HERMITIAN K-THEORY

Max Karoubi

Lecture 5 : The cup-product of F.J.-B.J. Clauwens and the proof of Theorem 3.8

5.1. We are going to introduce a fundamental idea, due to Clauwens [C] [1979], unfortunately
not known until now by the author!.

We consider two rings A and B with involution and their associated categories of split quadratic
modules. More precisely, we consider first the category nQsPlf(B) and secondly the
subcategory .Q "SPUH(A[s]) of ,QPHH(A[s]) consisting of A[s]-modules extended from A (the

involution of A[s] being induced by the involution of A and the transformation s +> 1 - 5).

An object of _Q Plif(Als]) may be written as a couple (E, ), where E is a projective finitely

generated A-module and - is a non degenerate e-quadratic form on E ® z Z[s] which we may

write as 2 v, s, where -, is a morphism from E to E*.
Let us consider now an object (F, &) of nQSPHf(B) (where & is a non degenerate m-quadratic

form on F with A as associated hermitian form). On E ® [, we then consider the £7-
quadratic form defined by the following formula (note that we dont define a functor, but just a
pairing between objects) :

K= v, ® A (Al
In some fundamental lemmas, Clauwens showed that this pairing
Obj (-QsPU(A[s]) x Obj (,QPH(B)) = Obj (.nOP(A ® B))

is well defined on isomorphism classes of quadratic modules. In particular, we have a cup-
product

EKQ’ Split(A{S}) E nKQSP”“(B) — EnKQsplir(A ® B)

where _KQ’ sPlit(A[s]) is the subgroup of SKQSPHI(A[SD generated by extended modules over A
(this is automatically the case when A is regular noetherian for instance).

5.2. At the beginning of his paper (theorem 1, p. 42), Clauwens showed that up to additions
with hyperbolics, we can reduce us to the case where v is “linear”, i.e. of the type v = g 5. In
other words, 7y, = 0, except ; which is equal to g. Since the associated hermitian form g s +
glg (1 - s) is an isomorphism, this implies that ‘g = £ g (1 + N) where N is a nilpotent
endomorphism of E (this is called an “almost symmetric form” by Clauwens). In this case, the
formula for the quadratic form & above is quite simple : one finds

T [ would like to thank A. Ranicki for this reference.
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In other words, the above pairing on the KQSP/if -groups generalizes the usual pairing between
hermitian forms and quadratic forms (see Theorem 2, p. 43).

5.3. A careful study of Clauwens lemmas shows that it is important to work in the split
category. For instance, if we want to prove that the isomorphism class of the quadratic form x

above only depends of the class of the quadratic form @, one has to perform delicate arguments
using precisely the “splitting” of the quadratic form (see the lemma p. 44 in Clauwens’s paper).

5.4. In order to extend the previous considerations to higher KQsPli-groups, one may interpret

the elements of . KO(A) as equivalence classes of suitable flat bundles over homology

spheres of dimension 7 (as explained with great details in [K1] § 3 for usual K-theory). For
instance, if we have a flat bundle E (resp F) over an homology sphere X (resp ¥), they are
equivalent if we can find a third flat bundle G over Z and two homology equivalences

X—=Z<Y

such that the pull-back of G by the first map (resp. the second map) is isomorphic to E (resp.
F). We can put on these bundles some extra structures like split quadratic forms. By general
non sense, as explained in [K1], we can then extend Clauwens’s cup-product as a bilinear
pairing (now fornand p € Z)

i KQ:MI(AIS]} X nKQ;PHr(B) N n KQsph'z(A®B)

n+p

In order to show that this pairing is well defined (on the category of flat bundles provided with
a quadratic form), the “split” structure is essential as it was shown by Clauwens in his lemma p.
44. More precisely, we have to show that if £ (resp. F) is equivalent to E’ (resp. F”), then

E @ Fisequivalentto E* ® F’, which is essentially the contents of this lemma, adapted to the
category of flat bundles with the appropriate structure.

