# High dimensional convex bodies: phenomena, intuitions and results 

Nicole Tomczak-Jaegermann

Fall 2006

- CRM-Fields-PIMS Prize, Fall 2006


## Plan of the talk

- further introductory remarks and notation (for non-specialists)
- linear-metric structure and diversity of fin.-dim. normed spaces
- applications:
- approximation problems in compressed sensing
- m-neighborly polytopes
- metric entropy and related duality issues


## Introductory remarks and notation

Typical setting and objective:
unspecified finite but usually high dimension study of quantitative invariants, up to universal constants

$$
c f \leq \text { invariant } \leq C f
$$

where $f$ is an explicit function of the parameters involved (such as the dimension)

Leads to isomorphic rather than isometric properties

## Geometric vs. functional-analytic objects

- normed space $X \leftrightarrow$ its unit ball $B_{X}$
- convex body $K \subset \mathbb{R}^{n}$ with $0 \in \operatorname{Int} K \leftrightarrow$ its gauge $\|\cdot\|_{K}$

$$
\text { i.e., }\|x\|_{K}:=\inf \{t>0: x \in t K\}
$$

In particular, if $K$ is centrally symmetric then

- $K \leftrightarrow$ the normed space $\left(\mathbb{R}^{n},\|\cdot\|_{K}\right)$

Fundamental concept: Banach-Mazur distance

$$
d(K, B):=\inf \{\lambda>0: \exists u \in G L(n) \quad K \subset u(B) \subset \lambda K\}
$$

or, in terms of normed spaces,

$$
d(X, Y):=\inf \left\{\|u\| \cdot\left\|u^{-1}\right\|: u \in L(X, Y), \text { isomorphism }\right\}
$$

## Linear-metric structure: Subspaces/Quotients

Study: family of subspaces (dually, of quotients) of a given Banach space.
The aim may be two folded:

- to detect some possible regularities in subspaces which might have not existed in the whole space, or oppositely,
- to identify some "irremovable" structures present in every subspace (or quotient) of sufficiently large dimension

Dvoretzky's Th. 1961 (strengthened by V. Milman, 1970):
Every normed space $X$ of (large) dimension $n$ has an "almost" Euclidean subspace of dimension $k \geq c \log n(c>0$ depends on the degree of appr.)

Based on concentration of measure on sphere phenomenon.
$k$ optimal, in general: If $E \subset X=\ell_{\infty}^{n}, d\left(E, \ell_{2}^{k}\right) \leq 2$ then $k \leq C \log n$. For large class of spaces, $k$ can be proportional to $n$, case of e.g. $X=\ell_{1}^{n}$.

## Large Subspaces of Quotients

Milman (1983): For any $\theta \in(0,1)$, every $n$-dim. normed space $X$ admits a subspace of a quotient $E$, "nearly" Euclidean and of dimension $k \geq \theta n$.
$\exists X \rightarrow X_{0}$ quotient $\exists E \subset X_{0}$ subspace s.t. $k \geq \theta n$ and $d\left(E, \ell_{2}^{k}\right) \leq f(\theta)$.

A byproduct: every $n$-dimensional normed space admits a "proportional dimensional" quotient of well-bounded volume ratio.
A considerable regularity in a global invariant achieved by passing to a quotient of prop. dim.

Milman [ICM 1986]: Does every $n$-dimensional normed space admit a quotient of dimension $\geq n / 2$ whose cotype 2 constant is bounded by a universal numerical constant?

## Cotype 2 and Cotype 2 constants

Cotype 2 constant of a space $X$ is the smallest $C$ (if it exists) such that, for every finite sequence $\left(x_{j}\right)$ in $X$ one has

$$
\mathrm{Ave}_{ \pm}\left\|\sum_{j} \pm x_{j}\right\|^{2} \geq C^{-2} \sum_{j}\left\|x_{j}\right\|^{2}
$$

(relaxed parallelogram inequality). If such a constant exists, the space is said to have cotype 2.

