5\}$ 

#### Search versus Functional

- ; In non-private computation:
  - Infeasibility of functional implies infeasibility of search.
- Private computation:



- Functional equivalent (VC size = 2).
- Search not equivalent ({2,4} is a VC only of the right graph).

#### Search versus Functional

Can we use the lower bounds techniques of [HKKN] for functional vertex cover?

#### No.

- ¡ [HKKN] relies on having few equivalence classes.
- In search **Huge** number of equivalence classes.

#### Talk Overview









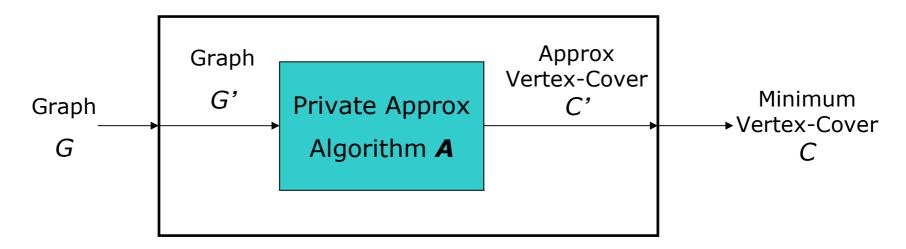
#### Impossibility Result for Vertex Cover

- ; Algorithms that Leak (Little) Information
  - Positive Result for MAX-3SAT
- : Problems in P
- Conclusions and Open Problems

# Vertex Cover - Impossibility Result

Thm 1: If RP ≠ NP there is no deterministic polynomial time private n¹-ε-approximation algorithm for vertex cover – search version.

#### Proof idea:



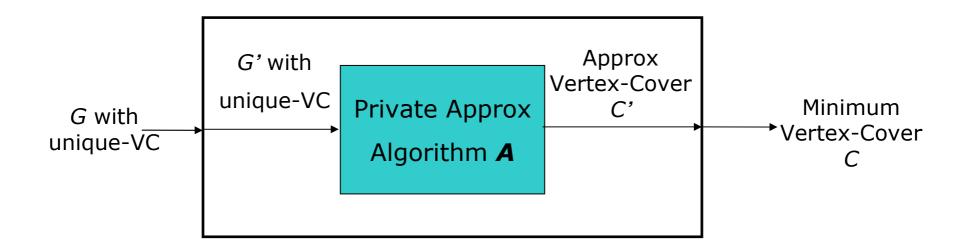
# First Tool: Unique-Vertex-Cover

Input: A graph G

Promise: G has a unique minimum vertex cover

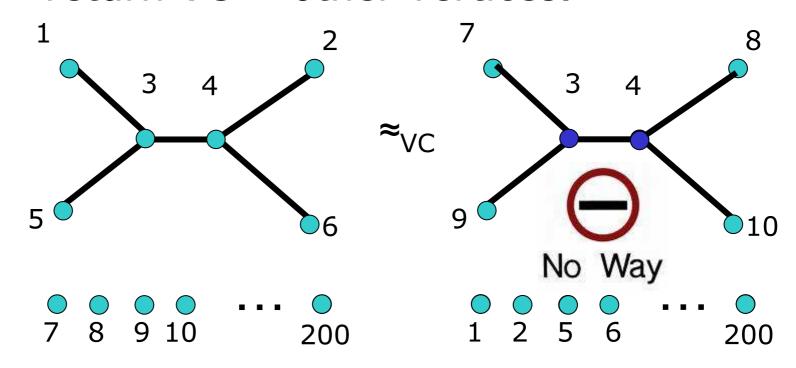
Output: The minimum vertex cover

Thm [ValiantVazirani86]: Solving Unique-Vertex-Cover is NP-hard.



# Second Tool: Adding Vertices

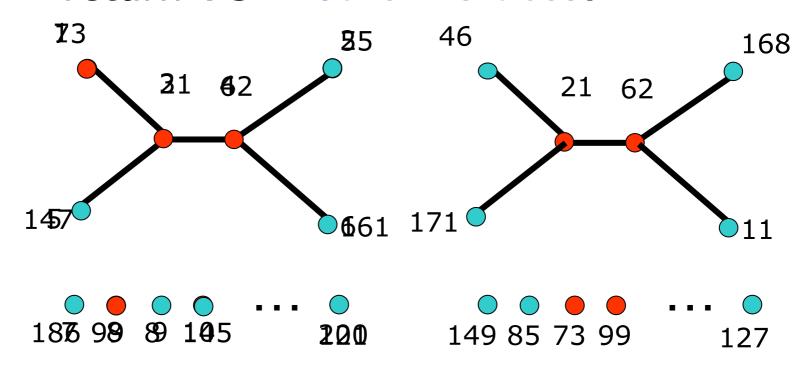
Claim 1: Private Approx Alg **A** must return VC + other vertices.