5.5. There is another piece of information which is important for us but more easy to define. It
is the usual bilinear pairing

- KQ:’IBX(A) X n KQ:PUF(B) — e KQ:PIIF(A ®B)

5.6. THEOREML. The cup-product of Clauwens is partially associative in the following sense.
For two rings C and D, one has the following commutative diagram (withn =ny +nz, € =

alsgandA:C ®D)

™+

ol split .
e, KOI™(€) X, KQY™(DIs) xn KQ,"(B) = o KQM™(C) X 2,0 KO, (D® B)

\ \

split

€45, Quph‘r (C ® D)[s)) X nKQ;r)ph‘:(B) — e KQR_W(A®B)

Hy s



Proof. All what we have to do is to look at the algebraic formula written in 5.1. What we are
doing is multiplying the two sides of the formula by the same even hermitian form before of

after taking the tensor product with A (A -1§)n.

5.7. If we look again at the proof of theorem 3.7, we see that we have used a Bott element in

DI™(Z) (cf. 4.6.2) and another one is ,E%"(Z) (cf. 4.6.3) where Z = Z[s]. The partial
associativity showed in 5.6 is used to prove that the two maps between (V*PI/(SA) and _

_Usplit(Ay are homotopically inverse to each other (on the level of cohomology theories or
spectra) : see 5.10 for more details.

5.8. We should remark that if we are just interested in Witt groups as in 3.12, the previous
considerations leads to morphisms (for the split Witt groups for any ring)

W (A= _W,,,(A) and _ W, ,(A)—> W(A)

which composites in both directions are the multiplication by 4. This improves somewhat the
control of the 2-primary torsion of the higher Witt groups (for any ring A).

5.9. Note that for negative degrees, we dont need flat bundles since we have just to consider

modules over iterated suspensions S”A, n > (. In this range of degrees, we can restrict
ourselves to usual quadratic forms (for n = 0) or to even hermitian forms (for n > 0).
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INTRODUCTION

Comment. Math.

To motivate this paper we first recall a few facts.

According to [W! , chapter 5) a normal map f between manifolds of di-
space, mension 2k and fundamental group 7 qives rise to a (so-called quadratic)
form § defined on some finitely generated free left B module V, where B de-
1 (1974), notes the integral group ring z[7]. The appropriate equivalence class of v
- in L2k(B} is the obstruction s(f) for changing f into a homotopy equivalence

by surgery (for k > 2}, )

!, Amsterdam, According to [C] a closed manifold P of dimension 2q and fundamental
group p gives rise to a (so-called almost symmetric) form ¢ defined on scme
wect o a uni- finitely generated free left A module X, where B is Z[p]. The main theorem
72, 130-137, there states that d ® { represents the obstruction for doing surgery on

idp * £ Lf U does so for E.

In this paper we will study the algebra of almost symmetric forms; there-

fore we first recall the main things about quadratic forms frem [w21].
i Orientability considerations give rise to a homomorphism w: v =+ {#1}.
Epf_mfg “:*?_f B dffined by the formula 35;5 = Engw(glgli satisfées Xty =
' ®+y, Xy =y x and x = x. For such an involuted ring B the dual V™ =

HomB(v,B) of a left B-module V inherits the structure of a left B-module by
! (af) (v) = f(v}g} the canonical map ": V 4—Vdd defined by ®(f) = f(x) iz an

isomorphism provided V is finitely generated projective. B form £ on V can
| be viewed as a homomorphism V + Vd; then C* = zd o TV o> Vdd = vd is one

such teoo.

DEFINITION. Let € be a sign. An e-quadratic form over B consists of a finite-
' ly generated free left B-module V and a class of forms P on V defined up to
&
the equivalence Y ~ § + ¢ - gz . It is called nonsingular if the symmetrisa-

! tion A = § + Ew* is an isomorphism V = Vd. We call (H,¢d¢¢) isomorphic to
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“(v,y) if ¢ is a module isomorphism W > V. 1nvertible exactl
; If F is £ free the quadratic form ¢ on F & Fd defined by ¢_{x, £} = THEOREM 2. There
! .g. o (% THEOREN 2