Examples: classical and non-commutative $L_{p}$-spaces, Schatten classes $S_{p}$, for $p \in[1,2]$.

## Saturating spaces I

$X, \operatorname{dim} X=n ; \quad V, \operatorname{dim} V=k ; \quad k \ll n$
$X$ is saturated with $V$, or $V$ saturates $X$,
if every subspace (resp. quotient) $\tilde{X}$ of $X$ of sufficiently large dimension (depend. on $k$ ) has a subspace (resp. quotient) well-isomorph. to $V$

By Dvoretzky's theorem, every normed space $X$ is saturated with the Euclidean space, i.e., we can take $V=\ell_{2}^{k}$. and "large" means $m \geq e^{C k}$.

Are there any other spaces $V$ that can saturate some normed spaces?

## Saturating spaces II

S. Szarek/T. [2004]: Any space $V$ can saturate. Sample result: Let $n$ and $m_{0}$ with $\sqrt{n} \log n \leq m_{0} \leq n$. Then, for every $V$ satisfying

$$
k:=\operatorname{dim} V \leq c m_{0} / \sqrt{n}
$$

there exists an $n$-dimensional normed space $X$ such that every quotient $\tilde{X}$ of $X$ with $\operatorname{dim} \tilde{X} \geq m_{0}$ contains a 1-complemented subspace isometric to $V$. (Here $c>0$ is a universal constant.)

Particular case: Given $V$, if $k \leq c \sqrt{n}$ then there is $X$ such that every $n / 2$-dim. quotient of $X$ contains a 1-complemented isometric copy of $V$.

Here $m_{0} \sim n / 2$ and $k \sim \sqrt{n}$ is allowed.
We may decrease $m_{0}$ a little, paying the price of smaller $k$ allowed.

## Relation to Milman's problem

Mysterious "threshold" $\sqrt{n}$ :
upper bound for $k$ and if $m_{0} \sim n / 2$ then $k \sim \sqrt{n}$ is allowed.
lower bound for $m_{0}(\geq \sqrt{n} \log n)$
Setting $V=\ell_{\infty}^{k}$ implies that every quotient $\tilde{X}$ of $X$ with $\operatorname{dim} \tilde{X} \geq n / 2$ contains $\ell_{\infty}^{k}(k \sim \sqrt{n})$ and so its cotype 2 constant is $\sqrt{k} \sim n^{1 / 4}$

Complementability of copies of $V$ imply that "every quotient $\tilde{X}$ of $X$ " can be replaced by "every subspace $\tilde{X}$ of $X$," thus implying the "subspace" variant of the Theorem.

Thus, in general, passing to large subspaces or large quotients can not erase $k$-dimensional features of a space if $k$ is below certain threshold value.

## Reconstruction from random linear measurements

Problem: given $T \subset \mathbb{R}^{n}$, approximate any $v \in T$ using $k \ll n$ random linear measurements.

Given $X_{1}, \ldots, X_{k} \in \mathbb{R}^{n}$ i.i.d. random vectors, $\left(\left\langle X_{j}, v\right\rangle\right)_{j=1}^{k}$ and $T$, find $t \in T$, such that $\left\langle X_{j}, v\right\rangle=\left\langle X_{j}, t\right\rangle$
and $|t-v| \leq \varepsilon(k)$ for $\varepsilon(k)$ as small as possible.
$\Gamma$ has $X_{1}, \ldots, X_{k}$ as rows
S. Mendelson/A. Pajor/T. $(2005,06)$

Our initial motivation: results by E. Candes and T. Tao ('05) they considered $T=$ the unit ball in $\ell_{1}^{n}$ or weak- $\ell_{p}^{n}(0<p<1)$ uniform proof in terms of spectral properties of $\Gamma$.
$\Gamma$ determined by the Gaussian or Bernoulli or Fourier ensemble.

