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1. Introduction

The notion of quasi-category was introduced by M. Boardman and R.Vogt in
their work on homotopy invariant algebraic structures [BV]. Our goal is to ex-
tend category theory to quasi-categories. The extended theory has applications to
homotopy theory, higher category theory and topos theory.

A first draft of this paper was written in the Fall of 2004 in view its publication
in the Proceedings of the Conference on higher categories which was held at the
IMA in Minneapolis in June 2004. Its content is based on the talks I have given
on quasi-categories over the last five years. It is a collection of assertions, many of
which have not yet been proved formally (many have recently been proved by Jacob
Lurie). I am preparing a book of two volumes on the theory of quasi-categories.

2. Elementary aspects

2.1. We fix three arbitrary Grothendieck universes U1, U2 and U3, with U1 ∈
U2 ∈ U3. Entities in U1 are small, entities in U2 are large and entities in U3

are extra-large (small entities are large and large entities are extra-large but the
converse is not true). For example, a category is said to be small (resp. large,
extra-large) if its set of arrows belong to U1 (resp. U2, U3). We denote by Set
the category of small sets and by SET the category of large sets. A category is
locally small if its hom sets are small. We denote by Cat the category of small
categories and by CAT the category of locally small large categories. The category
Cat is large and the category CAT extra-large. We shall denote small categories
by ordinary capital letters and large categories by curly capital letters.

2.2. We shall denote by Set the category of (small) sets, by S the category of
(small) simplicial sets and by Cat the category of small categories. By definition,
we have

S = [∆o,Set],

where ∆ is the category of finite non-empty ordinals and order preserving maps.
See the appendix 31 for terminology and notation on simplicial sets. The simplicial
interval ∆[1] is denoted by I. The category ∆ is a full subcategory of Cat. Recall
that the nerve of a small category C is the simplicial set NC obtained by putting

(NC)n = Cat([n], C)

for every n ≥ 0. The nerve functor N : Cat → S is full and faithful. We shall
regard it as an inclusion N : Cat ⊂ S by adopting the same notation for a category
and its nerve. The functor N has a left adjoint

τ1 : S→ Cat,

where τ1X is the fundamental category of a simplicial set X. The classical funda-
mental groupoid π1X is obtained by formally inverting the arrows of the category
τ1X. The functor τ1 : S→ Cat preserves finite products by a result in [GZ].

2.3. We shall say that an arrow f : a→ b in a simplicial set X is quasi-invertible,
or that it is a quasi-isomorphism, if its image by the canonical map X → τ1X is
invertibe in the category τ1X.
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2.4. Recall that a simplicial set X is called a Kan complex if every horn Λk[n]→ X
(n > 0, k ∈ [n]) has a filler ∆[n]→ X, Λk[n]→ X

Λk[n]� _

��

∀ // X

∆[n].
∃

=={{{{{{{{

We say that a horn Λk[n] → X is inner if 0 < k < n. We call a simplicial
set X a quasi-category if every inner horn Λk[n] → X has a filler. This notion
was introduced by M. Boardman and R.Vogt in their work on homotopy invariant
algebraic structures [BV]. A quasi-categories is sometime called a weak Kan complex
in the literature [KP]. A Kan complex and the nerve of a category are examples
of quasi-categories. In fact, a simplicial set X is (isomorphic) to the nerve of a
category iff every inner horn Λk[n] → Xhas a unique filler ∆[n] → X. We shall
often say that a vertex in a quasi-category is an object of this quasi-category and
that an arrow is a morphism. A map of quasi-categories is defined to be a map
of simplicial sets. We denote by QCat the category of quasi-categories. If X is a
quasi-category then so is the simplicial set XA for any simplicial set A. Hence the
category QCat is cartesian closed.

2.5. A quasi-category can be large.
We fix three arbitrary Grothendieck universes S = U1, U2 and U3, with U1 ∈

U2 ∈ U3. Entities in U1 are small, entities in U2 are large and entities in U3

are extra-large (small entities are large and large entities are extra-large but the
converse is not true). For example, a category is said to be small (resp. large,
extra-large) if its set of objects and it set of arrows belong to U1 (resp. U2, U3).
We denote by Set the category of small sets and by SET the category of large sets.
A category is locally small if its hom sets are small. We denote by Cat the category
of small categories and by CAT the category of locally small large categories. The
category Cat is large and the category CAT extra-large. We shall denote small
categories by ordinary capital letters and large categories by curly capital letters.
The cardinality of a small category is defined to be the cardinality of its set of
arrows. A diagram in a category E is a functor D : K → E , where K is a small
category; the cardinality of D is defined to be the cardinality of its domain K.

A large simplicial set is defined to be a functor ∆o → SET where SET is the
category of sets in a Grothendieck universe. A large simplicial set X is locally
small if the vertex map Xn → Xn+1

0 has small fibers for every n ≥ 0. Most large
quasi-categories considered in these notes are locally small.

2.6. The fundamental category of a simplicial set X has a simpler description when
X is a quasi-category. It is the homotopy category hoX described by Boardman
and Vogt in [BV]. Here is a quick description of hoX. Consider the projection

p = (p0, p1) : XI → X∂I = X ×X

defined from the inclusion ∂I = {0, 1} ⊂ I. Its fiber X(a, b) at (a, b) ∈ X0 × X0

is the simplicial set of arrows a → b in X. It is a Kan complex when X is a
quasi-category. We have

(hoX)(a, b) = π0X(a, b)
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for every pair a, b ∈ X0 = Ob(hoX). We denote by [f ] : a→ b the homotopy class
of an arrow f : a → b. The homotopy relation ∼ between the arrows a → b has
the following simple description. A right homotopy u : f ⇒R g between two arrows
f, g : a→ b is defined to be a 2-simplex u : ∆[2]→ X with boundary ∂u = (1b, g, f),

b
1b

��>
>>

>>
>>

>

a

f

@@��������
g

// b.

Dually a left homotopy v : g ⇒L f is defined to be a 2-simplex v : ∆[2] → X with
boundary ∂t = (f, g, 1a),

a
f

��@
@@

@@
@@

a

1a

??��������
g

// b.

It turns out that two arrows f, g : a → b are homotopic iff there exists a right
homotopy f ⇒R g iff there exists a right homotopy g ⇒R f iff there exists a left
homotopy g ⇒L f iff there exists a left homotopy f ⇒L g. The composition law

hoX(b, c)× hoX(a, b) → hoX(a, c)

of the category hoX can be described as follows. If [f ] : a→ b and [g] : b→ c, the
horn (g, ?, f) : Λ1[2]→ X can be filled by a simplex v : ∆[2]→ X,

b
g

��?
??

??
??

?

a

f
??��������
h

// c.

Then we have [g][f ] = [h], where h = vd1 : a→ c.

2.7. If X is a quasi-category, then an arrow f : a → b in X is quasi-invertible iff
there exists an arrow g : b→ a together with two 2-simplices u, v : ∆[2]→ X with
boundaries ∂u = (g, 1a, f) and ∂v = (f, 1b, g),

b
g

��>
>>

>>
>>

>

a

f
??��������
1a

// a

b
f

��=
==

==
==

=

b

g

@@��������
1b

// b

Let J be the groupoid generated by one isomorphism 0 → 1. It turns out that
an arrow f ∈ X is quasi-invertible, iff the map I → X which represents f can be
extended along the inclusion I ⊂ J . See [J1].

2.8. There is an analogy between Kan complexes and groupoids. If Gpd denotes
the category of groupoids and Kan denotes the category of Kan complexes, then
we have Kan ∩Cat = Gpd, where the intersection is taken in QCat (or in S),

Gpd

in

��

in // Kan

in

��
Cat

in // QCat,
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A quasi-category X is a Kan complex iff its homotopy category hoX is a groupoid
[J1]. Hence we have a pullback square of categories,

Gpd

in

��

Kan
π1oo

in

��
Cat QCat.

τ1oo

The inclusion functor Gpd ⊂ Cat has a right adjoint J : Cat→ Gpd, where J(C)
is the groupoid of isomorphisms of a category C. Similarly, the inclusion functor
Kan ⊂ QCat has a right adjoint J : QCat → Kan. The simplicial set J(X) is
the largest Kan subcomplex of a quasi-category X. The following naturality square
is a pullback of simplicial sets,

J(X)� _

��

// J(hoX)� _

��
X

h // hoX,

where h is the canonical map. Thus, a simplex x : ∆[n] → X belongs to J(X) iff
the arrow x(i − 1, i) is a quasi-isomorphism for every 1 ≤ i ≤ n. Moreover, the
following two squares of functors commute up to a natural isomorphism,

Gpd in // Kan

Cat

J

OO

in // QCat,

J

OO Gpd Kan
π1oo

Cat

J

OO

QCat.
τ1oo

J

OO

2.9. The category S has the structure of a 2-category. If A and B are simplicial
sets, let us put

τ1(A,B) = τ1(BA).

If we apply the functor τ1 to the composition map CB ×BA → CA, we obtain the
composition law

τ1(B,C)× τ1(A,B)→ τ1(A,C)

of a 2-category Sτ1 if we put Sτ1(A,B) = τ1(A,B). The 0-cells of this 2-category
are simplicial sets and the 1-cells are the maps of simplicial sets. A 2-cell α : f →
g : A → B is an arrow of the category τ1(BA). We shall say that α is a natural
transformation. The 2-category Sτ1 is cartesian closed.

2.10. There is a notion of equivalence in any 2-category. We shall say that a map
of simplicial set is a categorical equivalence iff it is an equivalence in the 2-category
Sτ1 . If X and Y are quasi-categories, a categorical equivalence X → Y is called an
equivalence of quasi-categories. A map between quasi-categories f : X → Y is an
equivalence iff there exists a map g : Y → X together with two quasi-isomorphisms
gf → 1X and fg → 1Y .



6 ANDRÉ JOYAL

3. The model structure

3.1. We recall the construction of the homotopy category of simplicial sets Sπ0 by
Gabriel and Zisman in [GZ]. The category S is cartesian closed and the functor
π0 : S→ Set preserves finite products. If A,B ∈ S let us put

π0(A,B) = π0(BA).

If we apply the functor π0 to the composition map CB × BA → CA we obtain a
composition law π0(B,C)×π0(A,B)→ π0(A,C) for a category Sπ0 , where we put
Sπ0(A,B) = π0(A,B). A map of simplicial sets is called a homotopy equivalence if
it is invertible in the category Sπ0 .

3.2. A map of simplicial sets u : A→ B is a weak homotopy equivalence if the map

π0(u, X) : π0(B,X)→ π0(A,X)

is bijective for every Kan complex X. A map between Kan complexes is a weak
homotopy equivalence iff it is a homotopy equivalence.

3.3. Recall that a map of simplicial sets f : X → Y is called a Kan fibration if it
has the right lifting property with respect to the inclusion Λk[n] ⊂ ∆[n] for every
n > 0 and k ∈ [n],

Λk[n]

��

// X

f

��
∆[n] //

=={
{

{
{

Y

.

3.4. The category S admits a model structure in which the cofibrations are the
monomorphisms and the weak equivalences are the weak homotopy equivalences
[Q]. The fibrations are the Kan fibrations and the fibrant objects the Kan com-
plexes. The acyclic fibrations are the trivial fibrations as defined in 31.10. The
model structure is cartesian closed and proper. We shall denote it shortly by
(S,Who), where Who denotes the class of weak homotopy equivalences. We say
that it is the classical model structure on S.

3.5. We call a functor p : E → B (in Cat) a quasi-fibration if for every object
x ∈ E and every isomorphism g ∈ B with target p(x), there exists an isomorphism
f ∈ E with target x such that p(f) = g. A functor p : E → B is a quasi-fibration iff
the opposite functor po : Eo → Bo is a quasi-fibration. Hence a functor p : E → B
is a quasi-fibration iff for every object x ∈ E and every isomorphism g ∈ B with
source p(x), there exists an isomorphism f ∈ E with source x such that p(f) = g.

3.6. The category Cat admits a model structrure in which the weak equivalences
are the equivalences of categories and the fibration are the quasi-fibrations [JT1].
A functor u : A → B is a cofibration iff the map Ob(u) : ObA → ObB is monic.
Every object is fibrant and cofibrant. The model structure is cartesian and proper.
We shall denote it shortly by (Cat, Eq), where Eq denotes the class of equivalences
between categories.
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3.7. If A is a simplicial set, we shall denote by τ0A the set of isomorphism classes
of objects of the fundamental category τ1A. The functor

τ0 : S→ Set

preserves finite products, since the functor τ1 : S→ Cat preserves finite products.
For any pair (A,B) of simplicial sets, let us put

τ0(A,B) = τ0(BA).

If we apply the functor τ0 to the the composition map CB × BA → CA we obtain
the composition law τ0(B,C) × τ0(A,B) → τ0(A,C) of a category Sτ0 , where we
put Sτ0(A,B) = τ0(A,B). A map of simplicial sets u : A → B is a categorical
equivalence iff u is invertible in the category Sτ0 .

3.8. We shall say that a map of simplicial sets u : A → B is a weak categorical
equivalence if the map

τ0(u, X) : τ0(B,X)→ τ0(A,X)

is bijective for every quasi-category X. Equivalently, a map of simplicial sets u :
A→ B is a weak categorical equivalence iff the map

τ1(u, X) : τ1(B,X)→ τ1(A,X)

is an equivalence of categories for every quasi-category X iff the map

Xu : XB → XA

is an equivalence of quasi-categories for every quasi-category X.

3.9. We shall say that a map of simplicial sets is a quasi-fibration if it has the
right lifting property with respect to every monic weak categorical equivalences.
The notion of quasi-fibration is self dual: a map p : X → Y is a quasi-fibration iff
the opposite map po : Xo → Y o is a quasi-fibration. The quasi-fibrations between
quasi-categories have a simpler description. We shall say that a map of simplicial
sets a mid fibration if it has the right lifting propery with respect to the inclusion
Λk[n] ⊂ ∆[n] for every 0 < k < n. Every quasi-fibration is a mid fibration. A mid
fibration between quasi-categories p : X → Y is a quasi-fibration iff the functor
ho(p) : hoX → hoY is a quasi-fibration in Cat iff for every object x ∈ X and every
quasi-isomorphism g ∈ Y with target p(x), there exists a quasi-isomorphism f ∈ X
with target x such that p(f) = g. A map between quasi-categories p : X → Y is a
quasi-fibration iff the map

〈j0, p〉 : XJ → Y J ×Y X

obtained from the square

XJ
Xj0 //

��

X

p

��
Y I

Y j0 // Y,

is a trivial fibration, where j0 denotes the inclusion {0} ⊂ J . See 31.10 for the
notion of trivial fibration.
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3.10. The category S admits a model structure in which the cofibrations are the
monomorphisms and the weak equivalences are the weak categorical equivalences
[J2]. The fibrations are the quasi-fibrations and the fibrant objects are the quasi-
categories. The acyclic fibrations are the trivial fibrations. The model structure
is cartesian closed and left proper. We shall say that it is the model structure for
quasi-categories. We shall denote it shortly by (S,Wcat), where Wcat denotes the
class of weak categorical equivalences.

3.11. The pair of adjoint functors τ1 : S ↔ Cat : N is a Quillen pair between
the model categories (S,Wcat) and (Cat, Eq). A functor u : A → B in Cat is a
quasi-fibration iff the map Nu : NA→ NB is a quasi-fibration.

3.12. The classical model structure (S,Who) is a Bousfield localisation of the model
structure (S,Wcat). Thus, a weak categorical equivalence is a weak homotopy
equivalence and a Kan fibration is a quasi-fibration. The converse holds for a map
between Kan complexes. A simplicial set A is weakly categorically equivalent to a
Kan complex iff the category τ1A is a groupoid.

3.13. Consider the functor k : ∆ → S defined by putting k[n] = ∆′[n] for every
n ≥ 0, where ∆′[n] denotes the (nerve of) the groupoid freely generated by the
category [n]. If X ∈ S, let us put

k!(X)n = S(∆′[n], X)

for every n ≥ 0. The functor k! : S→ S has a left adjoint k! which is the left Kan
extension of the functor k along the Yoneda functor y : ∆→ S. The adjoint pair

k! : S↔ S : k!

is a Quillen pair k! : (S,Who) ↔ (S,Wcat) : k! and a homotopy coreflection [J2].
See 31.26 for the notion of homotopy coreflection. If X is a quasi-category, then
the canonical map k!(X) → X factors through the inclusion J(X) ⊆ X and the
induced map k!(X)→ J(X) is a trivial fibration.

3.14. A homotopy α : f → g between two maps f, g : A → B is an arrow in the
simplicial set XA. The corresponding morphism [α] : f → g in τ1(A,B) is a natural
transformation f → g. When B is a quasi-category, the natural transformation [α]
is invertible iff the arrow α(a) : f(a)→ g(a) is quasi-invertible in B for every vertex
a ∈ A. We say that a map of simplicial sets u : A→ B is conservative if the functor
τ1u : τ1A→ τ1B is conservative. If a map of simplicial sets u : A→ B is essential
surjective then the map Xu : XB → XA is conservative for every quasi-category
X.

3.15. Recall that a Kan complex X is said to be minimal if it contains no proper
equivalent sub-complex S ⊂ X (this means that the inclusion S ⊂ X is not an
homotopy equivalence for any proper subcomplex S of X. Every Kan complex
contains a minimal subcomplex which is unique up to isomorphism. We say that a
quasi-category X is minimal if it contains no proper equivalent sub-quasi-category
S ⊂ X. Every quasi-category contains a minimal quasi-category which is unique
up to isomorphism.
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4. Equivalence with simplicial categories

Recall that a simplicial category is a category enriched over simplicial sets. We
denote by SCat the category of simplicial categories and (strong) functors. The
inclusion functor Cat ⊂ SCat has a left adjoint ho : SCat→ Cat which associates
to a simplicial category X its homotopy category ho(X). By construction, we have
ho(X)(a, b) = π0X(a, b) for every pair of objects a, b ∈ X.

4.1. We shall say that a strong functor f : X → Y is weakly fully faithful if
the map X(a, b) → Y (fa, fb) induced by f is a weak homotopy equivalence for
every pair of objects a, b ∈ X. We shall say that f is weakly essentially surjective
if the functor ho(f) : ho(X) → ho(Y ) is essentially surjective. A functor f :
X → Y is called a Dwyer-Kan equivalence if it is weakly fully faithful and weakly
essentially surjective. Here is another description of the Dwyer-Kan equivalences.
Let us denote by Ho(S) the classical homotopy category, obtained by inverting
the weak homotopy equivalences in S. The canonical functor S → Ho(S) induces
a functor Ho : SCat → Ho(S)Cat, where Ho(S)Cat denotes the category of
categories enriched over Ho(S). Then a functor f : X → Y in SCat is a Dwyer-
Kan equivalence iff the functor Ho(f) : Ho(X) → Ho(Y ) is an equivalence of
categories enriched over Ho(S).

4.2. A functor f : X → Y is called a Dwyer-Kan fibration if the map X(a, b) →
Y (fa, fb) induced by f is a Kan fibration for every pair of objects a, b ∈ X and the
functor ho(f) : ho(X) → ho(Y ) is a quasi-fibration in Cat. The category SCat
admits a model structure in which a weak equivalence is a Dwyer-Kan equivalence
and a fibration is a Dwyer-Kan fibration [B1]. The fibrant objects are the categories
enriched over Kan complexes. A map f : X → Y is an acyclic fibration iff the map
Ob(f) : ObX → ObY is surjective and the map X(a, b) → Y (fa, fb) is a trivial
fibration for every pair of objects a, b ∈ X.

4.3. Recall that a reflexive graph is a 1-truncated simplicial set. Let Grph be the
category of reflexive graphs. The obvious forgetful functor U : Cat → Grph has
a left adjoint F . The composite C = FU has the structure of a comonad on Cat.
Hence the sequence CnA = Cn+1(A) for n ≥ 0 has the structure of a simplicial
object C∗(A) in Cat for any small category A. The simplicial set n 7→ Ob(CnA)
is constant with value Ob(A). It follows that C∗A can be viewed as a simplicial
category instead of a simplicial object in Cat. This defines a functor

C∗ : Cat→ SCat.

If A is a category and X is a simplicial category, a homotopy coherent diagram
A→ X is defined to be a simplicial functor C∗(A)→ X, This notion was introduced
by Vogt in [V]. The coherent nerve of a simplicial category X is the simplicial set
C !X defined by putting

(C !X)n = SCat(C?[n], X)

for every n ≥ 0. This notion was introduced by Cordier in [C]. The simplicial
set C !(X) is a quasi-category when X is enriched over Kan complexes [CP]. The
functor C ! : SCat→ S has a left adjoint C! which is the left Kan extension of the
functor [n] 7→ C?[n] along the Yoneda functor ∆ → S. It turns out that we have
C!A = C?A for every category A [J3].
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4.4. The pair of adjoint functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category for quasi-categories and the
model category for simplicial categories [J3].

4.5. A simplicial category can be large. For example, the category Kan of Kan
complexes is a large simplicial category. The coherent nerve of the category Kan
is a large quasi-category that we shall denote by Hot or by Hot1. It plays an
important role in the theory of quasi-categories. It is the analog of the category of
sets.

4.6. The category QCat becomes enriched over Kan complexes if we put

HomJ(X, Y ) = J(Y X)

for X, Y ∈ QCat. The coherent nerve of QCat is a large quasi-category that we
shall denote by HOT2. It is the analog of the category of small categories.

5. Left and right coverings

5.1. We recall that a pair (A,B) of classes of maps in a category E is said to be a
factorisation system if the following conditions are satisfied:

• the classes A and B are closed under composition and contain the isomor-
phisms;
• every map f : A → B admits a factorisation f = pu : A → E → B with

u ∈ A and p ∈ B, and the factorisation is unique up to unique isomorphism.

In this definition, the uniqueness of the factorisation of a map f : A → B means
that for any other factorisation f = qv : A→ F → B with v ∈ A and q ∈ B, there
exists a unique isomorphism i : E → F such that iu = v and qi = p,

A

u

��

v // F

q

��
E p

//

i

>>}
}

}
}

B.

5.2. A functor p : E → B is said to be a discrete fibration if for every object e ∈ E
and every arrow g ∈ B with target p(e), there exists a unique arrow f ∈ E with
target e such that p(f) = e. There is a dual notion of discrete opfibration . If X
is a presheaf on B, then the canonical functor el(X) → B is a discrete fibration,
where el(X) = B/X is the category of elements of X. Let us denote by Disc(B)
the full subcategory of Cat/B whose objects are the discrete fibrations E → B.
Then the functor X 7→ el(X) induces an equivalence of categories

el : [Bo,Set] ' Disc(B).
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5.3. We recall that a functor between small categories u : A → B is said to be
final, but we shall say 0-final, if the canonical map

lim
−→
C

Xu→ lim
−→
B

X

is an isomorphism for every diagram X : B → E with values in a cocomplete
category E . A functor u : A→ B is 0-final iff the canonical map

lim
←−
B

X → lim
←−
C

Xu

is an isomorphism for every presheaf X : Bo → Set. Recall that a functor u : A→
B induces a pair of adjoint functors between the categories of presheaves

u! : [Ao,Set]→ [Bo,Set] : u∗.

A functor u : A → B is 0-final iff we have u!(1) = 1, where 1 denotes terminal
objects. If X ∈ [Ao,Set], then we have

u!(X)(b) = lim
−→
b\A

Xqb

for every object b ∈ B, where the category b\A = (b\B) ×B A is defined by the
pullback square

b\A

��

qb // A

u

��
b\B // B.

A functor u : A → B is 0-final iff the category b\A is connected for every object
b ∈ B.

5.4. The category Cat admits a factorisation system (A,B) in which A is the class
of 0-final functors and B is the class of discrete fibrations.

5.5. Dually, we shall say that a functor u : A → B is 0-initial) if the opposite
functor uo : Ao → Bo is 0-final. The category Cat admits a factorisation system
(A,B) in which A is the class of 0-initial functors and B is the class of discrete
opfibrations.

5.6. We shall say that a functor p : E → B in Cat is a covering it is both a
discrete fibration and a discrete opfibration. These notions coincide when B is
a groupoid. The functor π1 : Cat → Grp induces an equivalence between the
category of coverings of B and the category of coverings of π1B. The inverse
equivalence associates to a covering of π1B its base change along the canonical
functor B → π1B. We shall say that a functor u : A→ B in Cat is 0-connected if
the functor π1u : π1A→ π1B is 0-initial (or equivalently 0-final).

5.7. The category Cat admits a factorisation system (A,B) in which A is the class
of 0-connected functors and B is the class of coverings.
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5.8. Recall that a map u : A → B in a category E is said to be left orthogonal to
a map f : X → Y , and f right orthogonal to u, if every commutative square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a unique diagonal filler d : B → X (that is, du = x and fd = y). We denote
this relation by u⊥f .

5.9. We shall say that a map of simplicial sets f : X → Y is a left covering if it
is right orthogonal to the inclusion {0} ⊆ ∆[n] for every n ≥ 0. Dually, we shall
say that f is a right covering if it is right orthogonal to the inclusion {n} ⊆ ∆[n]
for every n ≥ 0. We shall say that f is a covering if it is both a left and a right
covering.

5.10. We shall say that a map of simplicial set u : A→ B is 0-final if the functor
τ1(u) : τ1A → τ1B is 0-final. Dually shall say that u is 0-initial if the functor
τ1(u) : τ1A → τ1B is 0-initial. We shall say that u is 0-connected if the functor
π1(u) : π1A→ π1B is 0-connected.

5.11. Each of the following pair (A,B) of classes of maps in S is a factorisation
system:

• A is the class of 0-connected maps and B the class of coverings;
• A is the class of 0-final maps and B the class of right coverings;
• A is the class of 0-initial maps and B the class of left coverings.

