High dimensional convex bodies: phenomena, intuitions and results

Nicole Tomczak-Jaegermann

Fall 2006

Plan of the talk

- further introductory remarks and notation (for non-specialists)
- linear-metric structure and diversity of fin.-dim. normed spaces
- applications:
 - approximation problems in compressed sensing
 - *m*-neighborly polytopes
- metric entropy and related duality issues

Introductory remarks and notation

Typical setting and objective: unspecified finite but usually high dimension study of quantitative invariants, up to universal constants

$$cf \leq \text{invariant} \leq Cf$$

where f is an explicit function of the parameters involved (such as the dimension)

Leads to isomorphic rather than isometric properties

Geometric vs. functional-analytic objects

- ullet normed space $X \leftrightarrow$ its unit ball B_X
- ullet convex body $K\subset\mathbb{R}^n$ with $0\in IntK\leftrightarrow$ its gauge $\|\cdot\|_K$

i.e.,
$$||x||_K := \inf\{t > 0 : x \in tK\}$$

In particular, if K is centrally symmetric then

• $K \leftrightarrow \text{the normed space } (\mathbb{R}^n, \|\cdot\|_K)$

Fundamental concept: Banach-Mazur distance

$$d(K,B) := \inf\{\lambda > 0 : \exists u \in GL(n) \ K \subset u(B) \subset \lambda K\}$$

or, in terms of normed spaces,

$$d(X,Y) := \inf\{\|u\| \cdot \|u^{-1}\| : u \in L(X,Y), \text{ isomorphism}\}$$

Linear-metric structure: Subspaces/Quotients

Study: family of subspaces (dually, of quotients) of a given Banach space.

The aim may be two folded:

- to detect some possible regularities in subspaces which might have not existed in the whole space, or oppositely,
- ullet to identify some "irremovable" structures present in every subspace (or quotient) of sufficiently large dimension

Dvoretzky's Th. 1961 (strengthened by V. Milman, 1970):

Every normed space X of (large) dimension n has an "almost" Euclidean subspace of dimension $k \ge c \log n$ (c > 0 depends on the degree of appr.)

Based on concentration of measure on sphere phenomenon.

k optimal, in general: If $E \subset X = \ell_{\infty}^n$, $d(E, \ell_2^k) \leq 2$ then $k \leq C \log n$. For large class of spaces, k can be proportional to n, case of e.g. $X = \ell_1^n$.

Large Subspaces of Quotients

Milman (1983): For any $\theta \in (0,1)$, every n-dim. normed space X admits $a \ subspace \ of \ a \ quotient \ E$, "nearly" Euclidean and of dimension $k \geq \theta n$.

 $\exists X \to X_0$ quotient $\exists E \subset X_0$ subspace s.t. $k \ge \theta n$ and $d(E, \ell_2^k) \le f(\theta)$.

A byproduct: every n-dimensional normed space admits a "proportional dimensional" quotient of well-bounded $volume\ ratio$.

A considerable regularity in a global invariant achieved by passing to a quotient of prop. dim.

Milman [ICM 1986]: Does every n-dimensional normed space admit a quotient of dimension $\geq n/2$ whose cotype 2 constant is bounded by a universal numerical constant?

Cotype 2 and Cotype 2 constants

Cotype 2 constant of a space X is the smallest C (if it exists) such that, for every finite sequence (x_i) in X one has

Ave_±
$$\|\sum_{j} \pm x_{j}\|^{2} \ge C^{-2} \sum_{j} \|x_{j}\|^{2}$$

(relaxed parallelogram inequality). If such a constant exists, the space is said to have cotype 2.

Examples: classical and non-commutative L_p -spaces, Schatten classes S_p , for $p \in [1,2]$.

Saturating spaces I

X, dim X=n; V, dim V=k; $k \ll n$ X is saturated with V, or V saturates X,

if every subspace (resp. quotient) \tilde{X} of X of sufficiently large dimension (depend. on k) has a subspace (resp. quotient) well-isomorph. to V

By Dvoretzky's theorem, every normed space X is saturated with the Euclidean space, i.e., we can take $V=\ell_2^k$. and "large" means $m\geq e^{Ck}$.

Are there any other spaces V that can saturate some normed spaces?

Saturating spaces II

S. Szarek/T. [2004]: Any space V can saturate. Sample result: Let n and m_0 with $\sqrt{n} \log n \le m_0 \le n$. Then, for every V satisfying

$$k := \dim V \le c \ m_0 / \sqrt{n}$$

there exists an n-dimensional normed space X such that every quotient \tilde{X} of X with $\dim \tilde{X} \geq m_0$ contains a 1-complemented subspace isometric to V. (Here c>0 is a universal constant.)