## Linear approximate reconstruction

Given $X_{1}, \ldots, X_{k} \in \mathbb{R}^{n}$ i.i.d. random vectors, and $\left(\left\langle X_{j}, v\right\rangle\right)_{j=1}^{k}$,
find $t \in T$, such that $\left\langle X_{j}, v\right\rangle=\left\langle X_{j}, t\right\rangle$
and $|t-v| \leq \varepsilon(k)$ for $\varepsilon(k)$ as small as possible.
$\Gamma$ has $X_{1}, \ldots, X_{k}$ as rows, then $t-v \in \operatorname{ker} \Gamma \cap a T$ if $T$ quasi-convex; thus $\varepsilon(k)=\operatorname{diam}(\operatorname{ker} \Gamma \cap a T)$ works.

Question: Describe $r(T)$, depending on $T$, such that

$$
\operatorname{diam}(\operatorname{ker} \Gamma \cap T)<r(T)
$$

with probability close to 1 .
For $\Gamma$ Gaussian: techniques developed in AGA in mid-80's, using concentration (Milman, Pajor/T., Milman/Pisier, . . . . . .)

## Back to concentration phenomenona

$T \subset \mathbb{R}^{n}$ sym. (quasi-)convex; for $\rho>0$, let $T_{\rho}=\rho T \cap S^{n-1}$.
$\forall F \subset \mathbb{R}^{n}, \rho>0 \quad \operatorname{diam}(F \cap T)<1 / \rho$ equivalent $F \cap T_{\rho}=\emptyset$
For $F=\operatorname{ker} \Gamma$, stronger: ( $*)|\Gamma x| \sim$ constant for $x \in T_{\rho}$
When $\rho$ increases, $T_{\rho}$ become richer and the condition eventually fails. Complicated formula for critical $\rho$, right measure of complexity of $T$ is

$$
\ell_{*}(T):=\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} g_{i} t_{i}\right| \quad \text { for } T \subset \mathbb{R}^{n} ; \quad g_{i} \text { 's are i.i.d. } N(0,1) .
$$

MPT: for subgaussian measurements. Prime examples: coordinates of $X_{i}$ are Gaussian or Bernoulli (or any bounded) i.i.d. random variables all examples of $T$ studied earlier follow from our formula

## Exact reconstruction

Problem from signal processing: reconstruct exactly sparse vector $z \in \mathbb{R}^{n}$ by performing $k \ll n$ random linear measurements
Sparse: supported on at most $r$ coordinates
We want $k$ small, but how large does it have to be?
Surprise: possible with $k \geq C r \log (n / r)$
For Gaussian results: Candes/Tao and M. Rudelson/R. Vershynin.
MPT: results for subgaussian measurements

## Geometry of random polytopes

A polytope is called $m$-neighborly if any set of less than $m$ of its vertices is the vertex set of a face.

Random $\{-1,1\}$ polytopes: $K_{n}:=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{k}(n>k)$ where $v_{i} \in \mathbb{R}^{k}$ has coordinates i.i.d. Bernoulli random variables.

Surprise: with probability close to 1 , a random $\{-1,1\}$-polytope $K_{n}$ in $\mathbb{R}^{k}$ is $m$-neighborly for a relatively large $m$,

$$
m \leq \frac{c k}{\log (C n / k)}
$$

## Metric entropy

$K, B$ subsets of a vector space, the covering number of $K$ by $B$

$$
N(K, B)=\min N \text { s.t. } \exists x_{1}, \ldots, x_{N} \quad K \subset \bigcup\left(x_{i}+B\right)
$$

The packing number $M(K, B)=\max M$ s.t.

$$
\exists y_{1}, \ldots, y_{M} \in K \quad\left(y_{i}+B\right) \cap\left(y_{j}+B\right)=\emptyset \quad \text { for } i \neq j .
$$

Closely related, if $B$ is centrally symmetric:

$$
N(K, 2 B) \leq M(K, B) \leq N(K, B)
$$

If $B$ is a ball in a Banach space $X$ and $K \subset X$, it reduces to smallest $\varepsilon$-nets or the largest $\varepsilon$-separated (or $2 \varepsilon$-separated) subsets of $K$.