6. Join and slice

For any category C and any object b ∈ C there is a category C/b of morphisms
a→ b. We shall see that for any simplicial set X, there is a simplicial set X/a for
any vertex a ∈ X. More generally, we shall construct a simplicial set X/a for any
map of simplicial sets a : A→ X. For this, we introduce the join of simplicial sets.
We use augmented simplicial sets for defining the join of simplicial sets.

6.1. The join of two categories A and B is the category C = A ? B obtained as
follows: Ob(C) = Ob(A)tOb(B) and for any pair of objects x, y ∈ Ob(A)tOb(B)
we have

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B

1 if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

Composition or arrows is obvious. Notice that the category A ? B is a poset if A
and B are posets: it is the ordinal sum of the posets A and B. The operation
(A,B) 7→ A ? B is functorial and coherently associative. It defines a monoidal
structure on Cat, with the empty category as the unit object. The monoidal
category (Cat?) is not symmetric but there is a natural isomorphism

(A ? B)o = Bo ? Ao.
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The category 1 ? A is called the projective cone with base A and the category A ? 1
the inductive cone with cobase A. The object 1 is terminal in A ? 1 and initial in
1 ? A. The category A ? B can be equipped with the functor A ? B → I = 1 ? 1
obtained by joining the functors A → 1 and B → 1. The resulting functor ? :
Cat×Cat→ Cat/I is right adjoint to the functor

i∗ : Cat/I → Cat×Cat,

where i denotes the inclusion {0, 1} = ∂I ⊂ I,. This gives another description of
the join operation.

6.2. The monoidal category (Cat, ?) is not closed. But the functor

(−) ? C : Cat→ C\Cat

which associates to X ∈ Cat the inclusion C ⊆ X ? C has a right adjoint for any
category C. The right adjoint takes a functor b : B → C to a category that we shall
denote by C/b, or more simply by C/B if the functor b is clear from the context.
For any category A, there is a bijection between the functors A → C/b and the
functors A ? B → C which extends b along the inclusion B ⊆ A ? B,

B

��

b

##FF
FF

FF
FF

F

A ? B // C.

In particular, an object 1→ C/b is a functor c : 1 ? B → C which extends b; it is a
projective cone with base b in C.

6.3. Dually, the functor A ? (−) : Cat → A\Cat has a right adjoint which takes
a functor a : A → C to a category that we shall denote a\C, or more simply by
A\C if the functor a is clear from the context. An object 1 → a\C is a functor
c : A ? 1→ C which extends a; it is an inductive cone with cobase a.

6.4. We shall denote by ∆+ the category of all finite ordinals and order preserving
maps, including the empty ordinal 0. We shall denote the ordinal n by n, so that
we have n = [n− 1] for n ≥ 1. We may occasionally denote the ordinal 0 by [−1].
Notice the isomorphism of categories 1?∆ = ∆+. The ordinal sum (m,n) 7→ m+n is
functorial with respect to order preserving maps. This defines a monoidal structure
on ∆+,

+ : ∆+ ×∆+ → ∆+,

with 0 as the unit object.

6.5. Recall that an augmented simplicial set is defined to be a contravariant functor
∆+ → Set. We shall denote by S+ the category of augmented simplicial sets. By
a general procedure due to Brian Day [Da], the monoidal structure of ∆+ can be
extended to S+ as a closed monoidal structure

? : S+ × S+ → S+

with 0 = y(0) as the unit object. We call X ?Y the join of the augmented simplicial
sets X and Y . We have

(X ? Y )(n) =
⊔

i+j=n

X(i)× Y (j)

for every n ≥ 0.
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6.6. From the inclusion t : ∆ ⊂ ∆+ we obtain a pair of adjoint functors

t∗ : S+ ↔ S : t∗.

The functor t∗ removes the augmentation of an augmented simplicial set. The
functor t∗ gives a simplicial set A the trivial augmentation A0 → 1. Notice that
t∗(∅) = 0 = y(0), where y is the Yoneda map ∆+ → S+. The functor t∗ is fully
faithful and we shall regard it as an inclusion t∗ : S ⊂ S+. The operation ? on S+

induces a monoidal structure on S,

? : S× S→ S.

By definition, t∗(A ? B) = t∗(A) ? t∗(B) for any pair A,B ∈ S. We call A ? B the
join of the simplicial sets A and B. It follows from the formula above, that we have

(A ? B)n = An tBn t
⊔

i+1+j=n

Ai ×Aj .

for every n ≥ 0. Notice that we have

A ? ∅ = A = ∅ ? A

for any simplicial set A, since t∗(∅) = 0 is the unit object for the operation ? on
S+. Hence the empty simplicial set is the unit object for the join operation on S.
The monoidal category (S, ?) is not symmetric but there is a natural isomorphism

(A ? B)o = Bo ? Ao.

For every pair m,n ≥ 0 we have

∆[m] ? ∆[n] = ∆[m + 1 + n]

since we have [m] + [n] = [m + n + 1]. In particular,

1 ? 1 = ∆[0] ? ∆[0] = ∆[1] = I.

The simplicial set 1 ? A is called the projective cone with base A and the simplicial
set A ? 1 the inductive cone with cobase A.

6.7. If A and B are simplicial sets, then the join of the maps A→ 1 and B → 1 is
a canonical map A ? B → I. This defines a functor

? : S× S→ S/I

which is right adjoint to the functor i∗ : S/I → S× S = S/∂I, where i denotes the
inclusion {0, 1} = ∂I ⊂ I. This gives another description of the join operation for
simplicial sets.

6.8. The monoidal category (S, ?) is not closed. But the functor

(−) ? B : S→ B\S

which associates to X the inclusion B ⊆ X ?B has a right adjoint for any simplicial
set B. The right adjoint takes a map b : B → X to a simplicial set that we shall
denote by X/b, or more simply by X/B if the map b is clear from the context. We
shall say that X/b is obtained by slicing X over b. For any simplicial set A, there
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is a bijection between the maps A→ X/b and the maps A ? B → X which extends
b along the inclusion B ⊆ A ? B,

B

��

b

##GG
GG

GG
GG

G

A ? B // X.

In particular, a vertex 1 → X/b is a map c : 1 ? B → X which extends the map
b; it a projective cone with base b in X. The simplicial set X/b is a quasi-category
when X is a quasi-category.

6.9. Dually, the functor A ? (−) : S→ A\S has a right adjoint. The right adjoint
takes a map a : A→ X to a simplicial set that we shall denote a\X, or more simply
by A\X if the map a is clear from the context. We shall say that a\X is obtained
by slicing X under a. A vertex 1→ a\X is a map c : A ? 1→ X which extends the
map a; it is an inductive cone with cobase a in X.

6.10. If A, B and X are simplicial sets, we obtain a natural inclusion A ? B ⊆
A ? X ? B by joining the maps 1A : A→ A, ∅ → X and 1B : B → B. The functor

A ? (−) ? B : S→ (A ? B)\S

which associates to X the inclusion A ? B ⊆ A ? X ? B has a right adjoint for any
pair A and B. The right adjoint takes a map of simplicial sets f : A ? B → X to a
simplicial set that we shall denote Fact(f,X). A vertex 1 → Fact(f,X) is a map
g : A ? 1 ? B → X which extends f . When A = B = 1, it is a factorisattion of the
arrow f : I → X. If f is an arrow a→ b then Fact(f,X) = f\(X/b) = (a\X)/f .

6.11. Recall that a model structure on a category E induces a model structure
on the slice category E/B for each object B ∈ E . In particular, we have a model
category (B\S,Wcat) for each simplicial set B. The pair of adjoint functors X 7→
X ? B and (X, b) 7→ X/b is a Quillen pair between the model categories (S,Wcat)
and (B\S,Wcat).

6.12. There are other constructions of the join of two simplicial sets. For example,
the fat join of A and B is the simplicial set A �B defined by the pushout square

(A× 0×B) t (A× 1×B) //

��

A tB

��
A× I ×B // A �B.

We have A t B ⊆ A � B and there is a canonical map A � B → I. The functor
(A,B) 7→ A � B, from S× S to S/I, is continuous. In the category S× S we have
(X, Y ) = (X, 1)× (1, Y ). It follows that we have

X � Y = (X � 1)×I (1 � Y ).

For a fixed B ∈ S, the functor (−) � B : S → B\S which takes a simplicial set
X to the inclusion B ⊆ X � B has a right adjoint. The right adjoint takes a map
b : B → X to a simplicial set that we shall denote by X//b; we shall say that X//b is
a fat slice. If b ∈ X0, the simplicial set X//b is the fiber of the target map XI → X
at b.
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6.13. The pair of adjoint functors X 7→ X � B and (X, b) 7→ X//b is a Quillen
adjoint pair between the model categories (S,Wcat) and (B\S,Wcat).

6.14. The square

A tB

��

// A ? B

��
A �B // I

has a unique diagonal filler θAB . This defines a natural transformation θAB :
A � B → A ? B. By adjointness, we obtain a natural map θ′b : X/b → X//b for
any map of simplicial sets b : B → X. The map θAB : A � B → A ? B is a
weak categorical equivalence for any pair of simploicial sets A and B and the map
θ′b : X/b→ X//b is an equivalence of quasi-categories when X is a quasi-category.

7. Left and right fibrations

7.1. We call a map of simplicial sets p : X → B a right fibration if it has the right
lifting property with respect to the inclusion hk

n : Λk[n] ⊂ ∆[n] for every 0 < k ≤ n.
The fibers of a right fibration are Kan complexes. A map p : X → B is a right
fibration iff the map

〈i1, p〉 : XI → BI ×B X

obtained from the inclusion i1 : {0} ⊂ I is a trivial fibration. If f : X → Y is a
right fibration, then so is the map

〈u, f〉 : XB → Y B ×Y A XA.

for any monomorphism u : A→ B.

7.2. If A and B are categories, then a functor p : A → B is a right fibration iff p
is a Grothendieck fibration whose fibers are groupoids.

7.3. We say that a map is right anodyne if it belongs to the saturated class gen-
erated by the inclusions Λk[n] ⊂ ∆[n] with 0 ≤ k < n. If A is the class of right
anodyne maps and B is the class of right fibrations, then the pair (A,B) is a weak
factorisation system on S.

7.4. Dually, we call a map of simplicial sets p : X → Y a left fibration if it has
the right lifting property with respect to the inclusion hk

n : Λk[n] ⊂ ∆[n] for every
0 ≤ k < n. We say that a map is left anodyne if it belongs to the saturated class
generated by the inclusions Λk[n] ⊂ ∆[n] with 0 ≤ k < n. If A is the class of left
anodyne maps and B is the class of left fibrations, then the pair (A,B) is a weak
factorisation system on S.

7.5. A map X → B is a left fibration iff the opposite map Xo → Bo is a right
fibration. A map u : A → B is left anodyne iff the opposite map uo : Ao → Bo is
right anodyne
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7.6. If B is a simplicial set, we say that an object X = (X, p) of the category S/B
is a simplicial set over B and that p : X → B is its structure map. We say that a
map u : X → Y in S/B is a map over B. The category S/B is enriched over S.
We shall denote by [X, Y ]B , or more simply by [X, Y ], the simplicial set of maps
X → Y between two objects X, Y ∈ S/B. We have a composition map

[Y, Z]× [X, Y ]→ [X, Z]

for every triple X, Y, Z ∈ S/B.

7.7. The homotopy category (S/B)π0 is defined by putting

(S/B)π0(X, Y ) = π0[X, Y ]

for every pair X, Y ∈ S/B, The composition law

π0[Y, Z]× π0[X, Y ]→ π0[X, Z]

is obtained by applying the functor π0 to the composition map [Y, Z] × [X, Y ] →
[X, Z]. There is an obvious canonical functor S→ S/B. We say that a map in S/B.
is a fibrewise homotopy equivalence if the map is invertible in the category (S/B)π0 .
Let R(B) the full subcategory of S/B spanned by the right fibrations X → B. If
X, Y ∈ R(B), then a map u : X → Y is a fiberwise homotopy equivalence iff the
induced map between the fibers ub : Xb → Yb is a homotopy equivalence for every
vertex b ∈ B.

7.8. We shall say that a map u : M → N in S/B is a contravariant equivalence if
the map

π0[u, X] : π0[M,X]→ π0[N,X]

is bijective for every X ∈ R(B). Every right anodyne map between two objects of
S/B is a contravariant equivalence.

7.9. We shall say that a map in S/B is a contravariant fibration if it has the right
lifting property with respect to the monic contravariant equivalences in S/B. Every
contravariant fibration in is a right fibration and the converse is true for a map in
R(B).

7.10. The category S/B admits a left proper simplicial model structure in which a
cofibration is a monomorphism, a weak equivalence is a contravariant equivalence
and a fibration is a contravariant fibration. An object in S/B is fibrant iff it
belongs to R(B). A contravariant fibration is acyclic iff it is a trivial fibration.
This defines the contravariant model structure on S/B. We shall denote it shortly
by (S/B,Wc(B)), or more simply by (S/B,Wc).

7.11. Every right fibration X → B has a minimal model which is unique up to
isomorphism.

7.12. The model structure (S,Wcat) induces a model structure (S/B,Wcat) on
the category S/B for each simplicial set B. The contravariant model structure
(S/B,Wc) is a Bousfield localisation of the model structure (S/B,Wcat).
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7.13. Dually, let L(B) be the full subcategory of S/B whose objects are left fibra-
tions X → B. We say that a map u : M → N in S/B a covariant equivalence if
the map

π0[u, X] : π0[M,X]→ π0[N,X]
is bijective for every X ∈ L(B). We shall say that a map in S/B is a covariant
fibration if it has the right lifting property with respect to the monic covariant
equivalences in S/B. Every covariant fibration in is a left fibration and the converse
is true for a map in L(B).

7.14. The category S/B admits a simplical model structure in which a cofibration
is a monomorphism, a weak equivalence is a covariant equivalence and a fibration is
a covariant fibration. An object in S/B is fibrant iff it belongs to L(B). This defines
the covariant model structure on S/B. We shall denote it shortly by (S/B,Wc(B)),
or more simply by (S/B,Wc).

7.15. The functor X 7→ Xo induces an isomorphism of model categories

(S/B,Wc) ' (S/Bo,Wc).

Thus, a map u : M → N in S/B is a covariant equivalence iff the opposite map
uo : Mo → No is a contravariant equivalence in S/Bo. A map f : X → Y in S/B is
a covariant fibration iff the opposite map fo : Xo → Y o is a cntravariant fibration
in S/Bo.

7.16. Recall that a functor u : C → D in Cat induces a pair of adjoint functors
between the categories of presheaves

u! : [Do,Set]→ [Co,Set] : u∗.

Similarly, a map of simplicial sets u : A→ B induces a pair of adjoint functors

u! : S/A→ S/B : u∗.

The pair (u!, u
∗) is a Quillen pair between the contravariant model structures

u! : (S/A, W c)→ (S/B,W c) : u∗

and also between the covariant model structures

u! : (S/A, Wc)→ (S/B,Wc) : u∗.

7.17. The pullback of a contravariant equivalence along a right fibration is a con-
travariant equivalence. The pullback of a weak categorical equivalence along a right
fibration is a weak categorical equivalence.

8. Initial and final functors

8.1. A map of simplicial sets u : A→ B induces a Quillen pair of adjoint functors

u! : (S/A,Wc)↔ (S/B,Wc) : u∗.

Hence also an adjoint pair of derived functors between the homotopy categories,

uL
! : Ho(S/A,Wc)↔ Ho(S/B,Wc) : u?R.

We say that u is final iff the functor uL
! preserves terminal objects. For each vertex

b ∈ B, let us choose a factorisation 1 → Lb → B of the map b : 1 → B as
a left anodyne map 1 → Lb followed by a left fibration Lb → B. Then a map
u : A → B is final iff the simplicial set Lb ×B A is weakly contractible for every



QUASI-CATEGORIES 19

vertex b ∈ B. When B is a quasi-category, a map u : A→ B is final iff the simplicial
set b\A = (b\B)×B A defined by the pullback square

b\A //

��

A

u

��
b\B // B

is weakly contractible for every object b ∈ B.

8.2. If u : A → B is a final map, then a map v : B → C is final iff the composite
vu : A → C is final. The notion of final map is invariant under weak categorical
equivalences. More precisely, if the horizontal maps of a commutative square

A

��

// A′

��
B // B′

are weak categorical equivalences, then the map A→ B is final iff the map A′ → B′

is final. A monomorphism is final iff it is right anodyne. A map u : A→ B is final
if it admits a factorisation u = wi : A→ B′ → B, with i a right anodyne map and
w a weak categorical equivalence.

8.3. Let A be a simplicial set. We shall say that a vertex a ∈ A is terminal if
the map a : 1 → A is final or equivalently if it is right anodyne. A vertex a ∈ A
which is terminal in A is also a terminal object of the category τ1A. The converse
is true when A admits at least one terminal vertex. The notion of terminal vertex
is invariant under weak categorical equivalence. More precisely, if u : A → B is a
weak categorical equivalence, then a vertex a ∈ A is terminal in A iff the vertex
u(a) is terminal in B. The vertex 1a ∈ A/a is terminal in A/a for any simplical set
A. Similarly for the vertex 1a ∈ A//a.

8.4. If A is a quasi-category, then a vertex a ∈ A is terminal iff the following
equivalent conditions are satisfied:

• the simplicial set A(x, a) is contractible for every x ∈ A0;
• every simplical sphere x : ∂∆[n]→ A with target x(n) = a can be filled;
• the projection A/a→ A is a weak categorical equivalence;
• the projection A/a→ A is a trivial fibration;
• the projection A//a→ A is a weak categorical equivalence;
• the projection A//a→ A is a trivial fibration.

The full simplicial subset of terminal vertices of a quasi-category is a contractible
Kan complex when non-empty.

8.5. In a simplicial set B, a vertex b ∈ B is terminal iff the fiber inclusion E(b) ⊆
E is a weak homotopy equivalence for every left fibration p : E → B, where
E(b) = p−1(b). Dually, a vertex b inB is terminal iff the projection ΓB(E)→ E(b)
is a homotopy equivalence for every right fibration E → B, where ΓB(E) is the
simplicial set of global sections of E.
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8.6. We shall say that a map u : A→ B is initial if the opposite map uo : Ao → Bo

is final. Similarly, we shall say that a vertex b ∈ B is initial if the opposite vertex
bo ∈ Bo is terminal.

8.7. The Yoneda lemma plays an important role in category theory. Let us describe
its extensions to quasi-categories. Recall that in a simplicial set B, a node b ∈ B
can be viewed as a map b : 1 → B; it is thus an object of the category S/B. We
say that an object (E, p) of the category S/B is represented by a node u ∈ E(b) if
the map u : b → E is a contravariant equivalence in S/B. A node u ∈ E which is
terminal in the simplicial set E represents the object (E, p). The converse is true if
the map p : E → B is a right fibration. In this case, the full simplicial subset of E
which is spanned by the vertices which represents E is a contractible Kan complex
when non-empty. The projection B/b→ B is represented by the vertex 1b ∈ B/b.
Similarly, the projection B//b → B is represented by the vertex 1b ∈ B//b. In
general, a node u ∈ E(b) represents an object (E, p) iff the canonical map

[u, X]B : [E,X]B → [b, X]B = X(b)

is a trivial fibration (resp. a weak homotopy equivalence) for every X ∈ R(B). If
b ∈ B, let us choose a factorisation of the map b : 1 → B as a right cofibration
b′ : 1→ Rb followed by a right fibration Rb→ B. The object Rb→ B is represented
by the node b′. It follows that the canonical map

[b′, X]B : [Rb, X]B → X(b)

is a trivial fibration for every X ∈ R(B). This is a Yoneda lemma. If p : E → B is
a right fibration, then every map u : b→ E can be extended to a map u′ : Rb→ E;
the node u represents E iff the map u′ : Rb→ E is a fibrewise homotopy equivalence.
If B is a quasi-category, then the projection B/a → B is a right fibration for any
vertex a ∈ B. Its fiber at b ∈ B is equal to B(b, a). Hence the canonical map

[B//b, B//a]B → B(b, a)

is a trivial fibration.

8.8. The Yoneda lemma be used for constructing a simplicial category B̃ whose
coherent nerve is equivalent to the quasi-category B. By construction, ObB̃ = B0

and
B̃(a, b) = [B/a, B/b]

for every a, b ∈ B0. The category B̃ is actually enriched over Kan complexes.

8.9. Dually, we say that an object (E, p) of the category S/B is corepresented by
a node u ∈ E(b) if the map u : b → E is a covariant equivalence in the category
S/B.

9. Morita equivalence

9.1. Recall that a functor u : A → B induces a pair of adjoint functors between
the categories of presheaves

u! : [Ao,Set]→ [Bo,Set] : u∗.

A functor u : A→ B is fully faithful iff the functor u! is fully faithful. Classically,
a functor u is said to be final, but we shall say 0-final, iff the functor u! preserves
terminal objects. A functor u : A → B is said to be dominant, , but we shall say
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0-dominant, if the functor u∗ is fully faithful. A functor u : A→ B is dominant iff
the category Fact(u, f) = Fact(f,B)×B A defined by the pullback square

Fact(f,B)×B A //

��

A

u

��
Fact(f,B) // B

is connected for every arrow f ∈ B, where Fact(f,B) = f\(A/b) = (a\A)/f is the
category of factorisations of the arrow f : a→ b.

9.2. A functor u : A → B is said to be a Morita equivalence if the adjoint pair
(u!, u

∗) is an equivalence of categories. A functor u : A→ B is a Morita equivalence
iff it is fully faithful and every object b ∈ B is a retract of an object u(a) for some
object a ∈ A.

9.3. A map of simplicial sets u : A→ B induces a Quillen pair of adjoint functors

u! : (S/A,Wc)↔ (S/B,Wc) : u∗.

Hence also an adjoint pair of derived functors between the homotopy categories,

uL
! : Ho(S/A,Wc)↔ Ho(S/B,Wc) : u?R.

We shall say that u is fully faithful if the functor uL
! is fully faithful. We shall say

that u is dominant if the functor u?R is fully faithful. We say that u is a Morita
equivalence if the adjoint pair (uL

! , u?R) is an equivalence.

9.4. A map of simplicial sets u : A → B is fully faithful iff the opposite map
uo : Ao → Bo is fully faithful. If u : A→ B is fully faithful, then so is the functor
τ1(u) : τ1A→ τ1B. A map between quasi-categories f : X → Y is fully faithful iff
the map X(a, b) → Y (fa, fb) induced by f is a weak homotopy equivalenced for
every pair a, b ∈ X0.

9.5. A map of simplicial sets u : A→ B is a Morita equivalence iff the opposite map
uo : Ao → Bo is a Morita equivalence. A map u : A → B is a Morita equivalence
iff it is fully faithful and the functor τ1(u) : τ1A → τ1B is a Morita equivalence.
Every weak categorical equivalence is a Morita equivalence.

9.6. A map of simplicial sets u : A→ B is dominant iff the opposite map uo : Ao →
Bo is dominant. If u : A → B is dominant, then the functor τ1(u) : τ1A → τ1B
is 0-dominant. When B is a quasi-category, a map u : A → B is dominant iff the
category Fact(u, f) = Fact(f,B)×B A defined by the pullback square

Fact(f,B)×B A //

��

A

u

��
Fact(f,B) // B

is weakly contractible for every arrow f ∈ B, where Fact(f,B) = f\(A/b) =
(a\A)/f is the simplicial set of factorisations of the arrow f : a→ b.
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10. Homotopy factorisation systems

Many of the class of maps of simplicial sets are part of a homotopy factorisa-
tion system. The idea of a homotopy factorisation system was first introduced by
Bousfield in his work on localisation theory. We introduce a more general notion
and give examples.

10.1. We first recall the notion of factorisation system. A pair (A,B) of classes of
maps in a category E is called a factorisation system if the following two conditions
are satisfied:

• the classes A and B are closed under composition and contain the isomor-
phisms;
• every map f : A → B admits a factorisation f = pu : A → E → B with

u ∈ A and p ∈ B, and this factorisation is unique up to unique isomorphism.
In this definition, the uniqueness of the factorisation of the map means that for
any other factorisation f = qv : A → F → B with v ∈ A and q ∈ B, there exists
a unique isomorphism i : E → F such that iu = v and qi = p. Every factorisation
system is a weak factorisation system (see the appendix for this notion).

10.2. We say that a class of maps M in a category E has the right cancellation
property if the implication

vu ∈M and u ∈M ⇒ v ∈M

is true for any pair of maps u : A→ B and v : B → C. Dually, we say thatM has
the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M

is true. The left class of a factorisation system has the right cancellation property
and the right class has the left cancellation property.

10.3. We say that a class of maps M in model category is invariant under weak
equivalences if for every commutative square

A

u

��

// A′

u′

��
B // B′

in which the horizontal maps are weak equivalences, we have u ∈M⇔ u′ ∈M.

10.4. Let E is a Quillen model category with model structure (C,W,F). IfM⊆ E
is a class of maps, let us put Mcf = M∩ Efc, where Efc is the full subcategory
of fibrant-cofibrant objects. We say that a pair (A,B) of classes of maps in E is a
homotopy factorisation system if the following conditions are satisfied:

• the classes A and B are invariant under weak equivalences;
• the pair (A ∩ Ccf ,B ∩ Fcf ) is a weak factorisation system on Ecf ;
• the class A has the right cancellation property;
• the class B has the left cancellation property.

The conditions (iii) and (iv) turn out to be equivalent in the presence of the others.
We call A the left class and B the right class of the homotopy factorisation system.
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10.5. A homotopy factorisation system (A,B) induces a weak factorisation system
(Ho(A),Ho(B)) on the homotopy category Ho(E). The weak factorisation system
(Ho(A),Ho(B)) is not a factorisation system in general. However, the class Ho(A)
has the right cancellation property and the class Ho(B) has the left cancellation
property. The system (A,B) is determined by the system (Ho(A),Ho(B)) since a
map u ∈ E belongs to A (resp. B) iff its image in Ho(E) belongs to Ho(A) (resp.
Ho(B)). Not every factorisation system on the category Ho(E) induces a homotopy
factorisation on E (even if the classes have the cancellation properties).