Claim 1: Private Approx Alg **A** must return VC + other vertices.

# Third Tool: Random Renaming

Claim 1: Writhateg Approachability A Anust reternish WCC++isotated wertices



# Summary of Proof:

randomized
Thm 1: If RP ≠ NP there is no deterministic polynomial time private n¹-ε-approx algorithm for vertex cover

#### Proof:

- ; G − graph with unique VC
- Add isolated vertices to G
- Randomly permute names of vertices
- Execute  $C' \leftarrow A(G')$
- ; VC C of G original vertices in C'

If RP  $\neq$ NP, then no such algorithm  $\Rightarrow$  NO **A**.

#### MAX-3SAT

- Given a 3CNF formula  $\varphi$  find an assignment  $\alpha$  that satisfies the maximum fraction of its clauses.
- Best approximation ratio: 7/8.
- $\varphi_1 \approx_{SAT} \varphi_1$  and  $\varphi_2$  have the same set of maximum satisfying assignments.
- Again, no private approximation!

#### Talk Overview

- Background and Previous Work
- Definitions for Search Problems
- Impossibility Result for Vertex Cover
- Algorithms that Leak (Little)
  Information
  - Positive Result for MAX-3SAT
- Problems in P
- ; Conclusions and Open Problems

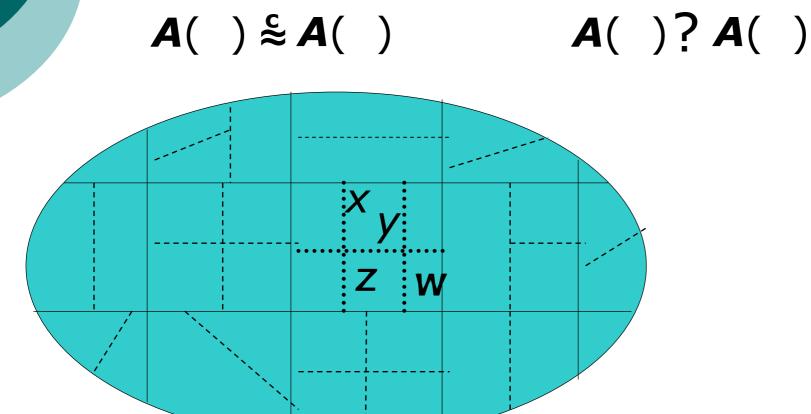
# Almost-Private Algorithms [HKKN]

- Let f be a function.
- f\* is an approximation for f that leaks k bits:
  - 1  $f^*(x)$  can be simulated from f(x) and another k bits of advice.

#### Example:

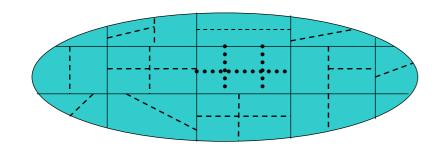
There is an efficient **4**-approximation of vertex cover size that leaks **1** bit.

## Almost-Private Algorithms – Search



# Almost-Private Algorithms

- **A** is **leaks k bits** with respect to **R** if there exists **R**' such that:
- 1.  $R' \subseteq R$ .
- 2. Every equivalence class of R is a union of at most  $2^k$  equivalence classes of R'.
- 3.  $\mathbf{A}$  is private with respect to R'.



### Search versus Functional

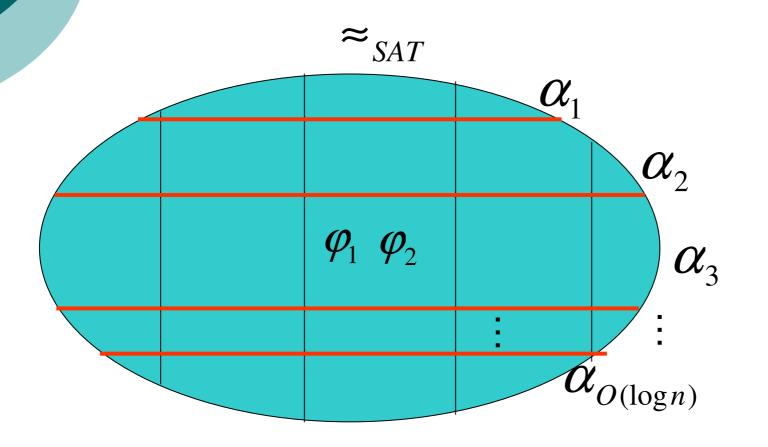
Can we use the ideas of [HKKN] for functions to get efficient almost private algorithms for search problems?

#### No.

[HKKN] use rounding of the result of a non-private approximation. Not clear how to generalize to search problems.