{f,0) is nonsingular; any quadratic form of this isomorphism type is called

standard. Wow L, (B) is dafined as the guotient of the Grothendieck group quﬂAE

k
of nonsingular (-1) quadratic foxms over B by the subgroup generated by

standard such forms. which assigns to
, and the gquadra

DEFINITION. Tet n be a sign, A an involuted ring. A nonsingular almost n-

symmetric form over A consists of a finitely generated free left A module A
' and an isomorphism o: K + ¥% such that o = no(1+W), whers N is nilpotent

(compare [C; §9]). Again ¢dU¢ is considered to be isomorphic to o for any over b @ B. In ¢
module isomorphism ¢. form with a guac

ALMOST SYMMETRIC FCRMS ARE QUADRATIC PROOF. Again wId

We start w!

Let A be an inveoluted ring, n = (-11%. We consider guadratic forms over
. als] we have
the polynomial ring als] over A equipped with the involution — such that
fa.s) = fa, (1-s)7. *
3 3 PY RN

THEOREM 1. Any element in qu{h[s}) can be represented by a quadratic form
v which is linear in s. Any such linear ¥ can be viewed as an almost (fi}q

symmetric form.

PROOF. Let the element be represented by a guadratic form ¥ = EYisl of de-
gree M in s. By the addition of a standard form and the use of an isomorphism Hence the SYTme

we get (in matrix notation)

AL
1o-s - v oo o)t 0 0 v-yust 0 -s
M_
1] 10 c 01 ~-l+s 1 0 = Wms ! o 1 which is inver
o © 1 000 st““ o 1 C o 0 the equivalent
a form of degree M-1 if M = 2; so we can make that M = 1. WYL
We can get rid of the constant term by using the eguivalence
=3
W+ Vs ~¥ +Ys-¥ (l-s) tniis = (¥, + ¥+ n¥o)s
o 1 o' 0 Mg 17 % T Mo
which is equis
To prove the last clause we consider the linear ¥ = Yls and write o for If we change '

* * *
nvi. Then the symmetrisation A = ¥ + n¥ of ¥ becomes 0 + [no -o)s which is
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) L : -1 % . .
invertible exactly if 0 is invertible and no ¢ =1 is nilpotent. Q.E.D.

THEQREM 2. There is a well defined biadditive pairing

qu(A[s]} x LZk(B) - l’2q+2k (A ®B)

which assigns to the quadratic form ¥ = E‘l‘isl over Bls] with symmetrisation

A and the guadratic form § over B with symmetrisation ) the guadratic form
AWl =y e ot

over A ® B, In particular it extends the familiar product of a symmetric

form with a guadratic form.

PROCF. Again write n = (-1)%, ¢ = -0k,
We start with the observation that for a general form I = XI‘isl over
als] we have

Ty =) e et =1l e Men Tt

= CEF: e 2 con TNt = ezr; o uh hih

-1 .1 =1 *
elir, e 207 YT = earoT 9]
Hence the symmetrisation of the image is

s o + enr 0T = v+ L R RV Y Rt

which is invertible since both A and A are. Furthermore if we change ¥ into

the equivalent ¥ + 2 = nz* the image changes into
ol +oazo e - w2t oy =
- worly o+ oaze e - ne 0z ¥

which is equivalent to A‘P(J\_lw}.

If we change Y into the isomorphic @G‘N the image changes into

o

fr

>
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- - - =1 1 - - 4, p+l
wlolmva oo e = oM ety Wow we rewrite (N P
L. LE . -1 . . I -1 d,p+l
which is isomeorphic to A¥(A "¢). Finally if ¥ is standard then A¥(X “W) ig ] o® ¢

also standard: in fact such a ¥ is induced from a guadratic form over A for

* D
which this statement is well-known. Since our pairing cbviously respects + g{ng —oj¥

direct sums we have proven that the class of the image in L2q+2k(A@B] is

independent of the choice of the representing element for the class in

qu (als]).