Particular case: Given V, if $k \leq c\sqrt{n}$ then there is X such that every n/2-dim. quotient of X contains a 1-complemented isometric copy of V.

Here $m_0 \sim n/2$ and $k \sim \sqrt{n}$ is allowed.

We may decrease m_0 a little, paying the price of smaller k allowed.

Relation to Milman's problem

Mysterious "threshold" \sqrt{n} : upper bound for k and if $m_0 \sim n/2$ then $k \sim \sqrt{n}$ is allowed. lower bound for m_0 ($\geq \sqrt{n} \log n$)

Setting $V=\ell_\infty^k$ implies that every quotient \tilde{X} of X with $\dim \tilde{X} \geq n/2$ contains ℓ_∞^k $(k \sim \sqrt{n})$ and so its cotype 2 constant is $\sqrt{k} \sim n^{1/4}$

Complementability of copies of V imply that "every quotient \tilde{X} of X" can be replaced by "every subspace \tilde{X} of X," thus implying the "subspace" variant of the Theorem.

Thus, in general, passing to large subspaces or large quotients can not erase k-dimensional features of a space if k is below certain threshold value.

Reconstruction from random linear measurements

Problem: given $T \subset \mathbb{R}^n$, approximate any $v \in T$ using $k \ll n$ random linear measurements.

Given $X_1,...,X_k \in \mathbb{R}^n$ i.i.d. random vectors, $(\langle X_j,v\rangle)_{j=1}^k$ and T, find $t \in T$, such that $\langle X_j,v\rangle = \langle X_j,t\rangle$ and $|t-v| \leq \varepsilon(k)$ for $\varepsilon(k)$ as small as possible.

 Γ has $X_1,...,X_k$ as rows

S. Mendelson/A. Pajor/T. (2005, 06)

Our initial motivation: results by E. Candes and T. Tao ('05) they considered T= the unit ball in ℓ_1^n or weak- ℓ_p^n ($0) uniform proof in terms of spectral properties of <math>\Gamma$. Γ determined by the Gaussian or Bernoulli or Fourier ensemble.

Linear approximate reconstruction

Given $X_1, ..., X_k \in \mathbb{R}^n$ i.i.d. random vectors, and $(\langle X_j, v \rangle)_{j=1}^k$, find $t \in T$, such that $\langle X_j, v \rangle = \langle X_j, t \rangle$ and $|t - v| \leq \varepsilon(k)$ for $\varepsilon(k)$ as small as possible.

 Γ has $X_1,...,X_k$ as rows, then $t-v\in\ker\Gamma\cap aT$ if T quasi-convex; thus $\varepsilon(k)=\operatorname{diam}(\ker\Gamma\cap aT)$ works.

Question: Describe r(T), depending on T, such that

$$\operatorname{diam}(\ker \Gamma \cap T) < r(T)$$

with probability close to 1.

For Γ Gaussian: techniques developed in AGA in mid-80's, using concentration (Milman, Pajor/T., Milman/Pisier,)

Back to concentration phenomenona

 $T \subset \mathbb{R}^n$ sym. (quasi-)convex; for $\rho > 0$, let $T_\rho = \rho T \cap S^{n-1}$.

$$\forall F \subset \mathbb{R}^n, \rho > 0$$
 $\operatorname{diam}(F \cap T) < 1/\rho$ equivalent $F \cap T_\rho = \emptyset$

For $F = \ker \Gamma$, stronger: (*) $|\Gamma x| \sim \text{constant for } x \in T_{\rho}$

When ρ increases, T_{ρ} become richer and the condition eventually fails. Complicated formula for critical ρ , right measure of complexity of T is

$$\ell_*(T) := \mathbb{E} \sup_{t \in T} |\sum_{i=1}^n g_i t_i|$$
 for $T \subset \mathbb{R}^n$; g_i 's are i.i.d. $N(0,1)$.

MPT: for subgaussian measurements. Prime examples: coordinates of X_i are Gaussian or Bernoulli (or any bounded) i.i.d. random variables all examples of T studied earlier follow from our formula

Exact reconstruction

Problem from signal processing: reconstruct exactly sparse vector $z \in \mathbb{R}^n$ by performing $k \ll n$ random linear measurements Sparse: supported on at most r coordinates We want k small, but how large does it have to be?

Surprise: possible with $k \ge Cr \log(n/r)$

For Gaussian results: Candes/Tao and M. Rudelson/R. Vershynin.

