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Plan of the talk

e further introductory remarks and notation (for non-specialists)
e linear-metric structure and diversity of fin.-dim. normed spaces

e applications:
e approximation problems in compressed sensing
e m-neighborly polytopes

e metric entropy and related duality issues
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Introductory remarks and notation

Typical setting and objective:
unspecified finite but usually high dimension
study of quantitative invariants, up to universal constants

cf <invariant < Cf

where f is an explicit function of the parameters involved
(such as the dimension)

Leads to isomorphic rather than isometric properties
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Geometric vs. functional-analytic objects

e normed space X <« its unit ball Bx

e convex body K C R™ with 0 € IntK <« its gauge || - ||k

e, [|z||k :=inf{t >0: 2z € tK}

In particular, if K is centrally symmetric then
e K « the normed space (R", || - || k)

Fundamental concept : Banach-Mazur distance
d(K,B):=inf{\>0:3ue GL(n) K Cu(B) C AK}
or, in terms of normed spaces,
d(X,Y) :=inf{||lul]| - J[u™t|| : uw € L(X,Y), isomorphism}
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Linear-metric structure: Subspaces/Quotients

Study: family of subspaces (dually, of quotients) of a given Banach space.

The aim may be two folded:

e to detect some possible regularities in subspaces which might have not
existed in the whole space, or oppositely,

e to identify some “irremovable” structures present in every subspace
(or quotient) of sufficiently large dimension

Dvoretzky's Th. 1961 (strengthened by V. Milman, 1970):
Every normed space X of (large) dimension n has an “almost” Euclidean
subspace of dimension k > clogn (¢ > 0 depends on the degree of appr.)

Based on concentration of measure on sphere phenomenon.

k optimal, in general: If E C X = /", d(E, (%) <2 then k < C'logn.
For large class of spaces, k£ can be proportional to n, case of e.g. X = /(7.
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Large Subspaces of Quotients

Milman (1983): For any 6 € (0,1), every n-dim. normed space X admits
a subspace of a quotient E/, “nearly” Euclidean and of dimension £ > 6n.

3X — X, quotient 3E C X, subspace s.t. k> 0n and d(E, (%) < f(0).

A byproduct: every n-dimensional normed space admits a “proportional
dimensional” quotient of well-bounded volume ratio.

A considerable regularity in a global invariant achieved by passing to a
quotient of prop. dim.

Milman [ICM 1986]: Does every n-dimensional normed space admit a
quotient of dimension > n/2 whose cotype 2 constant is bounded by a
universal numerical constant?
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Cotype 2 and Cotype 2 constants

Cotype 2 constant of a space X is the smallest C' (if it exists) such that,
for every finite sequence (z;) in X one has

Aver| ) x| > C72) |z
j j

(relaxed parallelogram inequality). If such a constant exists, the space is
said to have cotype 2.

Examples: classical and non-commutative L,-spaces, Schatten classes S,
for p € [1,2].
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Saturating spaces |

X, dimX =n; V,dimV = k; k<<n
X is saturated with V', or V' saturates X,

~

if every subspace (resp. quotient) X of X of sufficiently large dimension
(depend. on k) has a subspace (resp. quotient) well-isomorph. to V'

By Dvoretzky's theorem, every normed space X is saturated with the

Euclidean space, i.e., we can take V = 672“. and “large” means m > eCk.

Are there any other spaces V' that can saturate some normed spaces?
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Saturating spaces |l

S. Szarek/T. [2004]: Any space V can saturate. Sample result:
Let n and mg with /nlogn < mg < n. Then, for every V satisfying

k:=dimV <c¢mg/v/n

there exists an n-dimensional normed space X such that every quotient X
of X with dim X > mg contains a 1-complemented subspace isometric to
V. (Here ¢ > 0 is a universal constant.)

Particular case: Given V, if k < ¢\/n then there is X such that every
n/2-dim. quotient of X contains a 1-complemented isometric copy of V.

Here mg ~ n/2 and k ~ y/n is allowed.
We may decrease mg a little, paying the price of smaller k& allowed.
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Relation to Milman’s problem

Mysterious “threshold” /n:
upper bound for k and if mg ~ n/2 then k ~ \/n is allowed.

lower bound for mg ( > v/nlogn)

Setting V' = /¥ implies that every quotient X of X with dim X > n/2
contains ¢%_ (k ~ \/n) and so its cotype 2 constant is vk ~ n!/4

Complementability of copies of V' imply that "every quotient X of X" can
be replaced by “every subspace X of X,” thus implying the “subspace”
variant of the Theorem.

Thus, in general, passing to large subspaces or large quotients can not
erase k-dimensional features of a space if k is below certain threshold value.
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Reconstruction from random linear measurements

Problem: given T' C R", approximate any v € 1" using
k < n random linear measurements.

Given X1, ..., X} € R" i.i.d. random vectors, ((X;,v))5_; and T,
find t € T', such that (X,,v) = (X;,t)
and |t — v| < e(k) for (k) as small as possible.

I' has X1, ..., X} as rows
S. Mendelson/A. Pajor/T. (2005, 06)

Our initial motivation: results by E. Candes and T. Tao ('05)
they considered 7" = the unit ball in /7 or weak-£7 (0 <p < 1)
uniform proof in terms of spectral properties of I'.