10.6. Each class of a homotopy factorisation system (A,B) is closed under compo-
sition and retracts. The intersection A ∩ B is the class of weak equivalences. The
left class is closed under homotopy cobase change and the right class is closed under
homotopy base change.

10.7. Each class of a homotopy factorisation system determines the other. We shall
often use this property in specifying a homotopy factorisation system. A homotopy
factorisation system (A,B) is also determined by each of the classes of the weak
factorisation system (A ∩ Ccf ,B ∩ Fcf ).

10.8. The model category (Cat, Eq) admits a homotopy factorisation system in
which the left class is the class of essentially surjective functors and the right class is
the class of full and faithful functors. Similarly, the model category (S,Wcat) admits
a homotopy factorisation system in which the left class is the class of essentially
surjective maps and the right class is the class of fully faithful maps. We notice here
that the notion of essentially surjective map is easy to define for a general simplicial
sets (a map u : A → B is essentially surjective iff the map τ0(u) : τ0(A) → τ0(B)
is surjective). The fully faithful maps are harder to describe. But they are entirely
determined by the essentially surjective maps.

10.9. The model category (Cat,Eq) admits a homotopy factorisation system in
which the left class is the class of 0-final functors; a functor f : A → B belongs
to the right class iff it admits a factorisation f = pi : A → A′ → B with i an
equivalence and p a discrete fibration. Similarly, the model category (S,Wcat)
admits a homotopy factorisation system in which the left class is the class of of
final maps; a map of simplicial sets f : X → Y belongs to the right class iff it
admits a factorisation f = pi : X → X ′ → Y with i a weak categorical equivalence
and p a right fibration. Dually, the model category (S,Wcat) admits a homotopy
factorisation system in which the left class is the class of of initial maps; a map
of simplicial sets f : X → Y belongs to the right class iff it admits a factorisation
f = pi : X → X ′ → Y with i a weak categorical equivalence and p a left fibration.

10.10. We say that a map of simplicial sets u : A → B is homotopy monic if the
square

A

1A

��

1A // A

u

��
A

u // B

is homotopy cartesian in the model category (S,Who). A map u : A → B is
homotopy monic iff it admits a factorisation u = u′i : A → A′ → B with i a
weak homotopy equivalence and u′ an inclusion of components A′ ⊆ A′ t B′ = B.
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Equivalently, u is homotopy monic iff its homotopy fibers are empty or contractible.
We shall say that a map u : A→ B is a weak epimorphism if the map π0u : π0A→
π0B is surjective. Equivalently, u is weakly epic iff its homotopy fibers are non-
empty. The model category (S,Who) admits a homotopy factorisation system in
which the left class is the class of homotopy monomorphisms and the right class is
the class of homotopy epimorphisms.

10.11. A map of simplicial sets u : A→ B is 0-connected if its homotopy fibers are
connected. The model category (S,Who) admits a homotopy factorisation system
in which the left class is the class of 0-connected maps; a map f : X → Y belongs
to the right classs iff it admits a factorisation f = f ′i, with i a weak homotopy
equivalence and f ′ a covering space map. We shall say that a map in the right class
is a 0-cover.

10.12. For every n ≥ 0, the model category (S,Who) admits a homotopy factori-
sation system in which the left class is the class of n-connected maps and in which
the right class is the class on n-covers. A fibration f : X → Y is a n-cover iff
the diagonal map X → X ×Y X is a n − 1-cover. A (−1)-cover is a homotopy
monomorphism.

10.13. We say that a functor u : A→ B is a 0-cover if it is both a discrete fibration
and a discrete opfibration. We say that a functor u : A → B is 0-connected is the
functor π1(u) : π1(A) → π1(B) is 0-final (or equivalently 0-initial). The model
category (Cat, Eq) admits a homotopy factorisation system in which the left class
A is the class of 0-connected functors. A functor f : X → Y belongs to the right
class iff it admits a factorisation f = pi : A→ A′ → B with i an equivalence and p
a 0-covers.

10.14. We say that a Grothendieck fibration p : E → B is a 1-fibration if its fibers
are groupoids. We say that a category is simply connected if the canonical functor
π1C → 1 is an equivalence, where π1C is the groupoid freely generated by C. We
say that a functor u : A → B is 1-final if the category b\A = (b\B) ×B A is
simply connected for every object b ∈ B. The model category (Cat, Eq) admits
a homotopy factorisation system in which the left class A is the class of 1-final
functors. A functor f : X → Y belongs to the right class iff it admits a factorisation
f = pi : A→ A′ → B with i an equivalence and p a 1-fibration.

10.15. The model category (S,Wcat) admits a homotopy factorisation system in
which the left class is the class of weak homotopy equivalence. A map f : X → Y
belongs to the right classs iff it admits a factorisation f = pi : X → X ′ → Y , with
i a weak categorical equivalence and p a Kan fibration. A map in the left class is
infinitely connected. We may call a map in the right class an ∞-cover.

10.16. Let F : E ↔ E ′ : G be a Quillen pair between two model categories. If
(A,B) is a homotopy factorisation system in E and (A′,B′) a homotopy factorisation
system in E ′, then the conditions F (A) ⊆ A′ and G(B′) ⊆ B are equivalent. We
shall say that the system (A,B) is the inverse image of (A′,B′) by F if we have
A = F−1(A′). We shall say that (A′,B′) is the inverse image of (A,B) by G if we
have B′ = G−1(B). These two conditions are equivalent when the pair (F,G) is a
Quillen equivalence. When satisfied, we say that (A′,B′) is obtained by transporting
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(A,B) across the Quillen equivalence. Any homotopy factorisation system can be
transported across a Quillen equivalence.

10.17. Let F : E ↔ E ′ be a Quillen pair of adjoint functors between two model
categories. If (A,B) is a homotopy factorisation system in E and (A′,B′) a homo-
topy factorisation system in E ′, then the conditions F (A) ⊆ A′ and G(B′) ⊆ B are
equivalent. We shall say that the system (A,B) is the inverse image of (A′,B′) by
F if we have A = F−1(A′). We shall say that (A′,B′) is the inverse image of (A,B)
by G if we have B′ = G−1(B). These two conditions are equivalent when the pair
(F,G) is a Quillen equivalence. When satisfied, we say that (A′,B′) is obtained
by transporting (A,B) across the Quillen equivalence. Any homotopy factorisation
system can be transported across a Quillen equivalence.

10.18. We saw in ?? that the adjoint pair of functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category for quasi-categories and the
model category for simplicial categories. This defines a bijection between the ho-
motopy factorisation systems in (S,Wcat) and the homotopy factorisation systems
in the model category SCat. We shall call the coresponding classes of maps by the
same name. For example, the final maps between simplicial categories introduced
by Dwyer and Kan correspond to the final maps between simplicial set introduced
here. We shall say that a map of simplicial categories f : X → Y is a right fibra-
tion if it is a Dwyer-Kan fibration and the map C !(f) : C !(X) → C !(Y ) is a right
fibration.

11. Grothendieck fibrations

11.1. There is notion of Grothendieck fibration for maps between quasi-categories.
Let us first recall the notion of cartesian arrow with respect to a functor p : E → B.
An arrow f : a → b in E is said to be cartesian if for every arrow g : c → b in E
and every factorisation p(g) = p(f)u : p(c) → p(a) → p(b) in B there is a unique
arrow v : c→ a such that g = fv and p(v) = u. It is easy to verify that and arrow
f : a→ b is cartesian iff the square of categories

E/a //

��

E/b

��
B/pa // B/pb

is cartesian where the functor E/a → E/b (resp. B/pa → B/pb) is defined by
composing with f (resp. pf). A functor p : E → B is a Grothendieck fibration if for
any vertex a ∈ E0 and any arrow g ∈ B1 with target p(a) there exists a cartesian
arrow f ∈ E1 with target a such that p(f) = g. There a dual notions of cocartesian
arrow and of Grothendieck opfibration. We can now define the notion of cartesian
arrow with respect to a map between quasi-categories p : E → B. We say that an
arrow f ∈ E with target b ∈ E is cartesian if the map E/f → B/pf ×B/pb E/b
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obtained from the commutative square

E/f //

��

E/b

��
B/pf // B/pb

is a trivial fibration. Here the map E/f → E/b is defined from the inclusion
{1} ⊂ I. We shall say that a map between quasi-categories p : E → B is a
Grothendieck fibration if it is a mid fibration and for every vertex b ∈ E and every
arrow g ∈ B with target p(b), there exists a cartesian arrow f ∈ E with target b
such that p(f) = g. A right fibration in QCat is a Grothendieck fibration. The
source map XI → X is a Grothendieck fibration for any quasi-category X. Every
Grothendieck fibration is a quasi-fibration. The class of Grothendieck fibrations is
closed under composition and base change in QCat. Every Grothendieck fibration
is a quasi-fibration. There is a dual notion of cocartesian arrow and of Grothendieck
opfibration.

11.2. A map between quasi-categories u : A → B admits a factorisation u = qi :
A → P → B with i a fully faithful right adjoint and q a Grothendieck fibration.
To see this, consider the path object P (u) defined by the pullback square

P (u) h //

p

��

BI

t

��
A

u // B.

The projection q = sh : P (u) → B is a Grothendieck fibration. There is a unique
map i : A → P (u) such that pi = 1A and hi = δu, where δ : B → BI is the
diagonal. We have p ` i and the counit of the adjunction is the identity of the
maps pi = 1A. Thus, i is fully and faithful.

12. Proper and smooth maps

12.1. Recall that a map of simplicial sets u : A → B induces an adjoint pair of
derived functors

uL
! : HoR(B)↔ HoR(A) : u?R.

We obtain a pseudo-2-functor

HoR : Sτ1 → ADCAT.

where ADCAT is the category of big categories and adjoint maps. The functor
associates to an arrow α : u→ v : A→ B of the category τ1(A,B), a pair (α!, α

∗)
of adjoint natural transformations

α! : uL
! → vL

! and α∗ : v∗R → u∗R

If (α, β) : u ` v is an adjunction between two maps u : A→ B and v : B → A, then
the pair (α!, β!) is an adjunction uL

! ` vL
! and the pair (β∗, α∗) is an adjunction

u∗R ` v∗R. It follows that we have a canonical isomorphism u∗R = vL
! .
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12.2. We introduce the notions of proper map and of smooth map (following a
terminology of Grothendieck). We shall say that a map of simplicial sets p : E → B
is proper if the pullback functor p∗ : S/B → S/E takes a right cofibration to a
right cofibration. A left fibration is an example of a proper map. A Grothendieck
opfibration (resp. fibration) in QCat is another example. A map p : E → B is
proper (resp. smooth) iff the inclusion p−1(b(n)) ⊆ b∗(E) is a right (resp. left)
cofibration for every simplex b : ∆[n] → B. The proper maps are closed under
composition and base change. When p is proper, the pair of adjoint functors

p∗ : S/B ↔ S/E : p∗

is a Quillen pair between the model categories (S/B,Wr) and (S/E,Wr). Moreover,
the functor p∗ takes a right equivalence over B to a right equivalence over E. We
thus obtain a pair of adjoint functors

p∗ : HoR(B)↔ HoR(E) : pR
∗

where p∗ = Ho(p∗). Suppose that we have a cartesian square

F

q

��

v // E

p

��
A

u // B

in which the map p is proper. Then the following square commutes up to a natural
isomorphism:

HoR(F )
vL
! // HoR(E)

HoR(A)

q∗

OO

uL
! // HoR(B), ,

p∗

OO

hence also the following square of right adjoints

HoR(F )

qR
∗

��

HoR(E)v∗Roo

pR
∗

��
HoR(A) HoR(B)u∗Roo

12.3. Dually, we say that a map of simplicial sets p : E → B is smooth if the
pullback functor p∗ : S/B → S/E takes a left cofibration to a left cofibration. A
right fibration is an example of a smooth map. A map p : E → B is smooth iff
the opposite map po : Eo → Bo is proper. When p is smooth, the pair of adjoint
functors

p∗ : S/B ↔ S/E : p∗

is a Quillen pair between the model categories (S/B,Wl) and (S/E,Wl).

12.4. The functor u∗R : HoR(B)→ HoR(A) admits a right adjoint

R(u∗) : HoR(A)→ HoR(B)

for any map u : A → B. To see this, it suffices by Morita equivalence, to consider
the case where A and B are quasi-categories. In this case, we have a factorisation
u = pi : A→ C → B, with i a left adjoint and p a left Grothendieck fibration. The
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map p is proper since a left Grothendieck fibration is a proper map. If q : C → A
and i ` q, then i∗R ` q∗R. Thus,

u∗R = i∗Rp∗R ` pR
∗ q∗R = R(u∗).

13. Localisation

13.1. Recall that a functor p : C → D is said to be conservative if the implication

p(f) invertible ⇒ f invertible

is true for every arrow f ∈ C. The model category (Cat,Eq) admits a homotopy
factorisation system in which the right class is the class of conservative functors; a
map in the left class is called a 0-localisation. Let us describe the 0-localisations
explicitly. If S is a set of arrows in a small category A, then there is a functor
uS : A→ S−1A which inverts universally every arrow in S. The universality means
that if a functor v : A → B inverts every arrow in S, then there exists a unique
functor v′ : S−1A → B such that v′uS = v. The functor uS is an example of a
0-localisation but it is not the most general one. Every functor q : A→ B admits a
factorisation q = p1u1 : A→ S−1

0 A→ B, where S0 is the set of arrows inverted by
q. Let us put A1 = S−1

0 A. The functor p1 : A1 → B need not be conservative, in
which case it admits a factorisation p1 = p2u2 : S−1

1 A1 → A2 → B, where S1 is the
set of arrows inverted by p1. Let us put A2 = S−1

1 A1. The construction may never
stop. If we iterate we obtain a commutative diagram of categories and functors,

A = A0
u1 //

p0=q

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM A1
u2 //

p1

##FFFFFFFFFFFFFFFFFFFFFFFFFFFF A2
u3 //

p2

��:
::

::
::

::
::

::
::

::
::

::
: A3

u3 //

p3

��-
--

--
--

--
--

--
--

--
--

· · · E

p

����
��
��
��
��
��
��
��
��
�

B.

The category E is defined to be the colimit of the sequence of functors (un). The
functor p is the unique functor E → B which extends the functor pn for each n ≥ 0.
If u : A0 → E is the canonical functor, we have a factorisation q = pu. The functor
p is conservative. The functor q : A→ B is a 0-localisation iff the functor p : E → B
is an equivalence.

13.2. We say that a functor f : X → Y in SCat is conservative if the functor
Ho(f) : Ho(X) → Ho(Y ) is conservative. There is then a homotopy factorisation
system in the model category SCat in which the left class is the class of conservative
functors. We shall say that a map in the right class is a Dwyer-Kan localisation.
We saw in ?? that the adjoint pair of functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category for quasi-categories and the
model category for simplicial categories. We saw in ?? that the adjoint pair of
functors

C! : S↔ SCat : C !
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is a Quillen equivalence between the model category for quasi-categories and the
model category for simplicial categorie. There is thus a unique homotopy factorisa-
tion system in (S,Wcat) which is obtained by transporting the Dwyer-Kan system.
We shall describe this system explicitly.

13.3. Recall that a map of simplicial sets u : A → B is said to be conservative if
the functor τ1(u) : τ1(A) → τ1(B) is conservative. The model category (S,Wcat)
admits a homotopy factorisation system in which the right class is the class of
conservative maps; a map in the left class is called a localisation. A monomorphism
of simplicial sets is a localisation iff it has the left lifting property with respect to
the conservative quasi-fibrations. The functor τ1 : S→: Cat takes a localisation to
a 0-localisation.

13.4. Every localisation is a dominant map. A weak left adjoint is a localisation
iff it is a weak reflection. The base change of a localisation along a left or a right
fibration is a localisation.

13.5. Let us say that a monic localisation A → A′ is dominates another monic
localisation A → A′” if the map A′′ → A′

AA” is a weak categorical equivalences.
This defines a preoder relation among the monic localisations of a simplicial set A.
Let us denote the resulting poset by Loc(A). There is a similar poset Loc0(C) for the
0-localisations (monic on objects) of a category C. The map Loc(A)→ Loc0(τ1A)
induced by the functor τ1 is an isomorphismes of posets. There is thus a bijection
between the (equivalence classes of) localisations of A and the (equivalence classes
of) 0-localisations of its fundamental category τ1A. If S is a set of arrows in a
simplicial set A, consider the simplicial set L(A,S) defined by the pushout square

S × I

��

// A

��
S × J // L(A,S),

where J is the groupoid generated by one arrow 0→ 1. The inclusion A ⊆ 〈L(A,S)
is a monic localisation and we have τ1L(A,S) = S−1τ1(A). If X is a quasi-category,
then the map

XL(A,S) → XA

is fully faithful and its (essential) image is spanned by the maps f : A → X such
that f(S) ⊆ J(X).

13.6. Every quasi-category X is the localisation of its category of elements el(X) =
∆/X. More generally, every simplicial set A is the localisation of its category of
elements el(A) = A/∆. Let us describe the canonical map θA : ∆/A→ A. Observe
first that for any category C, there is a canonical fuctor θC : ∆/C → C which
associates to a chain x : [n]→ C the top object x(n) ∈ C. The map θC is natural
in C ∈ Cat. It can be extended uniquely as a natural transformation θA : ∆/A→ A
in A ∈ S. This is because the functor A 7→ ∆/A, from S to itself, is cocontinuous.
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The map θA is characterised by the property that the square

∆/∆[n]
∆/a //

θ∆[n]

��

∆/A

θA

��
∆[n] a // A

commutes for every simplex a : ∆[n] → A. Let Σ ⊂ ∆ be the subcategory of ∆
consisting of the maps f : [m] → [n] such that f(m) = n. Let ΣA ⊆ ∆/A be the
inverse image of Σ by the canonical functor ∆/A → ∆. The map θA : ∆/A → A
takes every arrow in ΣA to units arrows in A. There is a canonical map

L(A/∆,ΣA)→ A

and it is a weak categorical equivalence.

13.7. To every model category E we can associate the quasi-category

L(E) = L(E ,W)

where W is the class of weak equivalence in E . We shall say that L(E) is the quasi-
localisation of E . It follows from [] that the quasi-category L(E) is equivalent to the
coherent nerve of the simplicial category of fibrant-cofibrant objects of E , when the
model category is simplicial. It follows that L(E) is finitely bicomplete in this case
and that it is bicomplete if E is bicomplete. The quasi-category L(E) is cartesian
closed if the model category E is cartesian closed.

14. Adjoint maps

Recall from 2.9 that the category S has the structure of a 2-category Sτ1 .

14.1. Recall the notion of adjoint map in a general 2-category. An adjunction
between a pair of 1-cells u : A→ B and v : B → A is a pair of 2-cells α : 1A → vu
and β : uv → 1B for which the adjunction identities hold:

(β ◦ u)(u ◦ α) = 1u and (v ◦ β)(α ◦ v) = 1v.

We write (α, β) : u ` v to indicate that the pair (α, β) is an adjunction between u
and v. The 1-cell u is called the left adjoint and the 1-cell v the right adjoint. The
cell α is called the unit of the adjunction and the cell β the counit. Each of the
2-cells α and β determines the other.

14.2. If u : A → B and v : B → A are maps of simplicial sets, an adjunction
(α, β) : u ` v is defined to be an adjunction in the 2-category Sτ1 . We say that a
homotopy α : 1A → vu is an adjunction unit if the correponding 2-cell [α] : 1A → vu
is the unit of an adjunction in the 2-category Sτ1 . Dually, we shall say that a
homotopy β : uv → 1B is an adjunction counit if the 2-cell [β] : uv → 1B is the
counit of an adjunction. The functor τ1 : S → Cat is actually a 2-functor. Hence
it takes an adjunction to an adjunction.
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14.3. A map between quasi-categories v : B → A admits a left adjoint iff the
quasi-category a\B = (a\A)×A B defined by the pullback square

a\B //

��

B

v

��
a\A // A

admits an initial vertex for every vertex a ∈ A. This condition can also be expressed
by saying that the projection a\B → B is representable for every vertex a ∈ A.
A vertex of the quasi-category a\B is a pair (f, b) consisting of a vertex b ∈ B0

together with an arrow f : a→ v(b). An arrow f : a→ v(b) is said to be universal
if the pair (f, b) is an initial vertex of a\B. If u is a map A→ B, then a homotopy
α : 1A → vu is an adjunction unit iff the arrow αa : a → vu(a) is universal for
every vertex a ∈ A. Equivalently, a homotopy α : 1A → vu is an adjunction unit iff
the pair (α, u) is universal with respect to the map vA : BA → AA. The notion of
couniversal arrow is defined dually and there is a dual characterisation of adjunction
counit.

14.4. Recall that a full subcategory A ⊆ B is said to be reflective (resp. coreflec-
tive) if the inclusion functor A ⊆ B has a left (resp. right) adjoint called a reflection
(resp. coreflection). If u : A ↔ B : v is a pair of adjoint functors, then the right
adjoint v is fully faithful iff the adjunction counit uv → 1B is an isomorphism.
Dually, the left adjoint u is fully faithful iff the adjunction unit 1A → vu is an
isomorphism. In general, we shall say that a functor u : A → B is reflective if
it is fully faithful and has a right adjoint v : B → A, in which case v is called a
reflection. Dually, we shall say that a functor v : B → A is reflective if it is fully
faithful and has a left adjoint u : A → B, in which case u is called a coreflection.
These notions can be defined in any 2-category and, in particular in the 2-category
Sτ1 .

14.5. The notion of adjoint maps in Sτ1 can be weakened. Observe that a 1-cell
u : A→ B in a 2-category E is a left adjoint iff the functor

E(u, C) : E(B,C)→ E(A,C)

is a right adjoint for every object C ∈ E . This motivates the following definition.
We say that a map of simplicial sets u : A→ B is a weak left adjoint if the functor

τ1(u, X) : τ1(B,X)→ τ1(A,X)

is a right adjoint for every quasi-category X. Dually, we shall say that u is a weak
right adjoint if the functor τ1(u, X) is a left adjoint for every quasi-category X.
A map of simplicial sets u : A → B is a weak left adjoint iff the opposite map
uo : Ao → Bo is a weak right adjoint. A map between quasi-categories is a left
(resp. right) adjoint iff it is a weak left (resp. right) adjoint. The notion of weak left
(resp. right) adjoint is invariant under weak categorical equivalence. The composite
of two weak left (resp. right) adjoints is a weak left (resp. right) adjoint. If a map
u : A → B is a weak left (resp. right) adjoint, then the map Xu : XB → XA is
a right (resp. left) adjoint for every quasi-category X. The functor τ1 : S → Cat
takes a weak left (resp. right) adjoint to a left (resp. right) adjoint.



32 ANDRÉ JOYAL

14.6. We say that a map of simplicial sets u : A → B is a weak left adjoint if the
functor

τ1(u, X) : τ1(B,X)→ τ1(A,X)
is a right adjoint for any quasi-category X. This notion is invariant under weak
categorical equivalence. Every left adjoint is a weak left adjoint and the converse is
true for maps between quasi-categories. Every weak left adjoint is an initial map.
If u : A→ B is a weak left adjoint, then the map Xu : XB → XA is a right adjoint
for any quasi-category X. A map u : A→ B is a weak left adjoint iff the pullback
functor u∗ : R(B)→ R(A) takes a a representable object to a representable object.
The functor τ1 : S → Cat takes a weak left adjoint to a left adjoint. The map
A→ 1 is a weak left adjoint iff A admits a terminal vertex. There is a dual notion
of weak right adjoint and dual results.

14.7. We say that a simplicial subset A ⊆ B is weakly reflective if the restriction
functor τ1(B,X) → τ1(A,X) is a coreflection for every quasi-category X. More
generally, we say that a map of simplicial sets u : A→ B is weakly reflective if the
functor

τ1(u, X) : τ1(B,X)→ τ1(A,X)
is a coreflection for every quasi-category X. Dually, we say that a map u : A→ B
is a weak reflection if the functor

τ1(u, X) : τ1(B,X)→ τ1(A,X)

is coreflective for every quasi-category X. There are also dual notions of weakly
coreflective maps and of weak coreflection.

14.8. A weak left adjoint is a reflection iff it is a localisation. Dually, a weak right
adjoint is a coreflection iff it is a localisation.

15. Cylinders, distributors and spans

15.1. Let A be a category. Recall that a sieve in A is a full subcategory S ⊆ A
for which the implication target(f) ∈ S ⇒ source(f) ∈ S is true for every arrow
f ∈ A. Dually, a cosieve in A is a full subcategory S ⊆ A for which the implication
source(f) ∈ S ⇒ target(f) ∈ S is true for every arrow f ∈ A. If S ⊆ A is a
sieve (resp. cosieve) there exists a unique functor p : A → I such that S = p−1(0)
(resp. S = p−1(1)); we shall say that the sieve p−1(0) and the cosieve p−1(1) are
complementary. There is a bijection between the sieves and the cosieves of A.

15.2. We shall say that an object of the category Cat/I a 0-cylinder (the notion
of cylinder is defined below). The base of a 0-cylinder p : C → I is the category
C(1) = p−1(1) and its cobase is the category C(0) = p−1(0). The base of (C, p) is a
cosieve in C and its cobase is a sieve. If i : ∂I ⊂ I is the inclusion, then the functor

i∗ : Cat/I → Cat×Cat

is Grothendieck fibration. Its fiber at (A,B) is the category C0(A,B) of 0-cylinders
with cobase A and base B. The join A ? B is naturally equipped with a map
A ? B → I; the resulting cylinder is the terminal object of the category C0(A,B).
Similarly the coproduct A t B is naturally equipped with a map A t B → I; the
resulting cylinder is the initial object of the category C0(A,B).
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15.3. Recall that a distributor D : A ⇒ B, but we shall say a 0-distributor, is
defined to be a functor D : Ao × B → Set. We shall denote by D0(A,B) the
category of 0-distributors from A to B. To each 0-distributor D ∈ D0(A,B) we
can associate a category A ?D B obtained by collage of A with B along D. The
category C = A ?D B is constructed as follows: Ob(C) = Ob(A) t Ob(B) and for
any pair x, y ∈ Ob(C), we have

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B
D(x, y) if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

Composition of arrows is obvious. The category A?DB is equipped with a canonical
functor A ?D B → I; it is thus a 0-cylinder from A to B. The resulting functor
D0(A,B) → C0(A,B) is an equivalence of categories. We have A ?1 B = A ? B
and A ?∅ B = A t B, where 1 ∈ D0(A,B) is the terminal 0-distributor and ∅ the
initial 0-distributor. Notice that we have A ?H A = A × I, where H denotes the
0-distributor Hom : Ao ×A→ Set.