## Duality of metric entropy

If $u: Y \rightarrow X$ bounded linear operator ( $X, Y$ Banach spaces) the sequence of entropy numbers of $u$ is defined by

$$
e_{k}(u)=\inf \left\{\varepsilon: N\left(u\left(B_{Y}\right), \varepsilon B_{X}\right) \leq 2^{k-1}\right\} \quad \text { for } k \geq 1 \quad\left(e_{k}(u)\right) \downarrow
$$

$\lim e_{k}(u)=0$ iff $u$ is compact iff $u^{*}$ is compact the limiting behaviour of $\left\{e_{k}(u)\right\}$ and $\left\{e_{k}\left(u^{*}\right)\right\}$ is the same.

Duality conjecture [Pietsch, 1972]:
Is it true that for some absolute constants $a, b \geq 1$

$$
a^{-1} e_{b k}(u) \leq e_{k}\left(u^{*}\right) \leq a e_{k / b}(u) ?
$$

For symm. convex bodies $K, B \subset \mathbb{R}^{n}$ : do we have $b^{-1} \log N\left(B^{0}, a K^{0}\right) \leq \log N(K, B) \leq b \log N\left(B^{0}, a^{-1} K^{0}\right)$, uniformly in $K, B$ and $n ? \quad\left(K^{0}, B^{0}\right.$ are the polar bodies)
$K^{0}:=\{x:|\langle x, y\rangle| \leq 1$ for all $y \in K\}$

## Duality of metric entropy, results

S. Artstein/Milman/Szarek [2004]: The duality holds when one of the spaces $X, Y$ is a Hilbert space; in geometric terms, when either $K$ or $B$ is an ellipsoid.

Artstein/Milman/Szarek/T. [2004]: More generally, the same is true if one of the spaces is $K$-convex.
$K$-convexity means the absence of large subspaces resembling f.d. $\ell_{1}$-spaces equivalently, nontrivial type $p>1$; also, by deep theorem by Pisier, equiv. boundedness of the Rademacher (or Gaussian) projection on $L_{2}(X)$.

Examples: all (classical and non-commutative) spaces $L_{p}(1<p<\infty)$, all uniformly convex/uniformly smooth spaces.

Quantified by the $K$-convexity constant.

## Convexified packing I

Let $K, B \subset \mathbb{R}^{n}$ sym. convex bodies; the convexified packing number $\hat{M}(K, B)$ is the maximal length $M$ of a sequence $x_{1}, \ldots, x_{M}$ in $K$, $\left(x_{j}+B\right) \cap \operatorname{conv} \bigcup_{i<j}\left(x_{i}+B\right)=\emptyset$, for $j=2, \ldots, M$.
Unlike for usual packing or covering, the order is important here.

## Convexified packing II

- For this modified notion, the duality holds: $\hat{M}(K, B) \leq \hat{M}\left(B^{0}, K^{0} / 2\right)^{2}$.
- If $K$ or $B$ is $K$-convex and $K \subset 4 B$ then the packing numbers $M(K, B)$ and $\hat{M}(K, B)$ are equivalent.

These ideas were first used in Bourgain/Pajor/Szarek/T. (1987).
The first fact is a direct application of the Hahn-Banach separation theorem.
The second is simple for the Hilbert space case; for uniformly convex/smooth spaces it follows from an elementary convexity argument.
In the $K$-convex case it is not elementary and follows from so-called Maurey's Lemma

- For a given $B$, if the duality conjecture holds for all $K \subset \mathbb{R}^{n}$ s.t. $K \subset 4 B$, then it holds for all $K \subset \mathbb{R}^{n}$.

This was proved by Artstein/Milman/Szarek.