and we want the last ter

of H (Np+1@ 1) hence we

P
Now by Theorem 1 we may £rom now on assume thatl‘l' is of the type os, 7 by defining ZP“ = Zp
where ¢ is nonsingular, almost n symmetric; so AV @) is just o @ . The remaining temm
Fir‘stly if we change ¥ by an isomcrphism ¢ into ¢*1b¢ then ¢ ® ¥ changes

by the isomorphism 1 @ ¢.

as are the remaining ter

d
sible because N O can be
Secondly the isomorphism K @ {FmFd) T (KOF) & [K@F}d which maps

of the right fc
and st gl
a® (x,f) to (a®x, g(a)ef) lets o @ wf‘ correspond with ¥ or" So standard
Ker By viewing almost s
forms are mapped to standard forms.
i ifyi the latter u
It remains to be shown that the equivalence ¢ ~ Uy + [ - Ei;* changes classifying N

: 1 nce relation on them.
¢ ® { into something in the same class; le

this will be a consegquence of the
. . T
following lemma. According to Theore

formulation of the produ
LEMMA. For every integer p = 0 there iIs an isomorphism @p and there are
forms ZP and Hp over A @ B such that

suf ficiently coarse to €
'Pm‘.ncaré complexes in tf
plexes: As explained in
a * « D41 _—
Ploew)d =age (f+-ef ) + 2 - enE + H [N @1 o to a 2g-dimensicnal al
ploeme, U+ z-eg ; o * )

class in qu(&['s]). The
where N is “"_10* - 1 and thus nilpotent. as taking the tensor pr¢
o= 1.
PRCOF. We apply induction. For p = 0 we take Both the inherent f

able for qu make it prc
*
=1, By=-0e@y H = -0 @ .

a 0 tions then qu(AJ is.
One could hope that
In general ¢ will be of the form 1 + N@$ +...+N"@ ¢, and H_ of the form to an honest (-1)% symm
e GPO * csl“Ni'pl Yooene IF we assume all this for p then dlaf—,-+1 (Ga'bmpﬂ shows that this is not 1
becomes

the ring A contains a o«

Dedekind domain.
* * P+l
u®($+;~cc)+zp—snzp+HtN @1) +

The two-dimensional

4, p+l a Y dpit 5. .4 and hence to an element
@ P 3 5
L : "pﬂw * jg.l w o ¢’13'*1‘Mj * ™, (T ) = @ X . Suppost
1 . symmetric form ¢; then
NP'H Py d i p+l-_-a
+ o @ + N =) N
an jgl (N7)~oN ¢j¢¢p+l

e A WY T v
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. d, ptl 4 +1
How we rewrite (NT)T O @ ¢P+1¢ + oW e ¢¢P+1 as

is {(Nd)p+10 @ 6 w - snc*NP @ ¢*¢ } o+
p+l

for

ur

* p+1 * p+1 *
+ el(ng - oIl ® ¢p+1 + oN o (p+ey )¢p+1

is
ptl . ptl
and we want the last termm aN & b o+l to cancel the first term ON @ BpD
+1 —
of H (NP @ 1) hence we defxne dp+l = —A lﬁpn. The €first term we absorb in
p+1U o @ @

@ ¢ $ +1 w111 pe absorbed in HP 1(

S, Z by deflnlnq Z ol =2 + (N )

P
The remaining temm eUNp p+2® 1)
anges as are the remaining terms of H NP+1 ©1) and the I-terms. The last is pos—
d
sible because N ¢ can he rewritten as ~gN [1+1) l. So there exists ¢P+1' Z9+1

3 and HP+1 of the right form. Q.E.D.

By viewing almost symmetric forms R as quadratic forms over als] and
classifying the latter up to stable isomorphism we have defined an equiva-—
lence relation on them.

According to Theorem 2 this relation is sufficiently fine to admit the

formaulation of the product formila (for surgery obstructions). It is also

o

cuf ficiently coarse to define a bordism invariant of algebraic symmetric
poincaré complexes in the sense of [{r], hence one of geometrlc Poincaré com-
plexes: RS explained in [¢] we can associate an almost (- 11? symmetric form
g toa Zq—dlmensianal algebraic symmetric poincaré complex and then take its
class in qu{Afs}}. The result is well- —defined on L q(n} since it can be seen
as taking the tensor product with the element of LD(z[s]J represented by

= 1.