15.4. If X is a simplicial set, we shall say that a full simplicial subset S ⊆ X is
a sieve if the implication target(f) ∈ S ⇒ source(f) ∈ S is true for every arrow
f ∈ X. The notion of cosieve is defined similarly. If h : X → τ1X is the canonical
map, then the map S 7→ h−1(S) induces a bijection between the sieves (resp.
cosieves) of τ1X and the sieves of X. If S ⊆ X is a sieve (resp. cosieve) there
exists a unique map p : X → I such that S = p−1(0) (resp. S = p−1(1)); we shall
say that the sieve p−1(0) and the cosieve p−1(1) are complementary. There is a
bijection between the sieves and the cosieves of X.

15.5. We call an object of the category S/I a cylinder. The base of a cylinder
p : C → I is the simplicial set C(1) = p−1(1) and its cobase is the simplicial set
C(0) = p−1(0). The cobase of a cylinder (C, p) is a sieve in C and its cobase is
a cosieve. If C(1) = 1 (resp. C(0) = 1) we say that C is an inductive cone (resp
projective cone). If C(0) = C(1) = 1 we say that C is a spindle. If i : ∂I ⊂ I is the
inclusion, then the functor i∗ : S/I → S× S is Grothendieck fibration. Its fiber at
(A,B) ∈ S×S. is the category C(A,B) of cylinders with cobase A and base B. The
join A?B is naturally equipped with a map A?B → I; the resulting cylinder is the
terminal object of the category C(A,B) Similarly the coproduct AtB is naturally
equipped with a map A t B → I; the resulting cylinder is the initial object of the
category C(A,B).

15.6. Let S(2) = [∆o×∆o,Set] be the category of double simplicial sets. If A,B ∈
S, let us put

(A�B)mn = Am ×Bn

for m,n ≥ 0. We shall say that an object of the category S(2)/(A�B) is a distributor
from A to B. We shall denote by D(A,B) the category of distributors from A to
B. Let σ : ∆×∆→ ∆ be the ordinal sum functor. The functor σ∗ : S→ S(2) has
a left adjoint σ! and a right adjoint σ∗. We have

σ!(A�B) = A ? B

for any pair of simplicial sets A and B.
WRONG!
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If D ∈ D(A,B), then σ!(D) ∈ C(A,B). We shall say that that the cylinder σ!(D)
is obtained by collage of A and B along D and we shall denote it A ?D B. The
collage functor D 7→ σ!(D) induces an equivalence of categories

D(A,B) ' C(A,B).

The inverse equivalence associates to a cylinder X ∈ C(A,B) a bisimplicial set
D(X) equipped with a map D(X)→ A�B. By construction, we have

D(X)mn = HomI(∆[m] ? ∆[n], X),

for every m,n ≥ 0, where the hom set is taken in the category S/I. From the
inclusion [m] ⊆ [m+n] we obtain a natural transformation p1 → σ, where p1 is the
first projection ∆×∆→ ∆. Similarly, from the inclusion [n] ⊆ [m + n] we obtain
a natural transformation p2 → σ. We have p∗1(A)× p∗2(A) = A�A. We thus obtain
a natural map σ∗(A) → A�A. This defines the unit distributor IA ∈ D(A,A). Its
collage cylinder A ?IA

A is isomorphic to the cylinder A× I.

15.7. Let D be the category whose objects are the distributors p : D → A�B and
whose maps p→ p′ are the triple of maps f : D → D′, a : A→ A′ and b : B → B′

fitting in a commutative square

D
f //

p

��

D′

p′

��
A�B

a�b // A′�B′.

Then the collage functor D 7→ A ?D B induces an equivalence of categories

D ' S/I

15.8. A span S = (s, S, t) between two simplicial sets A and B is defined to be a
pair of maps

A S
soo t // B

Equivalently, a span is a contravariant functot P → S, where P is the poset of
non-empty subsets of {0, 1}. We shall denote by Span(S) the category of spans
[P o,S]. Let ∂P be the subcategory of P whose objects are {0} and {1}. If i is the
inclusion ∂P ⊂ P , then the functor

i∗ : Span(S)→ S× S

is a Grothendieck fibration. If A,B ∈ S, we shall denote by Span(A,B) the fiber
of i∗ at (A,B). An object S = (s, S, t) of this category is a map (s, t) : S → A×B.
There is thus an isomorphism of categories

Span(A,B) = S/(A×B).

15.9. Let δ be the diagonal functor ∆→ ∆×∆. The functor δ∗ : S(2) → S has a
left adjoint δ! and a right adjoint δ∗. For any pair of simplicial sets A and B, we
have

δ∗(A�B) = A×B.

Hence the functor δ∗ induces a functor

δ∗ : D(A,B)→ Span(A,B).
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Let D be the category whose objects are the distributors p : D → A�B and
whose maps p→ p′ are the triple of maps f : D → D′, a : A→ A′ and b : B → B′

fitting in a commutative square

D
f //

p

��

D′

p′

��
A�B

a�b // A′�B′.

Then the collage functor D 7→ A ?D B induces an equivalence of categories

D ' S/I

15.10. The category Cat/I is cartesian closed. The model category (Cat, Eq)
induces a model structure on the category Cat/I and the induced model structure
is cartesian closed. We shall denote it by (Cat/I,Eq).

15.11. The category S/I is cartesian closed. The model category (S,Wcat) induces
a model structure on the category S/I and the induced model structure is cartesian
closed. We shall denote it by (S/I,Wcat). If i denotes the inclusion {0, 1} = ∂I ⊂ I,
then the functor

i∗ : S/I → S× S,

has a right adjoint i∗ given by i∗(A,B) = A ? B. The pair (i∗, i∗) is a Quillen
adjoint pair between the model categories (S/I,Wcat) and (S,Wcat) × (S,Wcat).
It follows in particular that the join of two quasi-categories is a quasi-category.

15.12. The functor τ1 : S → Cat induced by the functor τ1 : S/I → Cat/I
preserves finite products. The resulting pair of adjoint functors

τ1 : S/I → Cat/I : N

is a Quillen adjoint pair between the model categories (S/I,Wcat) and (Cat/I,Eq).

15.13. The model category (S,Wcat) induces a model structure on the category
Cyl(A,B) for each pair of simplicial sets A and B. More precisely, a map in
Cyl(A,B) is a weak equivalence (resp. a cofibration, a fibration) iff its underly-
ing map in S is a weak categorical equivalence (resp. a monomorphism, a quasi-
fibration) in the model category (S,Wcat). The induced model structure is sim-
plicial and cartesian closed. A cylinder C ∈ Cyl(A,B) is fibrant iff the structure
map C → A ? B is a mid-fibration. We shall denote this model structure by
(Cyl(A,B),Wcat). We shall say that a map S → T in D(A,B) is a mid equiva-
lence if the corresponding map A ?S B → A ?T B is a weak categorical equivalence.
There is then a model structure on D(A,B) in which the weak equivalences are the
mid equivalences and the cofibrations are the monomorphisms. We shall denote this
model structure by (Cyl(A,B),Wm(A,B)) or more simply by (Cyl(A,B),Wm).

If we transport the model structure (Cyl(A,B),Wcat) along the equivalence
D(A,B) ' Cyl(A,B), we obtain a model structure on D(A,B) The model structure
can be transported along the equivalence D(A,B) ' Cyl(A,B).



36 ANDRÉ JOYAL

15.14. for each pair of simplicial sets A and B.
We shall denote this model structure by (Cyl(A,B),Wcat).
Let S(2) = [∆o ×∆o, Set] be the category of double simplicial sets. If A,B ∈ S,

let us put
(A�B)mn = Am ×Bn

for m,n ≥ 0. We shall say that an object of the category S(2)/(A�B) is a distributor
from A to B. We shall denote by D(A,B) the category of distributors from A to
B. If Tot : S(2) → S denotes the left Kan extension of ordinal sum functor
∆×∆→ ∆→ S, then we have

Tot(A�B) = A ? B

for any pair of simplicial sets A and B. If D ∈ D(A,B), then Tot(D) ∈ Cyl(A,B).
We shall say that the cylinder Tot(D) is obtained by collage of A and B along D
and we shall denote it A ?D B. The functor D 7→ A ?D B induces an equivalence of
categories

D(A,B) ' Cyl(A,B).

15.15.

16. Limits and colimits

16.1. There is a notion of limit and of colimit for a diagram with values in a quasi-
category. A diagram in a quasi-category X is defined to be a map of simplicial sets
T → X. For example, a map I × I → X is called a commutative square in X. A
map c : 1 ? T → X is called a projective cone in X; the base of the cone is obtained
by composing c with the inclusion T ⊂ 1 ? T . The cones 1 ? T → X with a fixed
base d : T → X are the vertices of a simplicial set X/d. The simplicial set X/d is
a quasi-category when X is a quasi-category. We shall say that a cone 1 ? T → X
with base d : T → X is exact if it is a terminal vertex of the quasi-category X/d.
When c is exact, the vertex l = c(1) ∈ X is called the (homotopy) limit of d:

l = lim
←−
t∈T

d(t).

The full simplicial subset of X/d spanned by the exact cones is a contractible Kan
complex when non-empty. It follows that the limit of a diagram is homotopy unique
when it exists. The notion of limit can also be defined by using fat cones 1�T → X
instead of cones 1?T → X. The two notions are equivalent. The notions of coexact
inductive cone T ? 1→ X and of colimit are defined dually.

16.2. We shall say that a diagram d : T → X is discrete if T is a discrete simplicial
set. The limit l (resp. colimit l) of a discrete diagram d : T → X is called a product
(resp. coproduct) and it is denoted

l =
∏
t∈T

d(t)
(
resp. l =

∐
t∈T

d(t)
)
.

The limit (resp. colimit) of the empty diagram ∅ → X is a terminal (resp. initial)
vertex in X. We shall say that a quasi-category X admits finite products (resp.
finite coproducts) if every finite discrete diagram T → X has a limit (resp. colimit).
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16.3. The square I × I is both a projective cone 1 ? Λ2[2] and an inductive cone
Λ0[2] ? 1. A commutative square I × I → X is said to be cartesian (resp. cocarte-
sian) if it is exact as a projective cone (resp. inductive cone). A cartesian (resp.
cocartesian) square is also called a pullback square (resp. pushout square). We shall
say that a quasi-category X admits pullbacks (resp. pushouts) if every diagram
Λ2[2]→ X (resp. Λ0[2]→ X) has a limit (resp. a colimit).

16.4. A diagram d : T → X is finite if T has only a finite number of non-
degenerated cells. We shall say that a quasi-category X is finitely complete (resp.
finitely cocomplete) if every finite diagram T → X has a limit (resp. colimit). We
shall say that X is finitely bicomplete if it is finitely complete and cocomplete.
The localisation of a model category is an example of a finitely bicomplete quasi-
category.

16.5. A (big) quasi-category X is said to be complete (resp. cocomplete) if every
small diagram with values in X has a limit (resp. colimit). It is said to be bicomplete
if it is complete and cocomplete. The localisation of a bicomplete model category
is a bicomplete quasi-category. In particular, the coherent nerve of the simplicial
category K of Kan complexes is a bicomplete quasi-category HOT = HOT0.
The coherent nerve of the simplicial category QCat is a bicomplete quasi-category
HOT1.

16.6. From a diagram d : T → X and a map u : S → T we obtain a canonical
arrow

lim
−→
s∈S

d(u(s))→ lim
−→
t∈T

d(t)

in the homotopy category hoX, when the colimits exist. The arrow is invertible if
the map u is final, and in particular when u is a weak categorical equivalence. If
T = ti∈ITi and the colimits exist, we have a canonical isomorphism∐

i∈I

lim
−→

t∈Ti

d(t)→ lim
−→
t∈T

d(t)

in the category hoX. Suppose that i : A→ B is a monic map and that we have a
pushout square of simplicial sets

A //

i

��

S

��
B

v // T.

If X is a quasi-category and d : T → X, we have a pushout square in X,

lim
−→

a∈A

d(a) //

��

lim
−→
s∈S

d(s)

��
lim
−→
b∈B

dv(b) // lim−→
t∈T

d(t)

if the colimits exist. When X is finitely cocomplete, the colimit of any finite non-
empty diagram d : T → X of dimension n can be computed iteratively by taking
pushouts and the colimit of finite diagrams of dimension < n. A quasi-category
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with an initial vertex is finitely cocomplete iff it admits pushouts. Dually, a quasi-
category with a terminal vertex is finitely complete iff it admits pullbacks.

16.7. If X is a quasi-category and T is a simplicial set, then the diagonal X → XT

has a right (resp. left) adjoint iff every diagram T → X has a limit (resp. colimit).

16.8. We say that a map between quasi-categories f : X → Y preserve the limit of
a diagram d : T → X if this limit exists and f takes an exact projective cone with
base d to an exact projective cone. A weak right adjoint preserves the limit of every
diagram. We shall say that a map between quasi-categories X → Y is continuous
if it takes every exact projective cone in X to an exact cone in Y . There is a dual
notion of cocontinuous map.

16.9. Many properties of cartesian squares in categories remains valid for cartesian
squares in quasi-categories. A useful property of cartesian squares is the following:
let t : ∆[2]→ XI is a commutative triangle of commutative squares in X,

a′′ //

��
td2

a′ //

��
td0

a

��
b′′ // b′ // b

If the square td0 is cartesian, then the square td2 is cartesian iff the composite
square td1 is cartesian.

16.10. An arrow f : a → b in a simplicial set X is the same thing as a map
f : I → X. There is thus a slice simplicial set X/f . From the inclusion {i} ⊂ I we
obtain a projection pi,

X/a
p0 // X/f

p1 // X/b.

The projection p0 is a trivial fibration when X is a quasi-category. In this case we
can define a map

f! : X/a→ X/b,

by putting f! = p1s, where s is a section of p0. The map f! is unique up to a
unique invertible 2-cell in the 2-category QCat. There is also a similar map map
f! : X//a → X//b. When X admits pullbacks the map f! : X/a → X/b has a right
adjoint

f∗ : X/b→ X/a

for every arrow f : a→ b; we shall say that f∗ is the base change map along f .

16.11. Every finitely cocomplete quasi-category X admits a natural action x 7→
A · x by an arbitrary finite simplicial set A. The action is defined as follows. The
diagonal ∆A : X → XA has a left adjoint

lim
−→
A

: XA → X

since X is finitely complete. If x ∈ X, then A · x = lim−→
A

∆A(x). The element
A · x is the colimit of the constant diagram c : A → X with value x. There is a a
canonical homotopy equivalence

X(A · x, y) ' X(x, y)A
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for every y ∈ X. The action map x 7→ A · x is inducing a map S0 × X → X,
where S0 is the category of finite simplicial sets. For a fixed node x ∈ X, the map
A 7→ A · x takes homotopy pushout squares in S0 to pushout squares in X. For
example, the 1-sphere S1 can be defined by the pushout square

∂I
i //

i

��

I

��
I // S1

where i is the inclusion. The map I → 1 is a weak homotopy equivalence. By
combining this, we obtain a pushout square

x t x //

��

x

��
x // S1 · x

for each x ∈ X. Dually, a finitely complete quasi-category X admits a contravariant
action (x,A) 7→ xA by finite simplicial sets. The vertex xA ∈ X is the limit of the
constant diagram A→ X with value x. There is a a canonical homotopy equivalence

X(y, xA) ' X(y, x)A

for every y ∈ X. The covariant and contravariant actions are related by the formula
xA = (Ao · xo)o. The map A 7→ xA takes homotopy pushout squares in S0 to
pullback squares in X. We thus have a pullback square

xS1 //

��

x

��
x // x× x

for each x ∈ X.

17. Kan extensions

17.1. If X is a cocomplete (big) quasi-category, then so is the (big) simplicial set
XA for any (small) simplicial set A. If u : A → B, then the map Xu : XB → XA

has a left adjoint

Σu : XA → XB .

If f : A → X, the map Σu(f) : B → X is called the left Kan extension of f along
u. If u a v then Xv a Xu, and hence hence Σu = Xv.

17.2. Consider a cartesian square

F
v //

q

��

E

p

��
A

u // B
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in which p is a proper map or u is a smooth map. Then the following square
commutes (up to an isomorphism):

XF

Σq

��

XE
Xv

oo

Σp

��
XA XB .

Xu
oo

For example, if B is a quasi-category and u : A→ B let us compute the composite

XA
Σu // XB

eb // X

where b : 1→ B and eb = Xb. The projection p : B/b→ B is smooth since a right
fibration is smooth. Hence the following square commutes:

XA/b

Σv

��

XA
Xq

oo

Σu

��
XB/b XB .

Xp
oo

The terminal vertex t : 1 → B/b is right adjoint to the map r : B/b → 1. Thus,
Xt = Σr. But we have Xb = XtXp since b = pt. Thus

ebΣu = XbΣu = XtXpΣu = XtΣvXq = ΣrΣvXq = ΣrvXq.

But Σrv is the map
lim
−→

: XA/b → X.

Hence the square
XA/b

lim
−→

��

XAoo

Σu
��

X XB
eboo

commutes. In particular, if f : A→ X, we obtain Kan’s formula

Σu(f)(b) = lim
−→

u(a)→b

f(a).

Dually, if X is a complete quasi-category then so is the (big) simplicial set XA for
any (small) simplicial set A. If u : A → B, then the map Xu : XB → XA has a
right adjoint

Πu : XA → XB .

If f : A→ X, the map Πu(f) : B → X is called the right Kan extension of f along
u. If B is a quasi-category, then the square

Xb\A

lim←−

��

XAoo

Πu

��
X XB

eb

oo

commutes for any b ∈ B0. In particular, if f : A→ X, we obtain the second Kan’s
formula:

Πu(f)(b) = lim
←−

b→u(a)

f(a).
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17.3. If X is a quasi-category, then the contravariant functor A 7→ ho(A,X) is a
kind of cohomology theory with values in Cat. When X is bicomplete, the map
ho(u, X) : ho(B,X) → ho(A,X) has a left adjoint ho(Σu) and a right adjoint
ho(Πu) for any map u : A → B. If we restrict the functor A 7→ ho(A,X) to the
subcategory Cat ⊂ S, we obtain a homotopy theory in the sense of Heller, also called
a derivateur by Grothendieck. Most derivateurs occuring naturally in mathematics
can be represented by a bicomplete quasi-categories.

17.4. If X is a bicomplete quasi-categories, then the map Xu : XB → XA is a
Grothendieck bifibration for any fully faithful monomorphism u : A→ B.

18. Span

18.1. A span S = (s, S, t) between two simplicial sets A and B is defined to be a
pair of maps

A S
soo t // B

Equivalently, a span is a contravariant functot P → S, where P is the poset of
non-empty subsets of {0, 1}. We shall denote by Span(S) the category of spans
[P o,S]. Let ∂P be the subcategory of P whose objects are {0} and {1}. If i is the
inclusion ∂P ⊂ P , then the functor

i∗ : Span(S)→ S× S

is a Grothendieck fibration. If A,B ∈ S, we shall denote by Span(A,B) the fiber
of i∗ at (A,B). An object S = (s, S, t) of this category is a map (s, t) : S → A×B.
There is thus an isomorphism of categories

Span(A,B) = S/(A×B).

The composite of S ∈ Span(A,B) with T ∈ Span(B,C) is defined to be the span
S ◦ T = S ×B T ∈ Span(A,C),

S ×B T
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The composition functor

− ◦ − : Span(A,B)× Span(B,C)→ Span(A,C)

is coherently associative. The unit span ∆A ∈ Span(A,A) is the diagonal (1A, 1A) :
A→ A×A. The spans form a bicategory SPAN . By definition, a 0-cell of SPAN
is a simplicial set, a 1-cell A → B is a span S ∈ Span(A,B) and a 2-cell is a map
S → T in Span(A,B). The bicategory SPAN is symmetric monoidal. The tensor
product S⊗T of a span (s, t) : S → A×B with a span (u, v) : T → A×B is defined
to be the span

((s, u)(, t, v)) : S × T → (A× C)× (B × C).
This defines a functor of two variables

⊗ : Span(A,B)× Span(C,D)→ Span(A× C,B ×D).
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The operation ⊗ is compatible with the composition operation:

(S ⊗ T ) ◦ (U ⊗ V ) ' (S ◦ U)⊗ (T ◦ U).

The unit for the tensor product is the terminal span. The dual S∗ of a span
(s, t) : S → A × B is defined to be the span (to, so) : tSo → Bo × Ao. The
duality operation is a global automorphism which reverses the direction of 1-cells
but preserves the direction of 2-cells.

18.2. To every span (s, t) : S → A×B we associate the cylinder C(S) = C(s, S, t)
defined by the pushout square

S t S
stt //

��

A tB

��
S × I // C(S)

Notice that C(S) = (s, t)!!(S × I). The functor C(−) has a right adjoint which we
now describe. If X = (X, p) is a cylinder, let us denote by Ar(X) the simplicial
set HomI(I,X) of sections of the structure map p : X → I. A vertex of Ar(X) is
a crossing arrow of the cylinder X. From the inclusions {0} ⊂ I and {1} ⊂ I, we
obtain a two projections Ar(X)→ X(0) and Ar(X)→ X(1). The functor

Ar : S/I → Span(S)

is right adjoint to the functor C(−). The adjoint pair (C(−), Ar) induces a pair of
adjoint functors

C(−) : Span(A,B)↔ Cyl(A,B) : Ar

for each pair of simplicial sets A and B.

18.3. We shall say that a map of spans f : S → T in Span(A,B) a mixed equiva-
lence if the map of cylinders

C(f) : C(S)→ C(T )

is a weak categorical equivalence in Cyl(A,B). The category Span(A,B) admits
a model structure in which the weak equivalences are the mixed equivalences and
the cofibrations are the monomorphisms. We shall denote this model structure
shortly by (Span(A,B),Wm(A,B)) or by (Span(A,B),Wm) where Wm(A,B) is
the class of mixed equivalences in Span(A,B). We shall say that a map S → A×B
is a mixed fibration if the span S is fibrant with respect to this model structure.
The category Span(A,B) is enriched over simplical sets and the model structure is
simplicial. The pair of adjoint functors

C(−) : Span(A,B)↔ Cyl(A,B) : Ar

is a Quillen equivalence between the model categories (Span(A,B),Wm) and (Cyl(A,B),Wcat).

18.4. The duality functor

(−)∗ : Span(A,B)→ Span(Bo, Ao)

is an equivalence of model categories.
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18.5. If A and B are two simplicial sets, we shall denote by A � B the span

A A×Boo // B

This defines a functor of two variables

� : S× S→ Span(S).

If u : C → D and v : U → V are two maps of simplicial sets, we denote by u �′ v
the map

(C � V ) tC�U (D � U)→ D � V.

obtained from the commutative square

C � U //

��

D � U

��
C � V // D � V.

The map u �′ v is actually a map in Span(D,V ),

D

��

(C × V ) tC×U (D × U)oo //

u×′v
��

V

��
D D × Voo // V

The span A�B is the terminal object of the category Span(A,B). Thus, any map
(s, t) : X → A×B can be viewed as a map of spans (s, t) : X → A � B. The map
(s, t) : X → A � B is a mixed fibration iff it has the right lifting property with
respect to the following two kinds of maps:

• u �′ v for u a monomorphism and v a left cofibration;
• u �′ v for u a right cofibration and v a monomorphism.

Equivalently, (s, t) : X → A � B is a mixed fibration iff it has the right lifting
property with respect to the the following two kinds of maps:

• δm �′ hj
n for m ≥ 0 and 0 ≤ j < n;

• hi
m �′ δn for 0 < i ≤ m and n ≥ 0.

18.6. If A and B are quasi-categories and (s, t) : S → A × B is a fibrant span,
then the map s : S → A is a Grothendieck fibration and the map t : S → B is a
Grothendieck opfibration.

18.7. The functor
i∗ : Span(S)→ S× S

is a Grothendieck bifibration. To each pair of maps of simplicial sets u : A → A′

and v : B → B′ we can thus associate a pair of adjoint functors

(u× v)! : Span(A,B)↔ Span(A′, B′) : (u× v)∗.

It is a Quillen pair between the model categories (Span(A,B),Wm) and (Span(A′, B′),Wm).
And it is a Quillen equivalence if the maps u and v are weak categorical equivalences.
It follows from this result that the model category (Span(A,B),Wm) is equivalent
to a model category (Span(A′, B′),Wm) in which A′ and B′ are quasi-categories.
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18.8. The equivalence between the category Span(A, 1) and the category S/A in-
duces an equivalence of model categories

(Span(A, 1),Wm(A, 1)) = (S/A, Wr(A)).

Thus, a mixed fibration X → A× 1 is the same thing as a right fibration X → A.
The inductive mapping cone of a map f : X → A is defined to be the cylinder
Ci(f,X) = C(f,X, pX), where pX : X → 1. By construction, we have a pushout
square

X
f //

��

A

��
X � 1 // Ci(f,X).

The functor Ci : S/A → Cyl(A, 1) has a right adjoint which associates to a direct
cone Y ∈ Cyl(A, 1) its simplicial set of crossing arrows Ar(Y ). The pair of adjoint
functors (Ci,Ar) is a Quillen equivalence

Ci : (S/A, Wr(A))↔ (Cyl(A, 1),Wcat) : Ar.