I' determined by the Gaussian or Bernoulli or Fourier ensemble.
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Linear approximate reconstruction

Given X1, ..., X} € R™ i.i.d. random vectors, and ((Xj,v))%_|,
find t € T', such that (X,,v) = (X;, )
and |t — v| < e(k) for (k) as small as possible.

I' has X4, ..., X as rows, thent— v € kerI'Nal if T quasi-convex;
thus (k) = diam(ker I' N aT") works.

Question: Describe 7(T'), depending on T', such that
diam(kerI'NT) < r(7T)

with probability close to 1.

For I' Gaussian: techniques developed in AGA in mid-80’s,
using concentration (Milman, Pajor/T., Milman/Pisier, . . . . .. )
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Back to concentration phenomenona
T C R™ sym. (quasi-)convex; for p > 0, let T, = pT' N S™~ 1.
VECR" p>0 diam(FNT)<1/p equivalent FNT,=10

For F' = ker I, stronger: (%) |['z| ~ constant for z € T},

When p increases, T,, become richer and the condition eventually fails.
Complicated formula for critical p, right measure of complexity of T is

0(T) = E?gr) | Zgiti\ for T'C R"; g;’s are i.i.d. N(0,1).
i=1

MPT: for subgaussian measurements. Prime examples: coordinates of X;
are Gaussian or Bernoulli (or any bounded) i.i.d. random variables
all examples of 1" studied earlier follow from our formula
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Exact reconstruction

Problem from signal processing: reconstruct exactly sparse vector
z € R™ by performing k£ < n random linear measurements
Sparse: supported on at most r coordinates

We want k& small, but how large does it have to be?

Surprise: possible with & > C'rlog(n/r)
For Gaussian results: Candes/Tao and M. Rudelson/R. Vershynin.

MPT: results for subgaussian measurements
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Geometry of random polytopes

A polytope is called m-neighborly if any set of less than m of its vertices
is the vertex set of a face.

Random {—1,1} polytopes: K, := conv {v1,...,v,} C R*¥ (n > k)
where v; € R* has coordinates i.i.d. Bernoulli random variables.

Surprise: with probability close to 1, a random {—1,1}-polytope K,, in R*
is m-neighborly for a relatively large m,

< ck
~ log(Cn/k)
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Metric entropy

K, B subsets of a vector space, the covering number of K by B
N(K,B)=min N s.t. 3z1,..., o2y K C J(z; + B)

The packing number M (K, B) = max M s.t.
1, ym €K (i + B)N(y; + B) =0 fori#j.

Closely related, if B is centrally symmetric:
N(K,2B) < M(K,B) < N(K, B).

If B is a ball in a Banach space X and K C X, it reduces to
smallest e-nets or the largest e-separated (or 2e-separated) subsets of K.
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Duality of metric entropy

If u:Y — X bounded linear operator (X,Y Banach spaces)
the sequence of entropy numbers of u is defined by
er(u) = inf{e : N(u(By),eBx) <281} fork > 1 (ex(u)) |

limeg(u) =0 iff u is compact iff u* is compact
the limiting behaviour of {ex(u)} and {ex(u*)} is the same.

Duality conjecture [Pietsch, 1972]:
Is it true that for some absolute constants a,b > 1
a”epr(u) < ex(u*) < aepp(u) ?

For symm. convex bodies K, B C R": do we have
b~ 1log N(B°,aK®) <log N(K,B) < blog N(B°,a 1K),
uniformly in K, B and n? (KY, B are the polar bodies)

KY:={xz:|(z,y)|<1forallyec K}
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Duality of metric entropy, results

S. Artstein/Milman/Szarek [2004]: The duality holds when one of the
spaces X,Y is a Hilbert space; in geometric terms, when either K or B
is an ellipsoid.

Artstein /Milman /Szarek /T. [2004]: More generally, the same is true
if one of the spaces is K-convex.

K -convexity means the absence of large subspaces resembling f.d. ¢;1-spaces
equivalently, nontrivial type p > 1; also, by deep theorem by Pisier,
equiv. boundedness of the Rademacher (or Gaussian) projection on Lo(X).

Examples: all (classical and non-commutative) spaces L, (1 < p < 00),
all uniformly convex/uniformly smooth spaces.

Quantified by the K-convexity constant.
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Convexified packing |

Let K, B C R"™ sym. convex bodies; the convexified packing number

A

M (K, B) is the maximal length M of a sequence x1,...,z in K,
(zj+B) N conv J; ;(xi+B) = 0, forj=2,...., M.
Unlike for usual packing or covering, the order is important here.
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Convexified packing ||
e For this modified notion, the duality holds: M (K, B) < M(B°, K°/2)2.

o If K or Bis K-convex and K C 4B then the packing numbers
M(K,B) and M (K, B) are equivalent.

These ideas were first used in Bourgain/Pajor/Szarek /T. (1987).

The first fact is a direct application of the Hahn-Banach separation theorem.
The second is simple for the Hilbert space case; for uniformly convex/smooth
spaces it follows from an elementary convexity argument.

In the K-convex case it is not elementary and follows from so-called
Maurey’'s Lemma

e For a given B, if the duality conjecture holds for all K C R" s.t. K C 4B,
then it holds for all K C R™.

This was proved by Artstein/Milman /Szarek.
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