Both the inherent periodicity in g and the wealth of technigues avail-
able for L, make it probable that qu(n[s]) is petter suited for calcula=
tions then L q(A) is.

One could hope that an almoét {—l)q symmetric form is always equivalent
e form to an honest {—I)q symmetric onej the following example, due to A. Ranicki
p+l chows that this is not the caseé. However we will see that it is the case if
the ring A contains 2 central element t such that t + ¥ =1 or if it is a
pedekind domain.

The two- -dimensional torus T2 = S1 ® S1 gives rise to an element in LE(B),
and hence to an element in L2 (als]), where A is the integral group ring of
ﬂlthl = ®m » %.Suppose that this element could he represented by an anti-

symnetric foxrm O: then o could be written as ¢ - ¢ the result ¢ @ § of its

- B T s S



4 CLAUWENS
o
action on a (~1)=-guadratic form V¥ would be equivalent to ¢ ® (P~ ), hence
*
would depend only on the symmetrisation ¢ - ¢ of ¥. In particular it woulg
kill the Arf nontrivial element in LZ{ZZ) . On the other hand it follows froy
[5#] that multiplieation with a circle induces a split injection on L-groups

and heﬁce the product with '.'l‘2 gives a split injection L2(EZ) + L‘1 (a)y.

SOME CALCULATIONS A
THEOREM 3. If there exists a central element t of ¥ such that t + t = I then
the canonical map qu(}-\) - qu (als]) is an isomorphism.

PROOF. The map Als] + A substituting t for s gives a left inverse so we must

show that for any integer p 2 0 there is an isomorphism @p and there are
forms 7 and 8  such that
P P

d * p+l
{os) = ot + - + oN® TG .
bplosidy o T M D

For p = 0 we take @0 =1, gog os(l-t), GD = (i-s}t. In general ¢p will be

of the form 1+a,N+...+a N’ and 8 =8 _+0 N+8& N?'+...where the o
1 P P 20 pl = i
and 913‘ are polynomial in s and t with Z coefficients, hence central.

S s
If we assume all this for p then ¢P+1 tUs):bp“ becomes

* b+l
ot + -n + oN 8 +
;P l;11' p

+ (N

d)p-rl
ptl

P
- p+1 |
o5 + Z up+1ilé ) dsujN +

p+1 — d. ] -
+ Gsup+1N + j£1 uj (N7) Usup+1N

- + +
We rewrite o (Nd]P 10‘5 + Usg wF ! as
p+l

p+l

- d, p+l * ptl
{tpo(N ¥ os - no N mpvi-ltl s)}

* o+l _ - ol
+ (no - alN ttp+1(1 s) + ofs+ (1 S””p+;N

Then we let the last term cancel the first term of UNPHGP by defining

o = =B and absorb the first term in { by defining
Pl po _ d, p+l

= + N
[ CP up+l{ g

pt+l S-

THE X-J

N
he middle term oN°

cerme and the remaining t

REM 4-
THEOREH 4

nt

LD(ZES]] 2

PROCF . mecording to Theor
PR .

¢ of the type nU s, whert
z-module X. Thus N = no -

of finite index h in som

Forst‘L;{ch{:

* e-1 t
since nog N = (0+ON)N

s ) 6o =

L,
.Furthermore L = L since

So o induces a well-defi
-~ €
N{x+L) = Nx + L hence N

Now L @ Z[s] is a ¢

If % = Exj$] e ¥ @ 2[=s]

of Y then we have for al
0=xle1,

hence xj 3 Ll. We see tl
obviously the induced g

Tt is well known t
that the latter is .asso
better e. We can go on
n-symmetric form.

It is also well kn
and a {(+l)-symmetric fo

(1) of rank one. Finall

a2y SRR AL T -
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<y ), hencs The middle term oNp*zo.pH{l—s} is absorbed in UNP+29 4y 38 are the z
ar it would terms and the remaining texms of ﬁNpﬂep. : Q.E.D.
follows from

on L-groups _@EQ.R_EM‘

(a).