18.9. The equivalence between the category Span(1, B) and the category S/B
induces an equivalence of model categories

(Span(1, B),Wm(1, B)) = (S/B,Wl(B)).

Thus, a mixed fibration X → 1 × B is the same thing as a left fibration X → B.
The projective mapping cone of a map f : X → B is defined to be the cylinder
Cp(X, f) = C(pX , X, f), where pX : X → 1. By construction, we have a pushout
square

X
f //

��

A

��
1 �X // Cp(X, f).

The functor Cp : S/B → Cyl(1, B) has a right adjoint which associates to an
inverse cone Y ∈ Cyl(1, B) its simplicial set of crossing arrows Ar(Y ) = Y (0, 1).
The pair of adjoint functors (Cp, Ar) is a Quillen equivalence

Cp : (S/B,Wr(B))↔ (Cyl(1, B),Wcat) : Ar.

18.10. The equivalence between the category Span(1, 1) and the category S in-
duces an equivalence of model categories

(Span(1, 1),Wm(1, 1)) = (S,Who).

Hence a map X → 1 × 1 is a mid fibration iff X is a Kan complex. The cylinder
C[pX , X, pX ] is a the (unreduced) suspension ΣX of the simplicial set X. By
construction, we have a pushout square

∂I ×X //

��

∂I

��
I ×X // Σ(X).
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The functor Σ : S → Cyl(1, 1) has a right adjoint which associates to a spindle
Y ∈ Cyl(1, 1) the simplicial set of crossing arrows Ar(Y ). The pair of adjoint
functors (Σ, Ar) is a Quillen equivalence

Σ : (S,Who)↔ (Cyl(1, 1),Wcat) : Ar.

18.11. We shall denote by Spanf (A,B) the full subcategory of Span(A,B) gener-
ated by the fibrant spans. The unit span ∆A ∈ Span(A,A) is not fibrant unless the
simplicial set A is discrete. A fibrant replacement of ∆A is obtained by factoring the
diagonal (1A, 1A) : A→ A×A as a weak equivalence A→ UA followed by a mixed
fibration UA → A×A. When A is a quasi-category, the map (s, t) : AI → A×A is
a mixed fibration and we can take UA = AI . If S ∈ Spanf (A,B), then the functor

S ◦ (−) : Spanf (B,C)→ Spanf (A,C)

is a left Quillen functor. Similarly, if T ∈ Spanf (B,C), then the functor

(−) ◦ T : Spanf (A,B)→ Spanf (A,C)

is a left Quillen functor. The composition law

− ◦ − : Spanf (A,B)× Spanf (B,C)→ Span(A,C),

induces a composition law between the homotopy categories:

− ◦ − : HoSpan(A,B)×HoSpan(B,C)→ HoSpan(A,C).

If S ∈ Spanf (A,B) and U ∈ Spanf (C,D), then the functor T 7→ S ◦ T ◦ U from
Span(B,C) to Span(A,D) is the composite of two left Quillen functors and in two
ways:

T 7→ (S ◦ T ) ◦ U and T 7→ S ◦ (T ◦ U).

It follows that we have

(S ◦ T ) ◦ U = S ◦ (T ◦ U)

for the derived composition functor. We thus obtain a bicategory HoSPAN .

18.12. The tensor product functor

⊗ : Span(A,B)× Span(C,D)→ Span(A× C,B ×D)

is a left Quillen functor of two variables with respect to the model structures on
the categories of spans. We thus obtain a symmetric monoidal structure on the
bicategory HoSPAN .

19. Duality

19.1. We shall say that a map of simplicial sets M → Ao×B is a distributor from
A to B and we shall write M : A ⇒ B. The category of distributors A ⇒ B is
the category S/(Ao ×B) and we shall denote it by D(A,B). We give the category
D(A,B) the model structure (S/(Ao×B),W l(Ao×B)). Hence a fibrant distributor
A⇒ B is a left fibration M → Ao ×B.



46 ANDRÉ JOYAL

19.2. The twisted category of arrows T (A) of a category A is defined to be the
category of elements of the hom functor Ao × A → Set. A simplex [n] → T (A)
is a map [n]o ? [n] → A. Let a : ∆ → ∆ the functor defined by putting a([n]) =
[n]o ? [n] (ordinal sum) for every n ≥ 0. If A is a general simplicial set, we shall
put T (A) = a∗(A). The functor a∗ : S→ S is a right Quillen functor for the model
structure (S,Wcat). From the inclusions [n]o ⊂ [n]o ? [n] and [n] ⊂ [n]o ? [n] we
obtain a natural map (sA, tA) : T (A) → Ao × A. It is a left fibration when A is a
quasi-category.

19.3. The dual twisted category of arrows T o(A) of a category A is defined to be
the category of element of the hom functor Ao×A→ Set viewed as a contravariant
functor A×Ao → Set. A simplex [n]→ T o(A) is a map [n]? [n]o → A. Let b : ∆→
∆ the functor defined by putting b([n]) = [n] ? [n]o (ordinal sum) for every n ≥ 0.
If A is a general simplicial set, we shall put T o(A) = b∗(A). From the inclusions
[n] ⊂ [n]o ? [n] and [n]o ⊂ [n]o ? [n] we obtain a map (so

A, toA) : T o(A) → A × Ao.
We have a duality

T o(A) = (T (Ao))o, so
A = (sAo)o and toA = (tAo)o.

19.4. If A is a quasi-category, consider the spans ηA ∈ Span(1, Ao × A) and εA ∈
Span(A×Ao, 1) respectively defined by the diagrams

T (A)

}}||
||

||
|| (sA,tA)

$$IIIIIIIII

1 Ao ×A,

T o(A)
(so

A,to
A)

yyttttttttt

""EEEEEEEE

A×Ao 1.

If ∆A ∈ Span(A,A) is the unit span, then there is a canonical isomorphism

(A⊗ ηA) ◦ (εA ⊗A) ' ∆A

in the homotopy category HoSpan(A,A). There is also a dual canonical isomor-
phism

(ηA ⊗Ao) ◦ (Ao ⊗ εA) ' ∆Ao

in the homotopy category HoSpan(Ao, Ao). Hence the quasi-categories A and Ao

are dual to each other in the symmetric monoidal bicategory HoSPAN . If A is a
general simplicial set, then the spans ηA and εA are defined as above, but by using
a fibrant replacement of the distributor TA. The monoidal category HoSPAN is
compact closed.

19.5. The span S∗ ∈ Span(Bo, Ao) is the transpose of the span S ∈ Span(A,B)
in the monoidal category HoSPAN . This means that we have a canonical isomor-
phism

S = (A⊗ ηB)(A⊗ S∗ ⊗B)(εA ⊗B)

in HoSpan(A,B) and a canonical isomorphism

S∗ = (ηA ⊗Bo)(Ao ⊗ u⊗Bo)(Ao ⊗ εB)

in HoSpan(Bo, Ao).
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19.6. It follows from the duality above that for any simplicial sets A, B and C,
there is an equivalence of homotopy categories

HoSpan(A×B,C)→ HoSpan(B,Ao × C).

The equivalence is defined by the left Quillen functor which associates to a span
S ∈ Span(A×B,C) the span

S′ = (ηA ⊗B) ◦ (Ao ⊗ S)

calculated by the following diagram with a pullback square,

S′

��

// S

��

// B × C

Ao T (A)
sAoo tA // A

The inverse Quillen equivalence associates to a span V ∈ Span(B,Ao × C), the
span

V ′ = (A⊗ V ) ◦ (εA ⊗ C)

calculated by the following diagram with a pullback square

B × C V

��

oo V ′

��

oo

Ao T o(A)
to
Aoo so

A // A.

19.7. It follows from the duality above that for any simplicial sets A and B, there
is an equivalence of homotopy categories

HoSpan(A,B)→ HoD(A,B).

The equivalence is induced by the functor which associates to a span S ∈ Span(A,B)
the distributor S′ ∈ D(A,B) calculated by following diagram with a pullback
square,

S′

��

// S

��

// B

Ao T (A)
sAoo tA // A.

The inverse equivalence is induced by the functor which associates to a distributor
V ∈ D(A,B), the span V ′ ∈ Span(A,B) calculated by the following diagram with
a pullback square,

V ′

��

// V

��

// B

A T o(A)
so

Aoo to
A // Ao.
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19.8. To each map of simplicial sets u : A→ B we can associate two spans P (u) ∈
Span(A,B) and P ∗(u) ∈ Span(B,A) described by the following diagrams

P (u) //

��

BI

s

��

t // B

A
u // B,

P ∗(u) //

��

A

u

��
B BI

soo t // B,

Where the squres are pullback. We have P (u)∗ = P ∗(uo). If B is a quasi-category,
the span P (u) ∈ Span(A,B) is left adjoint to the span P ∗(u) ∈ Span(B,A) in
the bicategory HoSPAN . If A and B are quasi-categories, then for any span
(u, v) : S → A×B we have a canonical decomposition

S = P ∗(u) ◦ P (v)

in the bicategory HoSPAN .

20. The quasi-category Hot

By definition, the quasi-category Hot is the coherent nerve of the (simplicial)
category of Kan complexes.

20.1. The quasi-category Hot is freely generated by its terminal node 1 ∈ Hot as
a cocomplete quasi-category. This means that for any cocomplete quasi-category
X and any vertex x ∈ X there exists a cocontinuous map ex : Hot→ X such that
ex(1) = x, and moreover that ex is unique up to a unique invertible 2-cell. We have
ex(A) = A · x for every A ∈ Hot.

20.2. Every cocomplete quasi-category X supports a natural action S × X → X
by the category S. For a fixed x ∈ X, the map A 7→ A · x takes a weak homotopy
equivalence to a quasi-isomorphism. It induces an action of the quasi-category Hot
on X. The action map Hot×X → X is cocontinuous in each variable. Dually, every
complete quasi-category X supports a natural contravariant action X × So → X
by the category S and a contravariant action X ×Hoto → X of the quasi-category
Hot.

20.3. We say that a quasi-category X is cartesian closed if it admits finite products
and the product map a×− : X → X has a right adjoint [a,−] : X → X for every
vertex a ∈ X. The quasi-category Hot1 is cartesian closed. The slice quasi-category
Hot1/I is also cartesian closed.

20.4. We say that a quasi-category X is locally cartesian closed if it is finitely
complete and the slice quasi-category X/a is cartesian closed for every vertex a ∈ X.
A finitely complete quasi-category is locally cartesian closed iff the base change map

f∗ : X/b→ X/a

has a right adjoint for every arrow f : a → b. The quasi-category Hot is locally
cartesian closed.
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20.5. If 1 denotes the terminal object of the quasi-category Hot, then the left
fibration

1\Hot→ Hot
is universal. Let us put 1\Hot = Hot•. The universality means that the following
two properties are satisfied: (i) for every left fibration p : E → B there exists a
commutative square

E
f ′ //

p

��

Hot•

��
B

f // Hot,

such that the induced map E → f∗Hot• is a fiberwise homotopy equivalence in
the category S/B; (ii) the pair of maps (f, f ′) is unique up to a unique invertible
2-cell. Here a 2-cell (f, f ′)→ (g, g′) is defined to be a pair of 2-cells α : f → g and
α′ : f ′ → g′ (in the 2-category of (big) simplicial sets) such that π ◦ α′ = α ◦ p. We
shall say that the pair (f, f ′) is classifying the left fibration p : E → B.

20.6. Remark. The objet Ω of a topos is classifying the monomorphisms in this
topos. There is an analogy between the objet Ω and the quasi-category Hot since
the latter is classifying left fibrations in the category of simplicial sets. It may
be possible to devellop some parts of the theory of quasi-categories by using an
axiomatic approach. The axiomatic approach in category theory was advocated
by Benabou, Lawvere, Street and Tierney. The category QCat has many of the
nice properties of Cat, for example it is cartesian closed. Many properties of Hot
can be proved by using the universality of the left fibration Hot• → Hot. For
example, it can be proved that Hot is a complete quasi-category. This is because
the right adjoint to the diagonal Hot→ HotA is the map which classifies the left
fibration HotA

• → HotA. We shall see that Hot is an∞-topos. There might be an
elementary notion of ∞-topos. We may also axiomatise the quasi-category Hot1.

20.7. We shall say that a map f : Ao → Hot is a prestack. If A is a simplicial set,
we shall put

P(A) = HotAo

= [Ao,Hot].
If u : A → B, then the map u∗ = [uo,Hot] : P(B) → P(A) has a left adjoint
u! = Σuo and a right adjoint u∗ = Πuo .

20.8. Let T (A) be the twisted simplicial set of arrows of a simplicial sets A. See
??. When A is a quasi-category, the canonical map (s, t) : T (A)→ Ao ×A is a left
fibration. In which case it is classified by a pair of maps (homA, hom′

A):

T (A)

(s,t)

��

hom′A // Hot•

��
Ao ×A

homA // Hot.

This defines the map homA : Ao ×A→ Hot from which the Yoneda map

yA : A→ P(A) = HotAo

is obtained. The quasi-category HotA is equivalent to the coherent nerve of L(A).
Dually, the quasi-category HotAo

is equivalent to the coherent nerve of R(A).
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21. The trace

21.1. Let C be the category of cocomplete quasi-categories and cocontinuous maps.
If X ∈ C then XA ∈ C for any simplicial set A. The category C has the structure
of a 2-category: it is a sub-2-category of the 2-category of big simplicial sets, where
the 2-category of (small) simplicial sets is defined to be Sτ1 . If X is a cocomplete
quasi-category, then so is the quasi-category X(A) = XAo

for any simplicial set A.
If S ∈ Span(A,B) the composite

X(A) s∗ // X(S)
t! // X(B).

is a cocontinuous map

X〈S〉 : X(A)→ X(B).

If u : S → T is a map in Span(A,B), then from the commutative diagram

S
s

����
��

��
�

u

��

t

��@
@@

@@
@@

A B

T

a

__??????? b

??~~~~~~~

and the counit u!u
∗ → id, we obtain a 2-cell

X〈u〉 : X〈S〉 = t!s
∗ = b!u!u

∗a∗ → b!a
∗ = X〈T 〉.

This defines a functor

X〈−〉 : Span(A,B)→ C(X(A), X(B)).

The functor takes a mixed equivalence to an isomorphism. We thus obtain a functor

X〈−〉 : HoSpan(A,B)→ C(X〈A〉, X〈B〉).

21.2. Recall that the composite of a span S ∈ Span(A,B) with a span T ∈
Span(B,C) is defined to be the span S ◦ T = S ×B T ,

S ◦ T
p

||yyyyyyyy
q

""EEEEEEEE

S
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t
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@@
@@

A B C

Let us suppose that A and B are quasi-categories and that S is a fibrant span. In
this case the target map t : S → C is Grothendieck opfibration. It is thus a proper
map. Hence the following diagram commutes up to a canonical isomorphism,
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X(S ◦ T )
q!

%%JJJJJJJJJ

X(S)

p∗
99ttttttttt

t!

%%JJJJJJJJJ
X(T )

t!

##GG
GG

GG
GG

G

X(A)

s∗
;;wwwwwwwww

X(B)

s∗
99ttttttttt

X(C)

It follows that

X〈S ◦ T 〉 ' X〈T 〉 ◦X〈S〉.

This defines a pseudo 2-functor

X : HoSPAN → C.

The functor is contravariant with respect to 1-cells but covariant with respect to
2-cells.

21.3. If the quasi-category X is bicomplete, then the map X〈S〉 : X(A) → X(B)
has a right adjoint

X(B) t∗ // X(S)
s∗ // X(A).

The opposite of this right adjoint is the map

Xo〈So〉 : Xo(Bo)
(to)∗ // (Xo)(So)

(so)! // Xo(Ao)

where So denotes the span (to, so) : So → Bo ×Ao.

21.4. If A is a quasi-category, then we have a span εA ∈ Span(A×Ao, 1),

T o(A)
(so

A,to
A)

yyttttttttt

""EEEEEEEE

A×Ao 1.

The trace map

trA : XAo×A → X

is defined to be the map X〈εA〉 : X(A × Ao) → X(1). By definition, it is the
composite

XAo×A
X(sAo ,tAo )

// XT (Ao)
colim // X,

In category theory, the trace of a map f : Ao×A→ X is called a coend and denoted

coendA(f) = trA(f) =
∫ a∈A

f(a, a).

We shall use the same notation. We have coendA(f) = coendAo(tf), where tf :
A×Ao → X is the transpose of f .
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21.5. If X is a complete quasi-category, the cotrace map

cotrA : XAo×A → X

is defined to be the composite

XAo×A
X(sA,tA)

// XT (A)
lim // X,

where (sA, tA) is the canonical map T (A)→ Ao×A. In category theory, the cotrace
of a map f : Ao ×A→ X is called an end and denoted

endA(f) =
∫

a∈A

f(a, a).

We shall use the same notation. We have endA(f) = endAo(tf), where tf : A ×
Ao → X is the transpose of f . The trace and cotrace are dual to each other. We
have

endA(f)o = coendAo(fo),

where fo : A×Ao → Xo is the opposite of f : Ao ×A→ X.

21.6. If X ∈ C, then we have a canonical isomorphism X(A)(B) = X(A×B) for
any pair of simplicial sets A and B. The functor (X, A) 7→ X(A) is contravariant
in A ∈ SPAN . Hence the category C is cotensored over the monoidal category
SPAN . It is also cotensored over the homotopy category HoSPAN by the result
above. But HoSPAN is a compact closed 2-category by ??. It follows by duality
that C is tensored over HoSPAN . In other words the functors X 7→ X(A) and
X 7→ X(Ao) are mutually adjoints. This means that for X, Y ∈ C there is a natural
equivalence of categories

C(X(Ao), Y ) ' C(X, Y (A)).

The counit of the adjunction is the trace map trA : Y A×Ao → Y . The unit ηA :
X → XA×Ao

associates to x ∈ X the map (a, b) 7→ homA(b, a) · x. The map

y : A×X → XAo

given by (a, x) 7→ (a 7→ homA(b, a) · x) is cocontinuous in the second variable, and
it is universal with respect to that property. This means that if Y is a cocomplete
quasi-category and f : A ×X → Y is a map cocontinuous in the second variable,
then there exists a cocontinuous map f̄ : XAo → Y together with an invertible
2-cell α : f ' f̄y, and that the pair (f̄ , α) is unique up to a unique invertible 2-cell.

21.7. To each map of simplicial sets u : A→ B we can associate two spans P (u) ∈
Span(A,B) and P ∗(u) ∈ Span(B,A). If B is a quasi-category, the span P (u) ∈
Span(A,B) is right adjoint to the span P ∗(u) ∈ Span(B,A) in the bicategory
HoSPAN .

Thus, if X ∈ C, the map X〈P (u)〉 : X(A) → X(B) is thus left adjoint to the
map X〈P ∗(u)〉 : X(B)→ X(A), since the functor X〈−〉 is contravariant on 1-cells.
But the map X〈P ∗(u)〉 is isomorphic to the map u∗ : X(B) → X(A). Hence the
map X〈P (u)〉 : X(A) → X(B) is isomorphic to the map u! : X(A) → X(B). The
spans P (u) and P ∗(uo) are also mutually dual in the monoidal category HoSPAN .
Hence we have

P (u) = (A⊗ ηB)(A⊗ P ∗(uo)⊗B)(εA ⊗B)
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in the monoidal bicategory HoSPAN . This formula implies that for every X ∈ C,
we have a decomposition

u! = X〈εA ⊗B〉 ◦X〈P ∗(uo)⊗B〉 ◦X〈A⊗ ηB〉.

But we have X〈P ∗(uo)⊗B〉 = (uo ×B)∗. In other words, if f : Ao → X, then we
have the formula

u!(f)(b) =
∫ a∈A

B(b, u(a)) · f(a).

Dually, if X is a complete quasi-category and f : Ao → X, then we have the formula

u∗(f)(b) =
∫

a∈A

f(a)B(u(a),b).

21.8. The quasi-category of prestacks P(A) = HotAo

is cocomplete and freely
generated by the Yoneda map yA : A→ P(A). This means that if X is a cocomplete
quasi-category, then for every map f : A → X, there exists a cocontinuous map
f̄ : P(A) → X together with an invertible 2-cell α : f ' f̄yA, and that the
pair (f̄ , α) is unique up to an unique invertible 2-cell. The map f̄ is the left Kan
extension of f along yA. It follows that we have

f̄(e) = lim
−→
A/e

fpe

for every e ∈ P(A), where A/e and pe are defined by the pullback square

A/e

��

pe // A

yA

��
P(A)/e // P(A).

When f = yA, the map f̄ is the identity of P(A). This means that we have

e = lim
−→
A/e

pe

for every e ∈ P(A).

21.9. Dually, the quasi-category Po(A) = P(Ao)o is complete and freely generated
by the dual Yoneda map yo

A = (yAo)o : A → Po(A). This means that if X is a
complete quasi-category, then for every map f : A → X there exists a continuous
map f̄ : Po(A) → X together with an invertible 2-cell α : f ' f̄yo

A, and moreover
that the pair (f̄ , α) is unique up to an unique invertible 2-cell.

22. Factorisation systems in quasi-categories

22.1. There is a notion of factorisation system in a quasi-category. Let us de-
fine the orthogonality relation i⊥f between the arrows of a quasi-category X. A
commutative square

a //

i

��

x

f

��
b // y
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is a map s : I×I → X which extends the map (i, f) : ItI → X along the inclusion
I t I = ∂I × I ⊂ I × I. A diagonal filler for s is defined to be a map I ? I → X
which extends s along the inclusion I × I ⊂ I ? I. The fiber at s of the projection
XI?I → XI×I is a Kan complex Fill(s). If Fill(s) is contractible for every square
s which extends the given pair (i, f), we shall say that i is strictly left orthogonal to
f , or that f is strictly right orthogonal to i, and write i⊥f . If h : X → hoX is the
canonical map, then the relation i⊥f in X implies the relation h(i)⊥h(f) in hoX,
but the converse is not necessarly true. However, if h(i) = h(i′) and h(f) = h(f ′),
then the relations i⊥f and i′⊥f ′ are equivalent. Hence the relation i⊥f depends
only on the homotopy classes of i and f . If Σ is a set of arrows in X we shall put

Σ⊥ = {f ∈ X1 : ∀i ∈ Σ, i⊥f}, ⊥Σ = {f ∈ X1 : ∀i ∈ Σ, f⊥i}.
The set Σ⊥ contains the quasi-isomorphisms and it is closed under composition
and retract. It is also closed under base change when they exist. If v ∈ Σ⊥ then a
composite f = vu (in hoX) belongs to Σ⊥ iff u ∈ Σ⊥.

22.2. We shall say that a pair (A,B) of class of arrows in a (big) quasi-category
X is a factorisation system if the following two conditions are satisfied:

• A⊥ = B and A = ⊥B;
• every arrow f ∈ X admits a factorisation f = pu (in hoX), with u ∈ A and

p ∈ B.
We say that A is the left class and that B is the right class of the factorisation
system.

22.3. If (A,B) is a factorisation system in the quasi-category X, then the pair
(h(A), h(B)) is a weak factorisation system in the category hoX. Moreover, we
have A = h−1h(A) and B = h−1h(B). In particular, the intersection A ∩ B is
the class of quasi-isomorphism of X. If (C,D) is a weak factorisation system in
ho(X), then the pair (h−1(C), h−1(D)) is a factorisation system in X iff we have
i⊥u for every i ∈ h−1(C) and u ∈ h−1(D). A factorisation system (A,B) in a
quasi-category X, induces a factorisation system on the slice quasi-categories X/b
and b\X for every node b ∈ X, and a factorisation system on the quasi-category
XS for every simplicial set S. When X has finite products we shall say that a
factorisation system (A,B) in X is stable under product if we have a × A ⊆ A for
every a ∈ X0. When X is finitely complete we shall say that (A,B) is stable under
base change if A is closed under base change.

22.4. Let p : E → B be a right Grothendieck fibration between quasi-categories. If
Qi is the set of quasi-isomorphisms in B, and C is the set of cartesian arrows in E,
then the pair (p−1(Qi), C) is a factorisation system in E. If X is a quasi-category
with pullbacks, then the target map t : XI → X is a Grothendieck fibration. Hence
the category XI admits a factorisation system (t−1(Qi), C), where C is the set of
cartesian square in X.

22.5. We shall say that an arrow u : a → b in a quasi-category X is a monomor-
phism or that it is monic if the commutative square

a
1a //

1a

��

a

u

��
a

u // b
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is cartesian. A monomorphism in X is monic in hoX. A map between Kan com-
plexes u : A→ B is monic in the quasi-category Hot iff it is homotopy monic (see
??). We say that an arrow in a quasi-category X is surjective, or that is a surjec-
tion, if it is left orthogonal to every monomorphism of X. A map between Kan
complexes u : A → B is a surjective arrow in Hot iff the map π0u : π0A → π0B
is surjective. If A is the class of surjections and let B be the class of monomor-
phisms, then the pair (A,B) is a factorisation system iff every arrow in X admits
a factorisation f = up, with u a monomorphism and p a surjection. In this case,
we shall say that the quasi-category admits surjection-mono factorisations. The
quasi-category HOT admits this kind of factorisation. If a quasi-category X ad-
mits surjection-mono-factorisations then so are the slice quasi-categories b\X and
X/b for every vertex b ∈ X, and the quasi-category XS for every simplicial set S.