# Almost Private Approximation for MAX-E3SAT

Expense division of the control of t





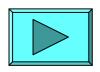
#### Lemma

There is a set of  $O(\log n)$  assignments  $\alpha_1,...,\alpha_{O(\log n)}$  such that for every 3SAT formula  $\varphi$  on n variables there exists an  $\alpha_i$  that satisfies  $7/8-\mathcal{E}$  of the clauses in  $\varphi$ .

#### Proof:

Construct almost 3-wise independent variables  $x_1,...,x_n$  [NN, AGHP].

Number of assignments:  $O(\frac{\log n}{\varepsilon})$ .



# Proof of Lemma 1(cont.)

For every 3 random variables  $x_1, x_2, x_3$  and every 3 Boolean values  $b_1, b_2, b_3$ :  $1/8 - \varepsilon < \Pr[x_1 = b_1 \land x_2 = b_2 \land x_3 = b_3] < 1/8 + \varepsilon$ 

Conclusion 1: For each clause C:

 $\Pr[C \text{ is satisfied by } \alpha] > 7/8 - \varepsilon$  over the choice of  $\alpha$ .

Conclusion 2: For every formula  $\varphi$  there is an assignment that satisfies  $7/8-\varepsilon$  of its clauses.

# Almost Private Approximation for MAX-3SAT

Thm 2: There exists a  $(7/8-\varepsilon)$ -approx algorithm for MAX-3SAT that leaks  $O(\log \log n)$  bits.

#### Proof:

We use  $\alpha_1,...,\alpha_{O(\log n)}$  from Lemma.

Given a formula  $\varphi$  return the first  $\alpha_i$  that satisfies at least  $(7/8-\varepsilon)$  of the clauses in  $\varphi$ .

# Solution-List Paradigm

- A short list of solutions.
- Every input has a good approximation in the list.
- i  $2^k$  solutions à algorithm leaks k bits

### **Further Results**

Solution-list  $n^{1-\varepsilon}$ -approximation algorithm for vertex cover that leaks  $2n^{\varepsilon}$  bits.

## **i** Impossibility result

Any  $n^{1-\varepsilon}$ -approximation algorithm for vertex cover must leak  $\Omega(n^{\varepsilon})$  bits.

#### Talk Overview



- Background and Previous Work
- Definitions for Search Problems
- Impossibility Result for Vertex Cover
- Algorithms that Leak (Little) Information
  - Positive Result for MAX-3SAT
- Problems in P
- Conclusions and Open Problems

## Problems in P – Private Computation

- Computation of a search problem in P might leak information.
- Many search problems in P have private algorithms (lex first):
  - perfect matching, shortest path, linear algebra, and more...
- is there a private algorithm for every problem in P? No!

## Problems in P - Private Computation

Let S be a search problem in P.

(Example: shortest-path)

Recall that  $x \approx_S y$  if x and y have the same set of solutions.

For a private algorithm we require:

$$\mathbf{A}(x) \approx_{\mathrm{c}} \mathbf{A}(y)$$

Is there a private algorithm for every problem in P? No!

## Impossibility result for a Problem in P

Input:  $G=\langle V, E \rangle$ , C, k

Output: If C is a clique of size k in G then output a clique of size k in G.

The problem is in P because C is a legal output.

A private algorithm implies a nonuniform algorithm for Clique.

### Positive Results for Problems in P

Any problem S for which we can find:

- ; The lexicographically first solution
  - $x \approx_S y$  implies x and y have the same lex first solution.
- A random solution
  - $x \approx_S y$  implies that a random solution distributes identically for x and y.

Examples: perfect matching, shortest path, linear algebra, and more...

# Discussion – Strength of Definition

We said the definition is minimal – good for impossibility results.

Is it **strong enough** for positive results?

Can returning the lex first solution be considered private?

What is the right **sufficient** definition? (work in progress...)

### Talk Overview



- Background and Previous Work
- Definitions for Search Problems
- Impossibility Result for Vertex Cover
- Algorithms that Leak (Little) Information
  - Positive Result for MAX-3SAT
- Problems in P



**Conclusions and Open Problems** 

#### Conclusions

- Defined private approximation of search problems
- Impossibility result for private approximation of vertex cover, max3SAT, and clustering problems
- Defined approximation algorithms for search problems with leakage
- Positive result for max3SAT
- Private computation of problems in P

# Open Problems

- More private approximation algorithms.
  - Design algorithms that defeat solution list algorithms.
- Private computation of problems in P.
  - What is the right (sufficient) definition?
  - What search problems admit efficient private computation?

köszönöm !nnn děkuji mahalo 고맙습니다 thank you merci 谢 谢 danke Ευχαριστώ どうもありがとう gracias