~

LO(Z[SI) =2, LQ(Z[s]) = {0).

PROOF. Accoxding to Theorem 1 we may restrict attention to n-quadratic forms
— . &
Ft =1 then Py of the type no s, where ¢ is an almost n-symmetric form on some f.g. free
-1 * . . —
z-module K. Thus N = no "o =1 satisfies n% = 0 for some e. Then N° IK is

of finite index h in some direct summand L of XK.
2 S0 we must

ere are For x ¢ 1" = {x | o(x) (L) =0} we have also o(L} (x} = 0 and vice versa,
R x* e-1 e-1 e-1 | .
since no N = {o+aNIN = gN implies
e-1 -
ag(¥ Ty)i{x) = n olx) (Ne ly), for v € K.
will b L. g * .
)P L e Furthermore L © L~ since ol = -nN o implies
e the o,
1 —2
. — 2 e
ral. s ) = cno B %) = 0.
. R o~ 1 ~ m,_'lm* R
So 0 induces a well-defined form ¢ en L™ /L, and N = ng o - 1 satisfies
~ -1 -1
N(xiL) = Nx + L hence N° K € L implies N = = 0.
Now L @ Z[s] is a direct summand of X @ Z[s] which is isetropic for .
. ) .
If x = Exjs] ¢ ¥ ® 2[s] is in (L®Z[s])” for the symmetrisation A = ¢ + oNs
of { then we have for all £ e L that
0=rilen, ijsjp = zs:z,xj)sl + Eﬁiﬂf.,xj)(l—s)s] = zota,xj)s:‘
L
hence xj e L”. We see that (L@ Z[s]]'L/!L@Z[s]) is just (Ll/L) ® ZLs] and
~ g
cbviously the induced guadratic form i on it is just no s.
It is well known that y is stably egquivalent to ?ﬁ and we have just seen
that the latter is associated to an almost n-symmetric form ¢ which has a
better e. We can go on inductively until e = 1 which means that we get an
n-symmetric form.
ining

It is alse well known [SE] that a {-1)-symmetric form is stably trivial
and a (+l)-symmetric form stably isomorphic to some multiple m of the form

(1) of rank one. Finally m can bhe detected by taking the signature of the
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guadratic form over R which we gst by mapping s to %. Q.E.D,
i Now some general remarks about torsion are necessary. 1If we start with
2 finite Poincaré complex P cur module K gets a natural basis (see §6 of
ey
The symmetrization A of the associated quadratic form is o(l+Ns) and
according to Lemma 3 of [C] we have M° = 0 and 1 + Ns has a resolution by

automorphisms 1 + ({-1)12_1

£~ 1)s of the B, which are simple; in particular
the isomorphisms invelving N in the proofs of Theorems 2 and 3 are simple.
So the torsion of X lives in Elthl < EL(A[SJ) and the appropriate L groups
Léq(h[s]! have ¥ = Wn(p) in the general case and (0) in the case of simple
Poincaré complexes.

At the time this is written we do not have theorems as the above for
the odd-dimensional case. Note however, that if we did, we could use the
long exact sequence 9.4 of [R] for the L groups to calculate Ln(Z[D]ESJ)
for p the cyclic group of prime order p > 2. If w denotes exp(zﬂi/p) and F_
is the field of p elements, there are maps from Z[plls] to Z[wlle] and Z[SH
and from these to prs] satisfying all necessary conditions. Since

K2{FP[5]) = 0 according to Theorem 11 of [Q) and 9.13 of [M] the map
§1(Z[p][51) - %1(Z[w][s]‘ @ ﬁltz[s})

is injective, so we may use the "gimple" L-groups throughout and we get an

exact segeunce

Lm_l(Fp[s]) —»Lntzro][s]) = Ln(z[mjts]) SLn(Z[sl) +Ln(F9[5'J) aee

But L_(2[wlls]) = L (z[w]) by Theorem 3, hence is known, and similarly
L (F s S L (F ).
nop nop

The author has now calculated Ln(z[p][s]) for p cyelic.
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