22.6. We say that a simplicial set is 0-object if it is a disjoint union of weakly
contractible spaces. A simplicial set A is a 0-object iff the diagonal A→ A× A is
homotopy monic. A Kan complex K is 0-object iff the projection KS1 → K is a
homotopy equivalence. If X is a quasi-category, we shall say that a vertex a ∈ X
is discrete or that it is a 0-object if the simplicial set X(x, a) is a 0-object for every
node x ∈ X; we shall say that an arrow u : a → b is a 0-cover if it is a 0-object
of the slice quasi-category X/b. When the product a× a exists, a vertex a ∈ X is
0-object iff the diagonal a → a × a is monic. When the exponential aS1

exists, a
vertex a ∈ X is a 0-object iff the projection aS1 → a is quasi-invertible. A map
of simplicial sets u : A → B is an arrow in the quasi-category Hot; the arrow
is a 0-cover in Hot iff the map is a 0-cover in S (see ??). An arrow u : a → b
in a quasi-category X is a 0-cover iff the map X(x, u) : X(x, a) → X(x, b) is a
0-cover for every node x ∈ X. We shall say that an arrow u : a → b in X is
0-connected if it is left orthogonal to every 0-cover in X. A map of simplicial sets
u : A→ B is 0-connected iff its homotopy fibers are connected. In a quasi-category,
we shall say that the factorisation of an arrow as a 0-connected arrow followed by
0-cover is a 0-factorisation of this arrow. We shall say that a quasi-category X
admits 0-factorisations if every arrow in X admits a 0-factorisation. In this case
the quasi-category admits a factorisation system in which the left class is the class
of 0-connected arrows and the right class the class of 0-covers. The quasi-category
Hot admits 0-factorisations and these factorisations are stable under base change.
If a quasi-category X admits 0-factorisations, then so are the slice quasi-categories
b\X and X/b for every vertex b ∈ X, and the quasi-category XS for every simplicial
set S.

22.7. There is a notion of n-cover and of n-connected arrow in every quasi-category
for every n ≥ 0. It can be defined by induction on n. If n > 0, we shall say that a
simplicial set A is a n-object if its diagonal A → A × A is a (n − 1)-cover. ( more
concretely, a simplicial set A is a n-object if we have πi(A, a) = 0 for every i > n
and every a ∈ A0). If X is a quasi-category, we shall say that a vertex a ∈ X is a
n-object if the simplicial set X(x, a) is a n-object for every vertex x ∈ X. When
the product a × a exists, the vertex a is a n-object iff the diagonal a → a × a is
a (n − 1)-cover. When the exponential aSn+1

exists, the vertex a is a n-object iff
the projection aSn+1 → a is quasi-invertible. We shall say that an arrow u : a→ b
is a n-cover if it is a n-object of the slice quasi-category X/b. A map between
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Kan complexes u : A → B is a n-cover in HOT iff its homotopy fibers are n-
objects. We shall say that an arrow in a quasi-category X is n-connected if it is
left orthogonal to every n-cover. A map between Kan complexes u : A → B is
n-connected in Hot iff its homotopy fibers are n-connected. In a quasi-category,
we shall say that the factorisation of an arrow as a n-connected arrow followed by
n-cover is a n-factorisation of this arrow. We shall say that a quasi-category X
admits n-factorisations if every arrow in X admits a n-factorisation. In this case
the quasi-category admits a factorisation system in which the left class is the class
of n-connected arrows and the right class the class of n-covers. The quasi-category
HOT admits n-factorisations for each n ≥ 0, and these factorisations are stable
under base change. If a quasi-category X admits n-factorisations, then so are the
slice quasi-categories b\X and X/b for every vertex b ∈ X, and the quasi-category
XS for every simplicial set S.

22.8. If X admits n-factorisations for every 0 ≤ k ≤ n, we obtain a factorisation
systems (Ak, Bk) for each 0 ≤ k ≤ n. Notice the inclusions

A0 ⊇ A1 ⊇ A2 ⊇ A3 · · · ⊇ An

B0 ⊆ B1 ⊆ B2 ⊆ B3 · · · ⊆ Bn.

An Eilenberg-MacLane n-cover in a quasi-category X is a n-cover which is (n− 1)-
connected. A Postnikov tower (of height n) for an arrow a → b is defined to be a
factorisation of length n + 1 (in hoX)

a x0
p0oo x1

p1oo p2oo · · ·xn−1 xn
pnoo b

qnoo

with p0 a 0-cover, pk is an EM k-cover for each 0 < k ≤ n and qn a n-connected
arrow. The Postnikov tower of an arrow is unique (up to a unique isomorphism in
the quasi-category of towers) when it exists. If X admits k-factorisations for each
0 ≤ k ≤ n, then every arrow in X admits a Postnikov n-tower.

22.9. To each model category E we can associate its quasi-localisation L(E). Let
p : E → L(E) be the canonical map. We conjecture that if (A,B) is a factorisation
system in L(E), then the pair (p−1(A), p−1(B) is a homotopy factorisation system
in L(E) and that this defines a bijection between the factorisation systems in L(E)
and the homotopy factorisation systems in E . This conjecture can be proved in the
case of a simplicial category if we use ??.

22.10. We say that a factorisation system (A,B) in a quasi-category X is generated
by a set Σ of of arrows in X if we have B = Σ⊥. Let X be a cartesian closed quasi-
category. We shall say that a factorisation system (A,B) in X is stably generated
by a set of arrows Σ if it is generated by the set

Σ′ =
⋃

a∈X0

a× Σ.

For example, the surjection-mono-factorisation system in Hot is stably generated
by the map S0 → 1. More generally, the the n-factorisation system is stably
generated by the map Sn+1 → 1. The system of essentially surjective maps and
of fully faithful maps in Hot1, is stably generated by the inclusion ∂I ⊂ I; the
system of initial maps and of left fibrations is stably generated by the inclusion
{0} ⊂ I; the dual system of final maps and of right fibrations is stably generated
by the inclusion {1} ⊂ I; the system of weak homotopy equivalences and of Kan
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fibrations is stably generated by the two inclusions {0} ⊂ I and {1} ⊂ I; the system
of localisations and of conservative maps is stably generated by the map I → 1.

23. Quasi-algebra

23.1. All universal algebra can be extended to this quasi-categories. A Lawvere
theory or a product theory is defined to be a small quasi-category with finite products
T . A model of T (with values in Hot) is defined to be a product preserving map
T → Hot. The quasi-category of models Mod(T ) is the full simplicial subset of
[T,Hot] = HotT which is spanned by the models. The quasi-category Mod(T ) is
complete and cocomplete. If t is an object of T , then the map hom(t,−) : T →
Hot is a free model of T . It follows from Yoneda lemma that T is equivalent
to the opposite of the quasi-category of finitely generated free models of T . For
example, the product theory of monoids Mo is the opposite of the category of
finitely generated free monoids. A model of a product theory T with values in a
quasi-category with finite products X is a defined to be a product preserving map
T → X. The quasi-category of models Mod(T,X) is the full simplicial subset of
[T,X] = XT which is spanned by the models. The quasi-category Mod(T,X) is
complete if X is complete. An interpretation of a product theory S in a product
theory T is a model u : S → T . The induced map Mod(u) : Mod(T ) → Mod(S)
has a left adjoint u! : Mod(S) → Mod(T ). The tensor product S � T of two
theories is the target of a map S × T → S � T preserving finite products in each
variables and which is universal with respect to that property. The (2-)category of
product theories is symmetric (pseudo-)monoidal closed. We have Mod(S�T,U) =
Mod(S, Mod(T,U) for every quasi-category with product U . In particular, we have

Mod(S � T ) = Mod(S, Mod(T )) = Mod(T,Mod(S).

For example, the tensor square Mo�2 = Mo�Mo is the theory of braided monoids.
More generally, Mo�n is the theory of En-monoids for each n ≥ 2. If Gr denotes
the theory of groups, then Gr�n is the theory of n-fold loop spaces for each n ≥ 1.

23.2. The notion of algebraic structure can be extended to include partially defined
finitary operations. This is called an essentially algebraic structure. For example,
the notion of category is essentially algebraic, since the composition of arrows in a
category is only partially defined. A finitary limit sketch is a pair (A,P ), where A is
a simplicial set and P is a family of projective cones with finite base ui : 1?Ci → A,
(i ∈ I). A map f : A → X with codomain a finitely complete quasi-category X
is said to be a model of the sketch if each cone fui : 1 ? Ci → X is exact in
X. The quasi-category of models Mod(A,P ;X) is defined to be the full simplicial
subset of [A,X] whose objects are the models. Let us say for short that a quasi-
category is left exact if it admits finite limits and also that a map between left
exact categories is left exact if it preserves finite limits. If X and Y are left exact
categories and X is small, then there is a left exact category Lex(X, Y ) of left
exact maps X → Y . By definition, it is the full simplicial subset of [X, Y ] = Y X

which is spanned by the left exact maps X → Y . Every finitary limit sketch (A,P )
has a universal model u : A → T (A,P ) with values in a left exact quasi-category
T (A,P ); the universality means that u induces an equivalence of quasi-categories
Lex(T (A,P ), X) → Mod(A,P ;X) for any left exact quasi-category X. We now
give a few examples of essentially algebraic notions. A category object (in a left
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exact quasi-category X) is defined to be a simplicial object C : ∆o → X satisfying
the Segal conditions. The conditions say that the natural projection

Cn → C1 ×∂0,∂1 C1 × · · · ×∂0,∂1 C1,

is quasi-invertible for every n ≥ 2. Another example of structure that can be
defined by a limit sketch is the notion of monomorphism: an arrow a→ b is monic
iff the diagonal a → a ×b a is invertible. A third example is the notion of discrete
object: an object a is discrete iff the diagonal a→ a×a is monic. It follows that the
notion of a category object C : ∆o → X with discrete object of objects C0 is also
(quasi-)algebraic. The (2-)category of small left exact quasi-categories is symmetric
monoidal closed. The tensor product S � T is the target of a map S × T → S � T
left exact in each variables and universal with respect to that property. There is
an equivalence of quasi-categories

Mod(S � T ) = Mod(S, Mod(T )) = Mod(T,Mod(S)).

For example, if Ca denotes the theory of categories, then Ca�2 = Ca � Ca is the
theory of double categories.

23.3. The notion of algebraic structure can be extended to include partially defined
infinitary operations. A sheaf on a space is an example since gluing the sections
of a sheaf on the open sets of a cover is an infinitary operation if the cover is
inifinite. A limit sketch is a pair (A,P ), where A is a simplicial set and P is a
family of projective cones ui : 1 ? Ci → A, (i ∈ I). We say that a map f : A → X
with codomain a complete quasi-category X is a model of the sketch if each cone
fui : 1 ? Ci → X is exact in X. The quasi-category of models Mod(A,P ;X)
is defined to be the full simplicial subset of [A,X] spanned by the models. The
quasi-category Mod(A,P ;X) is an example of what we call a locally presentable
quasi-category. Up to equivalence, it is the most general example. We shall not
give an abstract definition of the notion of locally presentable quasi-category here.
Every locally presentable quasi-category is complete and cocomplete. If X is locally
presentable then so are the slice quasi-categories a\X and X/a for any object a ∈ X
and the quasi-category XA for any simplicial set A. If X is locally presentable and Y
is cocomplete, then every cocontinuous map f : X → Y has a right adjoint Y → X.
We shall denote by LP the (2-)category of locally presentable quasi-categories and
cocontinuous maps.

23.4. Let Σ be a set of arrows in a locally presentable quasi-category X. Then the
pair (⊥(Σ⊥),Σ⊥) is a factorisation system. We say that an object a ∈ X is Σ-local if
the terminal map a→ 1 belongs to Σ⊥. Let us denote by XΣ the simplicial subset
of X spanned by the Σ-local objects. The quasi-category XΣ is locally presentable,
an the inclusion XΣ ⊆ X has a left adjoint r : X → XΣ. The map r is cocontinuous
and it inverts universally the arrows in Σ. We shall say that it is a localisation.
More generally, we say that a map f : X → Y in LP is a localisation iff its right
adjoint Y → X is fully faithful. Every map X → Y in LP can be factored as a
localisation X → L followed by conservative map L→ Y , and this factorisation is
unique up to equivalence (with an equivalence which is unique up to a unique 2-cell).
The factorisation can be constructed as follows. Let W be the class of arrows in X
which are quasi-inverted by f . Then the pair (W,W⊥) is a factorisation system.
The quasi-category XW of W -local object is locally presentable and the inclusion
XW ⊆ X has a left adjoint r : X → XW . The restriction f | XW is a conservative
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map g : XW → Y and we have f ' gr. A true factorisation f = g′r′ : X → L→ Y
can be obtained by factoring g as an equivalence i : XW → L followed by a quasi-
fibration g′ : L → X. There then is a map r′ : X → L such that g′r′ = f . The
factorisation system (W,W⊥) is always generated by a set Σ ⊆W .

23.5. If X and Y are locally presentables then so is the quasi-category Map(X, Y )
of cocontinuous maps X → Y . The 2-category LP is symmetric (pseudo-)monoidal
closed. The tensor product of two locally presentable quasi-categories X and Y is
the target of a map X × Y → X ⊗ Y cocontinuous in each variable and universal
with respect to that property. The unit object for this tensor product is the quasi-
category Hot. If X ∈ LP, the equivalence Hot⊗X ' X is induced by the action
map (A, x) 7→ A · x, where for a simplicial set A, the object A · x is the colimit
of the constant diagram A → X with value x. The quasi-category P(A) is locally
presentable and freely generated by the simplicial set A. For any pair of simplicial
sets A and B, there is an external product for prestacks P(A)×P(B)→ P(A×B)
and it induces an equivalence of quasi-categories

P(A)⊗ P(B) ' P(A×B).

The quasi-categories P(A) and P(Ao) are dual objects in LP, with the duality
pairing

〈−,−〉 : P(Ao)× P(A)→ Hot

given by the cocontinuous extension of the map hom : Ao × A → Hot. It follows
from this duality that we have an equivalence

P(A)⊗X = Map(P(Ao), X) = XAo

.

The equivalence
Map(XAo

, Y ) = Map(X, Y A)

also follows from this duality.

23.6. The opposite of a locally presentable quasi-category is cocomplete but it
is not locally presentable in general. For example, the quasi-category Hoto is not
locally presentable. We shall say that a complete quasi-category Z is a (generalised)
algebraic theory if the quasi-category Zo is locally presentable. Every limit sketch
(A,P ) has a universal model u : A → U(A,P ) with values in the algebraic theory
U(A,P ) = Mod(A,P )o. The map uo : Ao →Mod(A,P ) is obtained by composing
the Yoneda map Ao → [A,Hot] with the reflection map [A,Hot] → Mod(A,P ).
Let us denote by AT the category whose objects are the generalised algebraic
theories and whose maps are the continuous maps. The 2-categories AT and LP
are isomorphic (beware that the isomorphism reverses the direction of 2-cells).
Hence the 2-category AT has the structure of a symmetric (pseudo)-monoidal closed
category. We shall denote by T � U the tensor product of two algebraic theories
T and U . By definition, we have (T � U)o = T o ⊗ Uo. We shall denote by
Mod(T,U) the quasi-category of continuous maps T → U . We have Mod(T,U)o =
Map(T o, Uo). The category LP is cotensored over the category AT. More precisely,
if X is locally presentable quasi-categorie and T is an algebraic theory, then the
quasi-category of continuous maps T → X is a locally presentable quasi-category
Mod(T,X). In fact, we have

Mod(T,X) = T o ⊗X.
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In particular, Mod(T,Hot) = T o. It follows that we have X⊗Y = Mod(Xo, Y ) for
any pair of locally presentable quasi-categories X and Y . We also have the formula

Mod(S � T ) = Mod(S)⊗Mod(T )

for any pair of algebraic theories S and T . Dually, the category AT is cotensored
over the category LP. More precisely, if T is an algebraic theory and X is a locally
presentable quasi-category, then the quasi-category of cocontinuous maps X → T
is an algebraic theory Map(X, T ). In fact, we have

Map(X, T ) = Mod(T o, Xo) = Xo � T.

In particular, Map(X,Hoto) = Xo.

24. Categories in quasi-categories

24.1. If X is a quasi-category, we call a map C : ∆o → X is a simplicial object
in X. There is then a quasi-category [∆o, X] of simplicial objects in X. If X is
finitely complete, we shall say that a simplicial object C : ∆o → X is a category if
it satisfies the Segal conditions . These conditions can be expressed in many ways.
For example by demanding that C takes every square of the form

[0]

��

// [n]

b

��
[m] a // [m + n],

to a pullback square in X, where a denotes the inclusion [m] ⊆ [m + n] and b the
composite [n] = [m,m + n] ⊆ [m + n]. We denote by Cat(X) the full simplicial
subset of [∆o, X] spanned by the categories in X. We say that an arrow in Cat(X)
is a functor. If C ∈ Cat(X), we shall put Ob(C) = C0. If Ob(C) = 1, we shall say
that C is a monoid (with underlying object C1). A category C is a groupoid if it
takes the following square

[0]

d0

��

d0 // [1]

d2

��
[1]

d1 // [2]

to a pullback square. A groupoid C is a group if Ob(C) = 1. We denote by
Grpd(X) the full simplicial subset of Cat(X) generated by the groupoids. The
inclusion Grpd(X) ⊆ Cat(X) has a right adjoint J : Cat(X) → Grpd(X) which
associate to C ∈ Cat(X) its groupoid of isomorphisms of C.

24.2. Let X be a finitely complete quasi-category. An element of Cat2(X) =
Cat(Cat(X)) is called a double category in X. A double simplicial object ∆o×∆o →
X is a double category iff it is a category in each variable. The notion of n-fold
category can be defined for every n ≥ 0. We shall denote by Catn(X) the quasi-
category of n-fold categories in X. Let X be a finitely complete quasi-category. A
monoid in X is a category C : ∆o → X such that C0 = 1. A braided monoid in X
is a 2-fold category C : (∆2)o → X such that Cm0 = C0n = 1. More generally, a
n-fold monoid in X is a n-fold category C : (∆n)o → X such that Cm = 1 for all
m = (m1, . . . ,mn) such that m1 · · ·mn = 0.
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24.3. Let X be a finitely complete quasi-category. A 2-category in X is a double
category C : ∆o → Cat(X) such that C0 : ∆o → X is (essentially) constant.
We shall denote by Cat2(X) the quasi-category of 2-categories in X. The quasi-
category Catn(X) of n-category objects in X can be defined by induction on n ≥ 0.
A category object C : ∆o → Catn(X) is a (n + 1)-category iff the n-category C0 is
(essentially) constant. Here is a gobal description: a n-fold category C : (∆n)o → X
is a n-category iff its restriction to the subcategory

Ob(∆)k × {[0]} ×∆n−k−1

is is (essentially) constant for every 0 ≤ k < n. The inclusion {[0]} ⊂ ∆ is right
adjoint to the map ∆→ {[0]}. It follows that the inclusion in : ∆n = ∆n×{[0]}k ⊆
∆n+k is right adjoint to the projection pn : ∆n+k = ∆n ×∆k → ∆n. The pair of
adjoint maps

p∗n : [(∆n)o, X]↔ [(∆n+k)o, X] : i∗n
induces a pair of adjoint maps

inc : Catn(X)↔ Catn+k(X) : skn

The functor inc is fully faithful and we shall regard it as an inclusion by adopting
the same notation of C ∈ Catn(X) and inc(C) ∈ Catn+k(X). The functor skn

associates to C ∈ Catn+k(X) its n-skeleton skn(C) ∈ Catn(X).

24.4. A monoidal category in X is a monoid object in Cat(X) or equivalently a
category object in Mon(X). A braided monoidal category is a braided monoid in
Cat(X) or equivalently a 3-category C : ∆3 → X such that sk2(C) = 1. More
generally, a n-fold monoidal k-category in X is a (n + k)-category C ∈ Catn+k(X)
such that skn(C) = 1. This is the stabilisation conjecture of Baez and Dolan proved
by Hirschowitz and Simpson.

24.5. A simplicial space is defined to be a functor ∆o → S. A simplicial space X
becomes a bisimplicial set if we put Xmn = (Xm)n for every m,n ≥ 0. The category
S(2) = [∆o,S] of simplicial spaces admits a simplicial model structure defined by
Reedy. A map of simplicial spaces X → Y is a weak equivalence for this model
structure iff the map Xm → Ym is a weak homotopy equivalence for every m ≥ 0.
The cofibrations are the monic maps. A Reedy fibrant simplicial space X is said
to satisfy the Segal condition if the canonical map

Xn → X1 ×∂0,∂1 X1 × · · · ×∂0,∂1 X1

is a weak homotopy equivalence for every n ≥ 2. A Reedy fibrant simplicial space
which satisfies the Segal condition is called a Segal space. The Reedy model struc-
ture on S(2) admits a localisation in which the fibrant objects are the Segal spaces
[Rez]. The localised model structure is called the model structure for Segal spaces.
The category SS of Segal spaces is enriched over Kan complexes. Its coherent nerve
is equivalent to the quasi-category Cat(Hot).

24.6. A n-fold simplicial space is defined to be a functor (∆n)o → S. A n-fold
simplicial space X becomes a (n + 1)-fold simplicial set if we put Xmr = (Xm)r

for every (m, r) ∈ Nn ×N. The category S(n+1) = [(∆n)o,S] of n-fold simplicial
spaces admits a Reedy model structure. A map of n-fold simplicial spaces X → Y
is a weak equivalence for this model structure iff the map Xm → Ym is a weak
homotopy equivalence for every m ∈ Nn. The cofibrations are the monic maps. A
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Reedy fibrant n-fold simplicial space X is said to satisfy the Segal condition if it
satisfies the Segal condtion in each variable. A Reedy fibrant n-fold simplicial space
which satisfies the Segal condition in each variable is called a n-fold Segal space.
The Reedy model structure on S(n+1) admits a localisation in which the fibrant
objects are the n-fold Segal spaces. The localised model structure is called the
model structure for n-fold Segal spaces. The category SSn of n-fold Segal spaces is
enriched over Kan complexes. Its coherent nerve is equivalent to the quasi-category
Catn(Hot).

24.7. We shall say that a 2-fold Segal space C : ∆ ×∆ → S is a Segal 2-space if
the functor C0 = C0? : ∆ →→ S is homotopicaly constant (ie. if it takes every
arrow in ∆) to a homotopy equivalence). We shall denote by SS2 the category
of Segal 2-spaces. There is a notion of Segal n-space for each n ≥ 0. A (n + 1)-
fold Segal space C : ∆o → SSn is a Segal (n + 1)-space iff the Segal n-space C0 is
homotopicaly constant. The Reedy model structure on S(n+1) admits a localisation
in which the fibrant objects are the Segal n-spaces. The localised model structure is
the model structure for Segal n-spaces. The category SSn of n-fold Segal spaces is
enriched over Kan complexes. Its coherent nerve is equivalent to the quasi-category
Catn(Hot).

25. Absolutely exact quasi-categories

Let X be a quasi-category with pullbacks. Then the functor Ob : Grpd(X) →
X has a right adjoint Cosk0 : X → Grpd(X). The right adjoint associates to
an object b ∈ X the simplicial object Cosk0(b) : ∆o → X obtained by putting
Cosk0(b)n = b[n] for each n ≥ 0. We shall say that Cosk0(b) is the full groupoid
of b. More generally, the equivalence groupoid Eq(u) of an arrow u : a→ b in X is
defined to be the full groupoid of the object u ∈ X/b (or rather its image by the
canonical map X/b→ X). The equivalence groupoid of a pointed object p : 1→ b
is the loop group Eq(p) = Ω(b) of b at the base point p.

25.1. Let X be a finitely complete quasi-category. We shall say that X is absolutely
exact if the following conditions are satisfied:

• X admits surjection-mono-factorisations and these factorisations are stable
under base change;
• every groupoid C ∈ Grpd(X) is the equivalence groupoid of a surjection

u ∈ X.
The quasi-category Hot is absolutely exact.

25.2. Let X be an absolutely exact quasi-category. Then the slice quasi-categories
b\X and X/b are absolutely exact for any node b ∈ X. The quasi-category XS is
absolutely exact for any simplicial set S. If T is a small quasi-category with finite
products, then the quasi-category of models Mod(T,X) is absolutely exact. For
examples, the quasi-category of monoids and of groups in X are absolutely exact.

25.3. Let X be an absolutely exact quasi-category. Then the map Sk0 : X →
Grpd(X) has a left adjoint

B : Grpd(X)→ X.

If a ∈ X0, let us denote by Surj(a\X) the full simplicial subset of a\X whose nodes
are the surjections with codomain a. Let Grpd(X, a) the fiber at a of the map
Ob : Grpd(X) → X. Then the map Surj(a\X) → Grpd(X, a) which associates
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to a surjection u : a → b the equivalence groupoid Eq(u) is an equivalence of
quasi-categories. We shall denote the quasi-inverse equivalence by

B : Grpd(X, a)→ Surj(a\X).

If a = 1, the quasi-category Grpd(X, a) is the quasi-category Grp(X) of group
objects in X. An object of Surj(1\X) is a pointed connected object of X. We thus
have an equivalence of quasi-categories

B : Grp(X)↔ Surj(1\X) : Ω,

where Ω(b) is the loop group of a pointed connected object p : 1→ b in X.

25.4. If X is an absolutely exact quasi-category, then so is the quasi-category
Surj(a\X) for every object a ∈ X. An arrow of Surj(a\X) is surjective (resp.
monic) iff its underlying arrow in X is 0-connected (resp. a 0-cover). It follows
from this that X admits n-factorisation for every n ≥ 0. The n-factorisation of an
arrow a→ b is obtained from the (n− 1)-factorisation of the diagonal a→ a×b a.
More precisely, if a → e → b is the n-factorisation of an arrow a → b, then
a → a ×e a → a ×b a is the (n − 1)-factorisation of the diagonal a → a ×b a. A
surjection a→ b is n-connected iff the diagonal a→ a×b a is (n− 1)-connected.

25.5. A quasi-category X is pointed if it contains an object 0 ∈ X which is both
initial and terminal. Let X be an absolutely exact pointed quasi-category. If
C(X) ⊆ X is the sub-quasi-category spanned by the connected objects (connected
= 0-connected) then we have an equivalence of quasi-categories,

B : Grp(X)↔ C(X) : Ω

This equivalence can be iterated since the quasi-category C(X) is absolutely exact
and pointed. We have Grp(X) = Mod(Gr,X), where Gr denotes the algebraic
theory of groups. We say that an element of Grpn(X) = Mod(Gr⊗n, X) is a n-fold
group. We have Grpn+1(X) = Grp(Grpn(X)) for every n ≥ 0. If Cn(X) denotes
the full simplicial subset of X spanned by the n-connected objects, then we have
an equivalence of quasi-categories

Bn : Grpn(X)↔ Cn−1(X) : Ωn.