MPT: results for subgaussian measurements

Geometry of random polytopes

A polytope is called m-neighborly if any set of less than m of its vertices is the vertex set of a face.

Random $\{-1,1\}$ polytopes: $K_n := \operatorname{conv} \{v_1,\ldots,v_n\} \subset \mathbb{R}^k \ (n>k)$ where $v_i \in \mathbb{R}^k$ has coordinates i.i.d. Bernoulli random variables.

Surprise: with probability close to 1, a random $\{-1,1\}$ -polytope K_n in \mathbb{R}^k is m-neighborly for a relatively large m,

$$m \le \frac{ck}{\log(C \, n/k)}.$$

Metric entropy

K, B subsets of a vector space, the *covering number* of K by B $N(K, B) = \min N$ s.t. $\exists x_1, \ldots, x_N \quad K \subset \bigcup (x_i + B)$

The packing number
$$M(K,B) = \max M$$
 s.t. $\exists y_1, \dots, y_M \in K \quad (y_i + B) \cap (y_j + B) = \emptyset \text{ for } i \neq j.$

Closely related, if B is centrally symmetric:

$$N(K, 2B) \le M(K, B) \le N(K, B).$$

If B is a ball in a Banach space X and $K \subset X$, it reduces to smallest ε -nets or the largest ε -separated (or 2ε -separated) subsets of K.

Duality of metric entropy

If $u: Y \to X$ bounded linear operator (X, Y Banach spaces) the sequence of *entropy numbers* of u is defined by $e_k(u) = \inf\{\varepsilon: N(u(B_Y), \varepsilon B_X) \le 2^{k-1}\}$ for $k \ge 1$ $(e_k(u)) \downarrow$

 $\lim e_k(u) = 0$ iff u is compact iff u^* is compact the limiting behaviour of $\{e_k(u)\}$ and $\{e_k(u^*)\}$ is the same.

Duality conjecture [Pietsch, 1972]:

Is it true that for some absolute constants $a,b \geq 1$

$$a^{-1}e_{bk}(u) \le e_k(u^*) \le ae_{k/b}(u)$$
?

For symm. convex bodies $K,B\subset\mathbb{R}^n$: do we have $b^{-1}\log N(B^0,aK^0)\leq \log N(K,B)\leq b\log N(B^0,a^{-1}K^0)$, uniformly in K,B and n? $\big(K^0,B^0$ are the polar bodies $\big)$

$$K^0 := \{x : |\langle x, y \rangle| \le 1 \text{ for all } y \in K\}$$

Duality of metric entropy, results

S. Artstein/Milman/Szarek [2004]: The duality holds when one of the spaces X,Y is a Hilbert space; in geometric terms, when either K or B is an ellipsoid.

Artstein/Milman/Szarek/T. [2004]: More generally, the same is true if one of the spaces is K-convex.

K-convexity means the absence of large subspaces resembling f.d. ℓ_1 -spaces equivalently, nontrivial type p>1; also, by deep theorem by Pisier, equiv. boundedness of the Rademacher (or Gaussian) projection on $L_2(X)$.

Examples: all (classical and non-commutative) spaces L_p (1), all uniformly convex/uniformly smooth spaces.

Quantified by the K-convexity constant.

Convexified packing I

Let $K, B \subset \mathbb{R}^n$ sym. convex bodies; the *convexified packing number* $\hat{M}(K,B)$ is the maximal length M of a sequence x_1,\ldots,x_M in K, $(x_j+B) \cap \operatorname{conv} \bigcup_{i< j} (x_i+B) = \emptyset$, for $j=2,\ldots,M$.

Unlike for usual packing or covering, the order is important here.

Convexified packing II

- For this modified notion, the duality holds: $\hat{M}(K,B) \leq \hat{M}(B^0,K^0/2)^2$.
- If K or B is K-convex and $K \subset 4B$ then the packing numbers M(K,B) and $\hat{M}(K,B)$ are equivalent.

These ideas were first used in Bourgain/Pajor/Szarek/T. (1987).

The first fact is a direct application of the Hahn-Banach separation theorem. The second is simple for the Hilbert space case; for uniformly convex/smooth spaces it follows from an elementary convexity argument.

In the K-convex case it is not elementary and follows from so-called Maurey's Lemma

ullet For a given B, if the duality conjecture holds for all $K\subset \mathbb{R}^n$ s.t. $K\subset 4B$, then it holds for all $K\subset \mathbb{R}^n$.

This was proved by Artstein/Milman/Szarek.