The equivalence can be constructed by induction on n ≥ 1. We have Cn+1(X) =
C(Cn(X)) and the map Ωn+1 : Cn(X)→ Grpn+1(X) is the composite of the maps

C(Cn−1(X))
C(Ωn) // C(Grpn(X)) Ω // Grp(Grpn(X)).

26. Descent theory

26.1. If X is a finitely complete quasi-category, then the map Ob : Cat(X) → X
is a Grothendieck fibration. A functor f : C → D in Cat(X) is a cartesian arrow
iff it is fully faithful, that is, iff the square

C1
f1 //

(s,t)

��

D1

(s,t)

��
C0 × C0

f0×f0 // D0 ×D0,

is cartesian.
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26.2. Let X be an absolutely exact quasi-category. We shall say that a functor f :
C → D in Grpd(X) is essentially surjective if the morphism tp1 : D1×D0 C0 → D1

obtained from the square

D1 ×D0 C0
p2 //

p1

��

C0

f0

��
D1

s // D0

is surjective, where s is the source morphism and t the target morphism. More
generally, we say that a functor f : C → D in Cat(X) is essentially surjective if
the functor J(f) : J(C) → J(D) is essentially surjective. We shall say that f is a
weak equivalence if it is fully faithful and essentially surjective.

26.3. If X is a finitely complete quasi-category. We shall say that a functor p :
E → C in Cat(X) is a left fibration if the naturality square

E1
s //

p1

��

E0

p0

��
C1

s // C0

is cartesian, where s is the source map. The notion of right fibration is defined
dually by using the target map t. We shall denote by XC the full simplicial subset
of Cat(X)/C whose objects are the left fibrations E → C. The pullback of a
left fibration E → D along a functor f : C → D in Cat(X) is a left fibration
f∗(E) → C. This defines a map f∗ : XD → XC . We shall say that f is a Morita
equivalence if the map f∗ is an equivalence of quasi-categories.

26.4. Let X be an absolutely exact quasi-category. Then a weak equivalence f :
C → D in Cat(X) is a Morita equivalence. In particular, if an arrow u : a → b in
X is surjective, then the induced functor Eq(u)→ Sk0(b) is a Morita equivalence.
Thus, u∗ induces an equivalence of quasi-categories

X/b ' XEq(u).

In particular, if p : 1 → b is a pointed connected object of X, then we have an
equivalence of quasi-categories,

X/b ' XΩ(b).

27. Stable quasi-categories

27.1. A zero object (0-object) in a quasi-category is an object which is both initial
and final. A quasi-category is pointed if it admits a 0-object. For example, if 1 is
a terminal object in a quasi-category X, then the quasi-category 1\X is pointed.
The homotopy category hoX of a pointed quasi-category X is pointed. We shall
say that an arrow x→ y between two objects of a quasi-category is nul if its image
in hoX is equal to the composite x→ 0→ y.
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27.2. Let X be a finitely cocomplete pointed quasi-category with zero object 0 ∈ X.
The smash product of an element x ∈ X by a finite pointed simplicial set A is the
element A ∧ x ∈ X defined by the pushout square,

1 · x //

a·x
��

1 · 0

��
A · x // A ∧ x,

where a : 1→ A is the base point. This defines a map A ∧ (−) : X → X. For any
pair A and B of pointed simplicial sets, we have a quasi-isomorphism

A ∧ (B ∧ x) ' (A ∧B) ∧ x)

which is homotopy unique. Similarly, we have a canonical quasi-isomorphism S0 ∧
x ' x, where S0 is the pointed 0-sphere. The suspension Σ : X → X is defined
to be the map S1 ∧ (−) : X → X, where S1 is the pointed 1-sphere. The n-fold
suspension Σn : X → X is the map Sn ∧ (−) : X → X, where Sn is the pointed
n-sphere.

27.3. Dually, let X be a finitely complete pointed quasi-category with zero object
0 ∈ X. The coaction of an element x ∈ X by a finite pointed simplicial set A is the
element [A, x] ∈ X defined by the pullback square,

[A, x] //

��

0

��
xA

xa
// x1,

where a : 1 → A is the base point. This defines a map [A,−] : X → X. For any
pair A and B of pointed simplicial sets, we have a quasi-isomorphism

[A, [B, x]] ' [A ∧B, x]

which is homotopy unique. Similarly, we have a canonical quasi-isomorphism
[S0, x] ' x. The loop space map Ω : X → X is defined to be the map [S1,−] : X →
X. The n-fold loop space Ωn : X → X is the map [Sn,−] : X → X.

27.4. The opposite Xo of a finitely cocomplete pointed quasi-category X is finitely
complete, We have the formulas

(A ∧ x)o = [Ao, xo] ' [A, xo],

since A and Ao are weakly homotopy equivalent. In particular, we have (Σ · x)o '
Ω(xo). The map A ∧ (−) : X → X is left adjoint to the map [A,−] : X → X if X
is finitely bicomplete.

27.5. Let LP be the category of locally presentable quasi-categories and cocon-
tinuous maps, and let LP• be the full subcategory of LP spanned by the pointed
locally presentable quasi-categories. Then the inclusion functor LP• ⊂ LP has a
(pseudo) left adjoint which associates to X ∈ LP the quasi-category X• = 1\X,
where 1 denotes the terminal object of X. The canonical map X → 1\X associates
to x ∈ X, the arrow 1→ 1 t x.
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27.6. Let X be a pointed quasi-category with finite coproducts and products. For
any pair of objects x, y ∈ X there is a canonical arrow xty → x×y well defined in
hoX; we shall say that X is semi-additive if the arrow is quasi-invertible for any pair
x and y. In this case, the coproduct (resp. the product) of x and y can be written
as a direct sum x ⊕ y. The homotopy category of a semi-additive quasi-category
X is semi-additive. If X is semi-additive, then the set hoX(x, y) has the structure
of a commutative monoid for any pair of objects x, y ∈ X. We shall say that X is
additive if the monoid hoX(x, y) is a group for any pair x, y ∈ X.

27.7. We shall say that a finitely bicomplete pointed quasi-category is stable if the
suspension map Σ : X → X is an equivalence of quasi-categories, or equivalently
if the loop space map Ω : X → X is an equivalence. A stable quasi-category is
additive.

27.8. We shall say that a stable quasi-category X is exact if every arrow a→ b in
X is the fiber of an arrow b → b′ as well as the cofiber of an arrow a′ → a. An
exact stable quasi-category is absolutely exact. For every object a ∈ X, the map
Fib : a\X → X/a which associates to an arrow f : a → b its fiber ker(f) → a
is an equivalence of quasi-categories. The (pseudo-)inverse equivalence is the map
Cofib : X/a → a\X which associates to an arrow g : e → a its cofiber a →
coker(f). The homotopy category hoX of an exact stable quasi-category X is
triangulated.

27.9. Let SLP be the subcategory of LP• spanned by the stable locally presentable
quasi-categories. Then the inclusion functor SLP ⊂ LP• has a (pseudo) left adjoint

St : LP• → SLP

which associates to a pointed quasi-category X the stable quasi-category St(X)
generated by X. If the loop map Ω : X → X preserves directed colimits, the
quasi-category St(X) can be constructed as the (homotopy) projective limit of the
sequence of quasi-categories

X X
Ωoo X

Ωoo X
Ωoo · · ·oo

The canonical map X → St(X) associates to x ∈ X the sequence (QΣnx : n ≥ 0),
where Qx = Ω∞Σ∞x denotes the colimit in X of the sequence

x→ ΩΣx→ Ω2Σ2x→ · · · .

27.10. The stable quasi-category St(Hot•) is the quasi-category of spectra,

Spec = St(Hot•).

The stable quasi-category Spec is exact.

27.11. The sphere spectrum S = QS0 ∈ Spec is defined to be the image of the
0-sphere S0 ∈ Hot• by the canonical map Q : Hot• → Spec. The stable quasi-
category Spec is freely generated by the sphere spectrum. This means that for
any stable quasi-category X and any object a ∈ X, there is a cocontinuous map
f : Spec → X such that f(S) = a and that f is unique up to a unique invertible
2-cell.
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27.12. If X is a stable locally presentable quasi-category, then so is X ⊗Y for any
locally presentable quasi-category Y . Similarly, for the quasi-categories Map(Y, X)
for any locally presentable quasi-category Y and the quasi-category Mod(T,X)
for any algebraic theory T . It follows that the category SLP of stable locally
presentable quasi-categories is closed (pseudo-)monoidal. The unit object for the
tensor product is the quasi-category of spectra Spec.

28. ∞-topos

28.1. Recall that a finitely complete quasi-category X is said to be locally cartesian
closed if the quasi-category X/a is cartesian closed for every object a ∈ X. A
finitely complete quasi-category X is locally cartesian closed iff the base change
map f∗ : X/b → X/a has a right adjoint f∗ : X/a → X/b for any map f : a → b
in X. A locally presentable quasi-category X is locally cartesian closed, iff the
pullback map f∗ : X/b→ X/a is cocontinuous for any map f : a→ b in X.

28.2. We shall say that a locally presentable quasi-category X is an∞-topos if the
following conditions are satisfied:

• X is locally cartesian closed;
• X is absolutely exact;
• The canonical map

X/ t ai →
∏

i

X/ai

is an equivalence for any family of objects (ai : i ∈ I) in X.

28.3. The quasi-category Hot is the primary example of an ∞-topos. If X is an
∞-topos, then so is the quasi-categorie X/a for any object a ∈ X and the quasi-
category XA for any simplicial set A. In particular, the quasi-category P(A) is an
∞-topos for any simplicial set A.

28.4. A geometric morphism g : X → Y between ∞-topoi is an adjoint pair of
maps

g∗ : Y ↔ X : g∗

in which g∗ is a cartesian map. We call g∗ the inverse image part of g and g∗ the
direct image part of g. If f and g : X → Y are geometric morphisms, a geometric
transformation α : f → g is a pair of adjoint 2-cells α∗ : f∗ → g∗ and α∗ : g∗ → f∗.
We shall denote by Top∞ the 2-category of∞-topoi and geometric morphisms. An
geometric map Y → X between∞-toposes is a cocontinuous cartesian map Y → X.
Every geometric map Y → X is the inverse image part of a geometric morphism
X → Y which is unique up to a unique invertible geometric transformation. The 2-
category Top∞ is equivalent to the opposite of the 2-category of topoi and geometric
maps (beware that the duality preserves the direction of 2-cells).

28.5. If u : A → B is a map of simplicial sets, then the pair of adjoint maps
u∗ : P(B) → P(A) : u∗ is a geometric morphism P(A) → P(B). If X is an ∞-
topos, then the pair of adjoint maps f∗ : X/b→ X/a : f∗ is a geometric morphism
X/a→ X/b for any map f : a→ b in X.
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28.6. Let E be a Grothendieck topos. Then the category [∆o, E ] of simplicial
sheaves on E has a simplicial model structure introduced by the author. The co-
herent nerve of the category of fibrant objects is an ∞-topos E∞. This defines a
functor

(−)∞ : Top0 → Top∞,

where Top0 is the category of Grothendieck toposes. The functor has a left adjoint
constructed as follows. If X is an ∞-topos, an object x ∈ X is said to be discrete
if the diagonal x → x × x is monic. Let Dis(X) be the full simplicial subset of
X spanned by the discrete objects. The inclusion Dis(X) ⊆ X has a left adjoint
π0 : X → Dis(X). The canonical map Dis(X) → hoDis(X) is an equivalence of
quasi-categories. We shall identify Dis(X) with hoDis(X). The category Dis(X)
is a Grothendieck topos. A geometric map X → Y induces a geometric map
Dis(X)→ Dis(Y ). This defines a 2-functor

Dis : Top∞ → Top0,

which is right adjoint to the functor E 7→ E∞.

28.7. If X is an ∞-topos, we shall say that a reflexive sub quasi-category Y ⊆ X
is a sub-topos if the reflection X → Y is cartesian (i.e. preserves finite limits). We
shall say that a set Σ of arrows in X is a Grothendieck topology if the quasi-category
of Σ-local objects XΣ ⊆ X is a sub-topos.

28.8. Let f : X → Y be a geometric morphism between ∞-toposes. If Σ is
Grothendieck topology on Y , then f∗(X) ⊆ Y Σ iff f∗ take every quasi-isomorphism
in Then

in X is a Grothendieck topology if the quasi-category of Σ-local objects XΣ ⊆ X
is a sub-topos.

, we shall say that a reflexive sub quasi-category Y ⊆ X is a sub-topos if the
reflection X → Y is cartesian (i.e. preserves finite limits). We shall say that a set
Σ of arrows in X is a Grothendieck topology if the quasi-category of Σ-local objects
XΣ ⊆ X is a sub-topos.

Let A be a simplicial set and let Σ ⊆ P(A) be a Grothendieck topology. For
each object a ∈ A can be obtained by specifying for each object a ∈ A a set Σa of
arrows with codomain a = yA(a) in P(A). The family Σ = (Σa : a ∈ A0) is said to
be closed under base change if we have f∗(Σb) ⊂ Σa for every arrow f : a → b in
A. The author does not know of More generally, we shall say that a map f : x→ y
in P(A) is fibrewise in Σ if the map u ∗ (x) → a belongs to Σa for every a ∈ A0

and every map a → y in P(A). Let Σ′ ⊆ P(A) be the class of maps fibrewise in
Σ. whose fibers belongs to Σ. The class Σ is by construction closed under base
change. We shall say that Σ is closed under Let us suppose that Σ is closed under
composition and that it has the right cancellation property. Let us suppose that Σ
satisfies

The set Σ = taΣa is said to be closed under base change if we have f∗(Σb) ⊂ Σa

for every arrow f : a→ b in A.
We shall say that Σ is cl
In this case, the set Σ = taΣa is a Grothendieck topology in P(A). Every sub-

topos of P(A) is of the form P(A)Σ for a Grothendieck topology Σ of this form.
The pair (A,Σ) is called a site. A prestack s ∈ P(A) is called a stack if it is a
Σ-local object. Every ∞-topos is equivalent to a quasi-category of stacks on a site.
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28.9. If A is a simplicial set, a Grothendieck topology on P(A) can be obtained
by specifying for each object a ∈ A a set Σa of arrows with codomain a = yA(a) in
P(A). The family (Σa : a ∈ A0) is said to be closed under base change if we have
f∗(Σb) ⊆ Σa for every arrow f : a → b in A. In this case, the set Σ = taΣa is a
Grothendieck topology in P(A). Every sub-topos of P(A) is of the form P(A)Σ for
a Grothendieck topology Σ of this form. The pair (A,Σ) is called a site. A prestack
s ∈ P(A) is called a stack if it is a Σ-local object. Every ∞-topos is equivalent to
a quasi-category of stacks on a site.

28.10. If A is a simplicial set, then every set of arrows Σ ⊆ P(A) generates a
Grothendieck topology Σ′ = taΣ′a, where Σ′a is a set of arrows with codomain a
representable a ∈ A0. By construction, an arrow u : c → a belongs to Σ′a iff there
exists a pull back square

c //

u

��

e

v

��
a // b,

with g ∈ Σ. If X is an ∞-topos, a geometric map P(A) → X inverts every arrow
in Σ iff it inverts every arrow in Σ′.

28.11. If A is a simplicial set, then the quasi-category P(A) is equivalent to the
coherent nerve of the simplicial category R(A) of fibrant objects of the model cate-
gory (S/A, Wr) by ??. If Σ is a set of arrows in S/A, let us denote by (S/A, Wr(Σ))
the model structure obtained by localising the model structure (S/A, Wr) with re-
spect to Σ. We shall say that Σ is a quasi-topology if every homotopy pullback
square in the model category (S/A, Wr) is also a homotopy pullback square in the
model category (S/A, Wr(Σ)). For each vertex a ∈ A, let us choose a factorisation
of the map a : 1 → A as a right cofibration 1 → Ra followed by a right fibration
Ra→ A. Suppose that we have a set Σa of right fibrations with codomain Ra for
each a ∈ A0. We shall say that the family (Σa : a ∈ A0) is closed under base change
if we have f∗(Σb) ⊆ Σa for every map f : Ra→ Rb in S/A.

28.12. Let X and Y be ∞-toposes. We call a geometric morphism f : X → Y an
embedding if direct image part f∗ is fully faithful. In this case the essential image
of f∗ is a sub-topos Z ⊆ Y and the induced map X → Z is an equivalence of
quasi-categories.

28.13. Let X and Y be ∞-toposes. We call a geometric morphism f : X → Y
a surjection if the map f∗ : Y → X is conservative. Every geometric morphism
can be factored as a surjection followed by an embedding and this factorisation is
unique up to equivalence.

28.14. Recall that if X is a bicomplete quasi-category and A is a simplicial set,
then every map f : A → X has a cocontinuous extension f̄ : P(A) → X. A
locally presentable quasi-category X is an∞-topos iff for any small cartesian quasi-
category T , the cocontinuous extension f̄ : P(T ) → X of any cartesian map f :
T → X is cartesian.
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28.15. Every simplicial set A generates freely a cartesian quasi-category A→ C(A)
by ??. Similarly, every simplicial set A generates freely an∞-topos i : A→ Top(A).
This means that If X is an ∞-topos, then every map f : A → X has a geometric
extension f ′ : T (A) → X along i and that this extension is unique up to a unique
invertible 2-cell. By construction, Top(A) = P(C(A)). The map i : A → Top(A)
is obtained by composing the canonical map A → C(A) with the Yoneda map
C(A)→ P(C(A)).

28.16. A geometric sktech is a pair (A,Σ), where Σ is a set of arrows in Top(A). A
geometric model of (A,Σ) with values in an ∞-topos X is a map f : A→ X whose
geometric extension f ′ : T (A)→ X takes every arrow in Σ to a quasi-isomorphism
in X. We shall denote by Mod(A/Σ, X) the full simplicial subset of XA which is
spanned by the models A→ X.

28.17. Every geometric sktech has a universal geometric model u : A→ Top(A/Σ).
The universality means that for every∞-topos X and every model f : A→ X there
is a geometric map f ′ : Top(A/Σ) → X such that f ′u = f and moreover that f ′

is unique up to a unique invertible 2-cell. We shall say that Top(A/Σ) is the
classyfying topos of (A,Σ). The ∞-topos Top(A/Σ) is a sub-topos of the topos
Top(A). We have Top(A/Σ) = Top(A)Σ

′
, where Σ′ ⊂ Top(A) is the Grothendieck

topology generated by Σ.

29. Higher quasi-categories

29.1. Let X be a quasi-category with pullbacks. We say that a category C ∈
Cat(X) satisfies the Rezk condition, or that it is reduced, if the groupoid J(C) is
essentially constant, that is, if the canonical functor Sk0(C0) → J(C) is quasi-
invertible. We shall denote by RCat(X) the quasi-category of reduced categories
in X.

An ordinary category C ∈ Cat(Set) is reduced iff its groupoid of isomorphism
is discrete, that is, if every isomorphism of C is an identity.

29.2. Let X be an absolutely exact quasi-category. Then the inclusion RCat(X) ⊂
Cat(X) has a left adjoint

R : Cat(X)→ RCat(X)

which associates to a category C ∈ Cat(X) its reduction RC. By construction,
(RC)n = BJ(C [n]) for every n ≥ 0, where C [n] is the internal category of functor
[n] → C. The canonical map C → RC is a weak equivalence of categories (it is
fully faithful and essentially surjective). It is thus a Morita equivalence, since the
quasi-category X is absolutely exact.

29.3. The box product A�B of two simplicial sets A and B is the bisimplicial set
obtained by putting

(A�B)mn = Am ×Bn

for every m,n ≥ 0. The functor (A,B) 7→ A�B is divisible on both sides. In
particular, the functor A�(−) : S→ S(2) admits a right adjoint A\(−) : S(2) → S
for every simplicial set A. Let J be the groupoid generated by one isomorphism
0→ 1. A Segal space X is said to be complete by Rezk if the map

1\X −→ J\X
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obtained from the map J → 1 is a weak homotopy equivalence. The Segal space
model structure on S(2) admits a localisation in which the fibrant objects are the
complete Segal spaces [Rez]. The localised model structure is called the model
structure for complete Segal spaces. The category of complete Segal spaces is en-
riched over Kan complexes. Its coherent nerve is equivalent to the quasi-category
RCat(Hot).

29.4. Let i1 : ∆→ ∆×∆ be the functor defined by putting i1([n]) = ([n], [0]) for
every n ≥ 0. If X is a bisimplicial set, then i∗1(X) is the first row of X. The functor
i1 is right adjoint to the first projection p1 : ∆ × ∆ → ∆. The pair of adjoint
functors

p∗1 : S↔ S(2) : i∗1.

is a Quillen equivalence between the model category for quasi-categories and the
model category for complete Segal spaces [JT2]. The equivalence is not simplicial,
since the model category for quasi-categories is not simplicial. The category QCat
is enriched over Kan complexes if we put HomJ(X, Y ) = J(Y X) for X, Y ∈ QCat.
Let a, b and c : ∆ → S(2) be the functors defined by putting a([n]) = ∆[n]′�1,
b([n]) = ∆[n]′�∆[n] and c([n]) = 1�∆[n] for every n ≥ 0. If X and Y are complete
Segal spaces, let us put

Homa(X, Y ) = a!(Y X), Homb(X, Y ) = b!(Y X) and Homc(X, Y ) = c!(Y X),

where Y X is the exponentiation of Y by X in the topos S(2). This defines three
simplicial enrichements of the category CSS of complete Segal spaces. The projec-
tions

Homa(X, Y ) Homb(X, Y )oo // Homc(X, Y )

obtained from the inclusions a([n]) ⊆ b([n]) ⊇ c([n]) are homotopy equivalences.
Hence the three enrichements are equivalent in the Dwyer-Kan-Bergner model
structure of SCat (we are neglecting the fact that the simplicial category CSS
is big). The functor i∗ : CSS→ QCat induces a Dwyer-Kan equivalence

(CSS,Homa)→ (QCat,HomJ).

It follows from these considerations that the coherent nerve of CSS is naturally
equivalent to the quasi-category Hot1. By combining these results, we obtain an
equivalence of quasi-categories

RCat(Hot) ' Hot1.

29.5. Let X be an absolutly exact quasi-category. We say that a double category
C : ∆o ×∆o → X is reduced if it is a reduced category in each variable. There is a
notion of reduced n-fold category for every n ≥ 0. We shall denote by RCatn(X)
the quasi-category of reduced n-fold categories in X. We have RCatn+1(X) =
RCat(RCatn(X)). The inclusion RCatn(X) ⊆ Catn(X) has a left adjoint

R : Catn(X)→ RCatn(X).

. We shall say that a n-category C ∈ Catn(X) is reduced if it is reduced as a n-fold
category. We shall denote by RCatn(X) the quasi-category of reduced n-categories
in X. The inclusion RCatn(X) ⊆ Catn(X) has a left adjoint

R : Catn(X)→ RCatn(X).
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29.6. We say that a n-fold Segal space C : ∆n → S is reduced if it is reduced
in each variable. We shall denote by RSSn the category of reduced n-fold Segal
spaces. The model structure for n-fold Segal spaces admits a localisation in which
the fibrant objects are the reduced n-fold Segal spaces. The coherent nerve of the
simplicial category RSSn is equivalent to the quasi-category RCatn(Hot). We say
that a Segal n-space C : ∆n → S is reduced if it is reduced as a n-fold Segal space.
We shall denote by RSSn the category of reduced Segal n-spaces. The model
category of Segal n-spaces admits a localisation in which the fibrant objects are the
reduced Segal n-spaces. The localised model structure is called the model structure
for reduced Segal n-spaces. The category RSSn is enriched over Kan complexes.
Its coherent nerve is equivalent to the quasi-category RCatn(Hot).

29.7. For each n ≥ 0, let us put

Hotn = RCatn(Hot).

We shall say that an object of Hotn is a quasi-n-category. The quasi-category Hotn

is cartesian closed. If n ≤ m, the inclusion Hotn ⊆ Hotm is full and preserves
exponentiation. It has a left adjoint λn and a right adjoint ρn.

29.8. The sequence of inclusion

Hot = Hot0 ⊂ Hot1 ⊂ Hot2 ⊂ · · ·

has a colimit Hotω in LP. We shall say that an object of Hotω is a quasi-ω-category.
The quasi-category Hotω can be constructed as the (homotopy) projective limit of
the sequence of quasi-categories

Hot0 Hot1
ρ0oo Hot2

ρ1oo Hot3
ρ2oo · · · .oo

In other words, a quasi-ω-category is a sequence x = (xn) of objects xn ∈ Hotn

connected by a sequence of maps

x0 → x1 → x2 → · · ·

such that ρn(xn+1) = xn for every n ≥ 0. Each inclusion Hotn ⊂ Hotω has a
left adjoint λn and a right adjoint ρn. The left adjoint λn associates to an object
x = (xn) ∈ Hotω the colimit in Hotn of the sequence

xn → λnxn+1 → λnxn+2 → · · · .

Notice the contravariant sequence

λ0(x)← λ1(x)← λ2(x)← .

The quasi-category Hotω is cartesian closed. If an object x = (xn) ∈ Hotω and
y = (yn) ∈ Hotω, then yx is represented by the sequence

yλ0x
0 → yλ1x

1 → yλ2x
2 → · · · .

Each inclusion Hotn ⊂ Hotω preserves exponentiation.
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30. Theta-categories

30.1. We begin by recalling the duality between the category ∆ and the category
of intervals. An interval I is a linearly ordered set with a first and last elements
respectively denoted 0 and 1, or ⊥ and >. If 0 6= 1 the interval is said to be strict.
A morphism between two intervals is an order preserving map f : I → J such that
f(0) = 0 and f(1) = 1. We shall denote by D1 the category of finite strict intervals
(it is the category of finite 1-disk). The category D1 is dual to the category ∆. The
duality functor (−)∗ : ∆o → D1 associates to [n] the set [n]∗ = ∆([n], [1]) = [n + 1]
equipped with the pointwise ordering. The inverse functor Do

1 → ∆ associates to
an interval I ∈ D1 the set I∗ = D1(I, [1]) equipped with the pointwise ordering.
A simplicial set is usually defined to be a contravarint functors ∆o → Set. The
duality implies that it can be defined as a covariant functor D1 → Set. We can
extends the notion of simplicial set by extending the notion of interval with the
notion of n-disk.

30.2. The euclidian ball Bn = {x ∈ Rn :|| x ||≤ 1} is the main geometric example
of an n-disk. Observe that the fiber p−1(x) of the projection p = p1 : Bn → [−1, 1]
is an (n − 1)-disks except when x = ±1 in which case p−1(x) is a point. There
is a complementary view with the projection q : Bn → Bn−1. The fiber q−1(x)
is a 1-disk except when x ∈ ∂Bn−1 in which case q−1(x) is a point; there are
two canonical sections i0, i1 : Bn−1 → Bn obtained by selecting the bottom and
the top elements in each fiber; the image of i0 is the bottom hemisphere and the
image of i1 the top hemisphere; observe that i0(x) = i1(x) iff x ∈ ∂Bn−1. The
map q : Bn → Bn−1 is an example of bundle of intervals. In general, a bundle of
intervals over a set B is an interval object in the category Set/B. More explicitly,
it is a map p : X → B whose fibers have an interval structure. The map p has
two canonical sections i0, i1 : B → E obtained by selecting the bottom and the top
elements in each fiber. We shall say that the equaliser of i0 and i1 is the singular
set of the bundle. If we order the coordinates in Rn we obtain a sequence of bundles
of intervals:

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

Observe that ∂Bk+1 = i0(Bk) ∪ i1(Bk).

30.3. A n-disk D is defined to be a sequence of length n of bundles of intervals

1 = D0 ← D1 ← D2 ← · · ·Dn−1 ← Dn

in which the singular set of the projection p : Dk+1 → Dk is equal to i0(Dk−1) ∪
i1(Dk−1) for every 0 ≤ k < n. If k = 0 this condition means that D1 is a strict
interval.

30.4. It follows from the definition that i0i0 = i1i0 and i0i1 = i1i1. We define the
boundary ∂Dk to be i0(Dk−1) ∪ i1(Dk−1) and the interior int(Dk) to be Dk\∂Dk.
By convention ∂D0 = ∅. A planar tree T of height ≤ n is defined to be a sequence
of maps

1 = T0 ← T1 ← T2 ← · · · ← Tn

with linearly ordered fibers. The interior of a n-disk D is a planar tree of height
≤ n,

1 =← int(D1)← int(D2)← · · · int(Dn−1)← int(Dn).
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Every planar tree T of height ≤ n is the interior of a unique n-disk T̄ . The size
| D | of a disk D is defined to be the number of edges of the tree int(D). We have

| D |=
n∑

k=1

Card(int(Dk)).

30.5. A morphism D → D′ between n-disks is defined to be a sequence of maps
fn : Sn → Tn commuting with the projections

1 D1
oo

f1

��

D2
oo

f2

��

· · ·oo Dn−1

fn−1

��

Dn
oo

fn

��
1 D′

1
oo D′

2
oo · · ·oo D′

n−1 D′
n

oo

and inducing a map of intervals between the fibers. We shall denote by Dn the
category of finite n-disks. Let Bn be the euclidian n-disk,

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

If D ∈ Dn, then the set hom(D,Bn) is an euclidian ball of dimension | D |.

30.6. The following neat description of hom(D,Bn) is due to Clemens Berger. The
order relation on fibers of the planar tree T = int(D) can be transported to the
edges. The topological space hom(D,Bn) is homeomorphic to the space of maps
f : edges(T )→ [−1, 1] satisfying the following conditions

•
∑

e∈C f(e)2 ≤ 1 for every maximal chain C connecting a leaf to the root;
• f(e) ≤ f(e′) for two edges e ≤ e′ with the same target.

We associate to f a map of n-disks f ′ : D → Bn by putting f ′(x) = (f(e1), · · · , f(ek))
for every x ∈ Tk, where (e1, · · · , ek) is the sequence of edges in chain connecting
the root to the vertex x.

30.7. The category Θn is by definition the opposite of Dn. We shall write D = C?

and C = ∗D for an object C ∈ Θn and the opposite disk D ∈ Dn. We say that an
object C ∈ Θn is a Θn-cell. The dimension of C is defined to be | C? |. A Θn-set
is defined to be a functor

X : Θo
n → Set,

or equivalently a functor X : Dn → Set. We shall denote by Θ̂n the category of
Θn-sets of order n. We shall use the Yoneda functor Θn → Θ̂n to identify Θn with
a full subcategory of Θ̂n. Consider the functor R : Θn → Top defined by putting
R(C) = Hom(C∗,Bn), where Top denotes the category of compactly generated
spaces. Its left Kan extension R : Θ̂n → Top preserves finite limits. We call R(X)
the geometric realisation of a Θn-set X.

30.8. For each 0 ≤ k ≤ n, let us denote by ek the n-disk whose interior is the tree
with a single chain of k edges. The geometric realisation of the cell bk = ∗ek is the
euclidian n-ball. There is a unique map of disks ek−1 → ek, hence also a unique
map of cells bk → bk−1. The sequence

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk b in the topos Θ̂n. It is the generic n-disk in the sense
of classifying topos.
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30.9. The composite D ◦ E of a n-disk D with a m-disk E is the m + n disk

1 = D0 ← D1 ← · · · ← Dn ← (Dn, ∂Dn)× E1 ← · · · ← (Dn, ∂Dn)× Em,

where (Dn, ∂Dn)× Ek is defined by the pushout square

∂Dn × Ek
//

��

Dn × Ek

��
Ek

// (Dn, ∂Dn)× Ek.

This composition operation is associative.

30.10. The category S(n) = [(∆n)o,Set], contains n intervals

Ik = 1�1� · · · 1�I�1 · · · 1�1,

one for each 0 ≤ k ≤ n. It thus contain a n-disk I(n) : I1 ◦ I2 ◦ · · · ◦ In. Hence there
is a geometric morphism

(ρ∗, ρ∗) : S(n) → Θ̂,

such that ρ∗(b) = I(n). We shall say that a map of Θn-sets f : X → Y is a weak
categorical equivalence if the map ρ∗(f) : ρ∗(X) → ρ∗(Y ) is a weak equivalence in
the model structure for reduced Segal n-spaces. The category Θ̂n admits a model
structure in which the weak equivalences are the weak categorical equivalences and
the cofibrations are the monomorphisms. We shall say that a fibrant object is
a Θn-category. The model structure is cartesian closed and left proper. We call
it the model structure for Θn-categories. We denote by ΘnCat the category of
Θn-categories. The pair of adjoint functors

ρ∗ : Θ̂n → S(n) : ρ∗

is a Quillen equivalence between the model structure for Θn-categories and the
model structure for reduced Segal n-spaces.

31. Appendix

31.1. We fix some notations about simplicial sets. We shall denote by ∆ the
category of finite non-empty ordinals and order preserving maps. It is standard to
denote the ordinal n+1 = {0, . . . , n} by [n]. A map u : [m] → [n] can be specified
by listing its values (u(0), . . . , u(m)). We shall denote by di : [n − 1] → [n] the
injection which omits i ∈ [n] and by si : [n]→ [n− 1] the surjection which repeats
i ∈ [n− 1].

31.2. We shall denote by S the category [∆o,Set] of simplicial sets. If X is a
simplicial set, it is standard to denote X([n]) by Xn. We often denote the map
X(di) : Xn → Xn−1 by ∂i and the map X(si) : Xn−1 → Xn by σi. An element of
Xn is called a n-simplex; a 0-simplex is called a vertex and a 1-simplex an arrow.
For each n ≥ 0, the simplicial set ∆(−, [n]) is called the combinatorial simplex of
dimension n and denoted by ∆[n]. The simplex ∆[1] is called the combinatorial
interval and we shall denote it by I. The simplex ∆[0] is the terminal object of the
category S and we shall denote it by 1. By the Yoneda lemma, for every X ∈ S the
evaluation map x 7→ x(1[n]) defines a bijection between the maps ∆[n]→ X and the
elements of Xn for each n ≥ 0; we shall identify these two sets by adopting the same
notation for a map x : ∆[n]→ X and the simplex x(1[n]) ∈ Xn. If u : [m]→ [n] we
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shall denote the simplex X(u)(x) ∈ Xm as a composite xu : ∆[m] → X. If n > 0
and x ∈ Xn the simplex ∂i(x) = xdi : ∆[n− 1]→ X is called the i-th face of x. If
f ∈ X1 we shall say that the vertex a = ∂1(f) = fd1 is the source of the arrow f
and that b = ∂0(f) = fd0 is its target. We shall write f : a → b to indicate that
a = ∂1(f) and that b = ∂0(f). If a ∈ X0, we shall denote the (degenerate) arrow
as0 as a unit 1a : a→ a.

31.3. Let τ : ∆ → ∆ be the automorphism of the category ∆ which reverses
the order of each ordinal. If u : [m] → [n] is a map in ∆, then τ(u) is the map
uo : [m] → [n] given by uo(i) = n − f(m − i). The opposite Xo is a simplicial
set X is obtained by composing the (contravariant) functor X : ∆ → Set with
the functor τ . We shall distinguish between the simplicies of X and Xo by writing
xo ∈ Xo for each x ∈ X, with the convention that xoo = x. If f : a→ b is an arrow
in X, then fo : bo → ao is an arrow in Xo.

31.4. If X is a simplicial set, we say that a subfunctor A ⊆ X is a simplicial subset
of X. If n > 0 and i ∈ [n] the image of the map di : ∆[n − 1] → ∆[n] is denoted
∂i∆[n] ⊂ ∆[n]. The simplicial sphere ∂∆[n] ⊂ ∆[n] is the union the faces ∂i∆[n] for
i ∈ [n]; by convention ∂∆[0] = ∅. If n > 0, we shall say that a map x : ∂∆[n]→ X
is a simplicial sphere in X; such a map is determined by the sequence of its faces
(x0, . . . , xn) = (xd0, . . . , xdn). A simplicial sphere ∂∆[2] → X is called a triangle.
Every n-simplex y : ∆[n]→ X has a boundary ∂y = (∂0y, . . . , ∂ny) = (yd0, . . . , ydn)
obtained by restricting y to ∂∆[n]. If ∂y = x we shall say that the simplex y fills the
simplicial sphere x. We shall say that a simplicial sphere x : ∂∆[n]→ X commutes
if it can be filled.

31.5. If n > 0 and k ∈ [n], the horn Λk[n] ⊂ ∆[n] is defined to be the union of
the faces ∂i∆[n] with i 6= k. A map x : Λk[n] → X is called a horn in X; it is
determined by a lacunary sequence of faces (x0, . . . , xk−1, ∗, xk+1, . . . , xn). A filler
for x is a simplex ∆[n]→ X which extends x.

31.6. A pair (A,B) of classes of maps in a category E is called a factorisation
system if the following two conditions are satisfied:

• the classes A and B are closed under composition and contain the isomor-
phisms;
• every map f : A → B admits a factorisation f = pu : A → E → B with

u ∈ A and p ∈ B, and this factorisation is unique up to unique isomorphism.
In this definition, the uniqueness of the factorisation of a map f : A → B means
that for any other factorisation f = qv : A→ F → B with v ∈ A and q ∈ B, there
exists a unique isomorphism i : E → F such that iu = v and qi = p.

31.7. The left class A of a factorisation system has the right cancellation property
and the right class has the left cancellation property. Let us define these notions.
We say that a class of maps M in a category E has the right cancellation property
if the implication

vu ∈M and u ∈M ⇒ v ∈M
is true for any pair of maps u : A→ B and v : B → C. Dually, we say thatM has
the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M
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is true.

31.8. Recall that an arrow u : A→ B in a category E is said to have the left lifting
property with respect to another arrow f : X → Y , or that f has the right lifting
property with respect to u, if every commutative square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a diagonal filler d : B → X (that is, du = x and fd = y). We shall denote this
relation by u t f . If the diagonal filler is unique we shall write u⊥f and say that u
is left orthogonal to f , ot that f is right orthogonal to u. If A and B are two classes
of maps in E , we shall write A t B to indicate that we have u t f for every u ∈ A
and f ∈ B. For any class of maps M ⊆ E , we shall denote by tM (resp. Mt)
the class of maps having the left lifting property (resp. right lifting property) with
respect to every map in M. Each class tM and Mt contains the isomorphisms
and is closed under composition.

31.9. A pair (A,B) of classes of maps in a category E is called a weak factorisation
system if the following two conditions are satisfied:

• every map f ∈ E admits a factorisation f = pu with u ∈ A and p ∈ B;
• A = tB and At = B.

We say that A is the left class and that B is the right class of the weak factorisation
system. The intersection A ∩ B is the class of isomorphisms.

Every factorisation system is a weak factorisation system.

31.10. We shall say that a map in a topos is a trivial fibration if it has the right
lifting property with respect to every monomorphism. This terminology is non-
standard but useful. The trivial fibrations often coincide with the acyclic fibra-
tions (which can be defined in any model category). A map of simplicial sets is
a trivial fibration iff it has the right lifting property with respect to the inclusion
δn : ∂∆[n] ⊂ ∆[n] for every n ≥ 0. If A be the class monomorphisms in a topos
and B is the class of trivial fibrations, then the pair (A,B) is a weak factorisation
system. An object X in a topos is said to be injective if the map X → 1 is a trivial
fibration.

31.11. Let E be a cocomplete category. If α = {i : i < α} is a non-zero ordinal,
we shall say that a functor C : α→ E is an α-chain if the canonical map

lim
−→
i<j

C(i)→ C(j)

is an isomorphism for every non-zero limit ordinal j < α. The composite of C is
the canonical map

C(0)→ lim
−→
i<α

C(i).

We shall say that a subcategory A ⊆ E is closed under transfinite composition if
the composite of any α-chain C : α→ E with values in A belongs to A.
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31.12. Let E be a cocomplete category. We shall say that a class of maps A ⊆ E
is saturated if it satisfies the following conditions:

• A contains the isomorphisms and is closed under composition ;
• A is closed under transfinite composition;
• A is closed under cobase change and retract;

Every class of maps Σ ⊆ E is contained in a smallest saturated class called the
saturated class generated by Σ.

31.13. The following theorem is a special case of a classical result. If Σ is a set of
maps in a locally presentable category, then the pair (Σ,Σt) is a weak factorisation
system, where Σ denotes the saturated class generated by Σ.

31.14. We shall say that a classW of maps in a category E has the “three for two”
property if the following condition is satisfied:

• If two of three maps u : A→ B, v : B → C and vu : A→ C belongs to W,
then so does the third.

31.15. Let E be a finitely bicomplete category. We shall say that a triple (C,W,F)
of classes of maps in E is a model structure if the following conditions are satisfied:

• W has the “three for two” property;
• the pairs (C ∩W,F) and (C,F ∩W) are weak factorisation systems.

31.16. A model category is a category E equipped with a model structure (C,W,F).
The class W of a model structure contains the isomorphisms and it is closed under
retracts, see [JT1] for a proof. We shall say that a model structure is trivial if W
is the class of isomorphisms. A map in W is said to be acyclic or to be a weak
equivalence. A map in C is called a cofibration and a map in F a fibration. A map
in C ∩W is called an acyclic cofibration and a map in F ∩W an acyclic fibration.
An object X ∈ E is fibrant if the map X → > is a fibration, where > is the terminal
object of E . Dually, an object A ∈ E is cofibrant if the map ⊥ → A is a cofibration,
where ⊥ is the initial object of E .

31.17. A model structure is said to be left proper if the cobase change of a weak
equivalence along a cofibration is a weak equivalence. Dually, a model structure is
said to be right proper if the base change of a weak equivalence along a fibration is
a weak equivalence. A model structure is proper if it is both left and right proper.

31.18. If E is a model category, then so is the slice category E/B for each object
B ∈ E . By definition, a map in E/B is a weak equivalence (resp. a cofibration
, resp. a fibration) iff the underlying map in E is a weak equivalence (resp. a
cofibration , resp. a fibration). Dually, each category B\E is a model category.

31.19. The homotopy category of a model category E is defined to be the category
of fractions Ho(E) = W−1E . We shall denote by [u] the image of a map u ∈ E by
the canonical functor E → Ho(E). A map u : A → B is a weak equivalence iff [u]
invertible in Ho(E) by [Q].
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31.20. We shall denote by Ef (resp. Ec) the full sub-category of fibrant (resp.
cofibrant) objects of a model category E . We shall put Efc = Ef ∩ Ec. A fibrant
replacement of an object X ∈ E is a weak equivalence X → RX with codomain a
fibrant object. Dually, a cofibrant replacement of X is a weak equivalence LX → X
with domain a cofibrant object. Let us put Ho(Ef ) =W−1

f Ef where Wf =W ∩Ef
and similarly for Ho(Ec) and Ho(Efc). Then the diagram of inclusions

Efc

��

// Ef

��
Ec // E

induces a diagram of equivalences of categories

Ho(Efc)

��

// Ho(Ef )

��
Ho(Ec) // Ho(E).

31.21. Recall from [Ho] that a cocontinuous functor F : U → V between two model
categories is said to be a left Quillen functor if it takes a cofibration to a cofibration
and an acyclic cofibration to an acyclic cofibration. A left Quillen functor takes
a weak equivalence between cofibrant objects to a weak equivalence. Dually, a
continuous functor G : V → U between two model categories is said to be a right
Quillen functor if it takes a fibration to a fibration and an acyclic fibration to an
acyclic fibration. A right Quillen functor takes a weak equivalence between fibrant
objects to a weak equivalence.

31.22. A left Quillen functor F : U → V induces a functor Fc : Uc → Vc hence also
a functor Ho(Fc) : Ho(Uc)→ Ho(Vc). Its left derived functor is a functor

FL : Ho(U)→ Ho(V)

for which the following diagram of functors commutes up to isomorphism,

Ho(Uc)

��

Ho(Fc)// Ho(Vc)

��
Ho(U) F L

// Ho(V),

The functor FL is unique up to a canonical isomorphism. It can be computed as
follows. For each object A ∈ U , we can choose a cofibrant replacement λA : LA→
A, with λA an acyclic fibration. We can then choose for each arrow u : A→ B an
arrow L(u) : LA→ LB such that uλA = λBL(u),

LA

L(u)

��

λA // A

u

��
LB

λB // B.

Then
FL([u]) = [F (L(u))] : FLA→ FLB.



80 ANDRÉ JOYAL

31.23. Dually, a right Quillen functor G : V → U induces a functor Gf : Vf → Uf

hence also a functor Ho(Gf ) : Ho(Vf ) → Ho(Uf ). Its right derived functor is a
functor

GR : Ho(V)→ Ho(U)

for which the following diagram of functors commutes up to a canonical isomor-
phism,

Ho(Vf )

��

Ho(Gf )// Ho(Uf )

��
Ho(V) GR

// Ho(U).

The functor GR is unique up to a canonical isomorphism. It can be computed as
follows. For each object X ∈ V let us choose a fibrant replacement ρX : X → RX,
with ρX an acyclic cofibration. We can then choose for each arrow u : X → Y an
arrow R(u) : RX → RY such that R(u)ρX = ρY u,

X

u

��

ρX // RX

R(u)

��
Y

ρY // RY.

Then
GR([u]) = [G(R(u))] : GRX → GRY.

31.24. Let F : U ↔ V : G be an adjoint pair of functors between two model
categories. Then the following two conditions are equivalent:

• F is a left Quillen functor;
• G is a right Quillen functor.

When these conditions are satisfied, the pair (F,G) is said to be a Quillen pair. In
this case, we obtain an adjoint pair of functors

FL : Ho(U)↔ Ho(V) : GR.

If A ∈ U is cofibrant, the adjunction unit A→ GRFL(A) is obtained by composing
the maps A→ GFA→ GRFA, where FA→ RFA is a fibrant replacement of FA.
If X ∈ V is fibrant, the adjunction counit FLGR(X)→ X is obtained by composing
the maps FLGX → FGX → X, where LGX → GX is a cofibrant replacement of
GX.

31.25. A Quillen pair (F,G) is said to be a Quillen equivalence if the adjoint pair
(FL, GR) is an equivalence of categories.

31.26. We shall say that a Quillen pair F : U ↔ V : G is a homotopy localisation
U → V if the right derived functor GR is full and faithful. Dually, we shall say that
(F,G) is a homotopy colocalisation V → U if the left derived functor FL is full and
faithful.

31.27. Let F : U ↔ V : G be a homotopy localisation beween two model categories.
We shall say that an object X ∈ U is local (with respect to the the pair (F,G)) if it
belongs to the essential image of the right derived functor GR : Ho(V)→ Ho(U).
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31.28. Let Mi = (Ci,Wi,Fi) (i = 1, 2) be two model structures on a category E .
If C1 = C2 and W1 ⊆ W2, we shall say that the model structure M2 is a Bousfield
localisation of the model structure M1.

31.29. Let � : E1 × E2 → E3 be a functor of two variables with values in a finitely
cocomplete category E3. If u : A → B is map in E1 and v : S → T is a map in E2,
we shall denote by u�′ v the map

A� T tA�S B � S −→ B � T

obtained from the commutative square

A� S

��

// B � S

��
A� T // B � T.

This defines a functor of two variables

�′ : EI
1 × EI

2 → EI
3 ,

where EI denotes the category of arrows of a category E .

31.30. [Ho] We shall say that a functor of two variables � : E1 × E2 → E3 between
three model categories is a left Quillen functor if it is concontinuous in each variable
and the following conditions are satisfied:

• u�′ v is a cofibration if u ∈ E1 and v ∈ E2 are cofibrations;
• u�′ v is an acyclic cofibration if u ∈ E1 and v ∈ E2 are cofibrations and one

of the maps u or v is acyclic.

Dually, we shall say that the functor of two variables � is a right Quillen functor
if the opposite functor �o : Eo

1 × Eo
2 → Eo

3 is a left Quillen functor.

31.31. [Ho] A model structure (C,W,F) on monoidal closed category E = (E ,⊗)
is said to be monoidal if the tensor product ⊗ : E × E → E is a left Quillen functor
of two variables and if the unit object of the tensor product is cofibrant.

31.32. A model structure (C,W,F) on a category E is said to be cartesian if the
cartesian product × : E ×E → E is a left Quillen functor of two variables and if the
terminal object 1 is cofibrant.

31.33. We say that a functor of two variables � : E1 × E2 → E3 is divisible on the
left if the functor A�(−) : E2 → E3 admits a right adjoint A\(−) : E3 → E2 for every
object A ∈ E1. In this case we obtain a functor of two variables (A,X) 7→ A\X,

Eo
1 × E3 → E2,

called the left division functor. Dually, we say that � is divisible on the right if the
functor (−)�B : E1 → E3 admits a right adjoint (−)/B : E3 → E1 for every object
B ∈ E2. In this case we obtain a functor of two variables (X, B) 7→ X/B,

E3 × Eo
2 → E1,

called the right division functor.
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31.34. If a functor of two variables � : E1 × E2 → E3 is divisible on both sides,
then so are the left division functor Eo

1 × E3 → E2 and the right division functor
E3 × Eo

2 → E1. This is called a tensor-hom-cotensor situation in ??. There is then
a bijection between the following three kinds of maps

A�B → X, B → A\X, A→ X/B.

Hence the contravariant functors A 7→ A\X and B 7→ B\X are mutually right
adjoint.

31.35. Suppose the category E2 is finitely complete and that the functor � : E1 ×
E2 → E3 is divisible on the left. If u : A→ B is map in E1 and f : X → Y is a map
in E3, we denote by 〈u\ f〉 the map

B\X → B\Y ×A\Y A\X

obtained from the commutative square

B\X //

��

A\X

��
B\Y // A\Y.

The functor f 7→ 〈u\f〉 is right adjoint to the functor v 7→ u �′ v for every map
u ∈ E1. Dually, suppose that the category E1 is finitely complete and that the
functor � is divisible on the right. If v : S → T is map in E2 and f : X → Y is a
map in E3, we denote by 〈f/v〉 the map

X/T → Y/T ×Y/S X/S

obtained from the commutative square

X/T //

��

X/S

��
Y/T // Y/S.

the functor f 7→ 〈f/v〉 is right adjoint to the functor u 7→ u �′ v for every map
v ∈ E2.

31.36. Let � : E1 × E2 → E3 be a functor of two variables divisible on both sides,
where Ei is a finitely bicomplete category for i = 1, 2, 3. If u ∈ E1, v ∈ E2 and
f ∈ E3, then

(u�′ v) t f ⇐⇒ u t 〈f/v〉 ⇐⇒ v t 〈u\f〉.

31.37. Let � : E1 × E2 → E3 be a functor of two variables divisible on each side
between three model categories. Then the functor � is a left Quillen functor iff the
corresponding left division functor Eo

1 × E3 → E2 is a right Quillen functor iff the
the corresponding right division functor Eo

1 × E3 → E2 is a right Quillen functor.
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31.38. Let E be a symmetric monoidal closed category. Then the objects X/A
and A\X are canonicaly isomorphic; we can identify them by adopting a common
notation, for example [A,X]. Similarly, the maps 〈f/u〉 and 〈u\f〉 are canonicaly
isomorphic; we shall identify them by adopting a common notation, for example
〈u, f〉. A model structure on E is monoidal iff the following two conditions are
satisfied:

• if u is a cofibration and f is a fibration, then 〈u, f〉 is a fibration which is
acyclic if in addition u or f is acyclic;
• the unit object is cofibrant.

31.39. This is it.
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