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Plan of the talk

• further introductory remarks and notation (for non-specialists)

• linear-metric structure and diversity of fin.-dim. normed spaces

• applications:
• approximation problems in compressed sensing
• m-neighborly polytopes

• metric entropy and related duality issues
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Introductory remarks and notation

Typical setting and objective:
unspecified finite but usually high dimension
study of quantitative invariants, up to universal constants

cf ≤ invariant ≤ Cf

where f is an explicit function of the parameters involved
(such as the dimension)

Leads to isomorphic rather than isometric properties
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Geometric vs. functional-analytic objects

• normed space X ↔ its unit ball BX

• convex body K ⊂ Rn with 0 ∈ IntK ↔ its gauge ‖ · ‖K

i.e., ‖x‖K := inf{t > 0 : x ∈ tK}

In particular, if K is centrally symmetric then
• K ↔ the normed space (Rn, ‖ · ‖K)

Fundamental concept : Banach-Mazur distance

d(K, B) := inf{λ > 0 : ∃u ∈ GL(n) K ⊂ u(B) ⊂ λK}

or, in terms of normed spaces,

d(X, Y ) := inf{‖u‖ · ‖u−1‖ : u ∈ L(X, Y ), isomorphism}
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Linear-metric structure: Subspaces/Quotients

Study: family of subspaces (dually, of quotients) of a given Banach space.

The aim may be two folded:
• to detect some possible regularities in subspaces which might have not

existed in the whole space, or oppositely,
• to identify some “irremovable” structures present in every subspace

(or quotient) of sufficiently large dimension

Dvoretzky’s Th. 1961 (strengthened by V. Milman, 1970):
Every normed space X of (large) dimension n has an “almost” Euclidean
subspace of dimension k ≥ c log n (c > 0 depends on the degree of appr.)

Based on concentration of measure on sphere phenomenon.

k optimal, in general: If E ⊂ X = `n
∞, d(E, `k

2) ≤ 2 then k ≤ C log n.
For large class of spaces, k can be proportional to n, case of e.g. X = `n

1 .
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Large Subspaces of Quotients

Milman (1983): For any θ ∈ (0, 1), every n-dim. normed space X admits
a subspace of a quotient E, “nearly” Euclidean and of dimension k ≥ θn.

∃X → X0 quotient ∃E ⊂ X0 subspace s.t. k ≥ θn and d(E, `k
2) ≤ f(θ).

A byproduct: every n-dimensional normed space admits a “proportional
dimensional” quotient of well-bounded volume ratio.
A considerable regularity in a global invariant achieved by passing to a
quotient of prop. dim.

Milman [ICM 1986]: Does every n-dimensional normed space admit a
quotient of dimension ≥ n/2 whose cotype 2 constant is bounded by a
universal numerical constant?
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Cotype 2 and Cotype 2 constants

Cotype 2 constant of a space X is the smallest C (if it exists) such that,
for every finite sequence (xj) in X one has

Ave±‖
∑

j

±xj‖2 ≥ C−2
∑

j

‖xj‖2

(relaxed parallelogram inequality). If such a constant exists, the space is
said to have cotype 2.

Examples: classical and non-commutative Lp-spaces, Schatten classes Sp,
for p ∈ [1, 2].

– CRM-Fields-PIMS Prize, Fall 2006 6



Nicole Tomczak–Jaegermann

Saturating spaces I

X, dim X = n; V , dim V = k; k � n
X is saturated with V , or V saturates X,

if every subspace (resp. quotient) X̃ of X of sufficiently large dimension
(depend. on k) has a subspace (resp. quotient) well-isomorph. to V

By Dvoretzky’s theorem, every normed space X is saturated with the
Euclidean space, i.e., we can take V = `k

2. and “large” means m ≥ eCk.

Are there any other spaces V that can saturate some normed spaces?
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Saturating spaces II

S. Szarek/T. [2004]: Any space V can saturate. Sample result:
Let n and m0 with

√
n log n ≤ m0 ≤ n. Then, for every V satisfying

k := dim V ≤ c m0/
√

n

there exists an n-dimensional normed space X such that every quotient X̃
of X with dim X̃ ≥ m0 contains a 1-complemented subspace isometric to
V . (Here c > 0 is a universal constant.)

Particular case: Given V , if k ≤ c
√

n then there is X such that every
n/2-dim. quotient of X contains a 1-complemented isometric copy of V .

Here m0 ∼ n/2 and k ∼
√

n is allowed.
We may decrease m0 a little, paying the price of smaller k allowed.
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Relation to Milman’s problem

Mysterious “threshold”
√

n:
upper bound for k and if m0 ∼ n/2 then k ∼

√
n is allowed.

lower bound for m0 ( ≥
√

n log n)

Setting V = `k
∞ implies that every quotient X̃ of X with dim X̃ ≥ n/2

contains `k
∞ (k ∼

√
n) and so its cotype 2 constant is

√
k ∼ n1/4

Complementability of copies of V imply that “every quotient X̃ of X” can
be replaced by “every subspace X̃ of X,” thus implying the “subspace”
variant of the Theorem.

Thus, in general, passing to large subspaces or large quotients can not
erase k-dimensional features of a space if k is below certain threshold value.
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Reconstruction from random linear measurements

Problem: given T ⊂ Rn, approximate any v ∈ T using
k � n random linear measurements.

Given X1, ..., Xk ∈ Rn i.i.d. random vectors, (〈Xj, v〉)k
j=1 and T ,

find t ∈ T , such that 〈Xj, v〉 = 〈Xj, t〉
and |t− v| ≤ ε(k) for ε(k) as small as possible.

Γ has X1, ..., Xk as rows

S. Mendelson/A. Pajor/T. (2005, 06)

Our initial motivation: results by E. Candes and T. Tao (’05)
they considered T = the unit ball in `n

1 or weak-`n
p (0 < p < 1)

uniform proof in terms of spectral properties of Γ.
Γ determined by the Gaussian or Bernoulli or Fourier ensemble.
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Linear approximate reconstruction

Given X1, ..., Xk ∈ Rn i.i.d. random vectors, and (〈Xj, v〉)k
j=1,

find t ∈ T , such that 〈Xj, v〉 = 〈Xj, t〉
and |t− v| ≤ ε(k) for ε(k) as small as possible.

Γ has X1, ..., Xk as rows, then t− v ∈ ker Γ ∩ aT if T quasi-convex;
thus ε(k) = diam(ker Γ ∩ aT ) works.

Question: Describe r(T ), depending on T , such that

diam(ker Γ ∩ T ) < r(T )

with probability close to 1.

For Γ Gaussian: techniques developed in AGA in mid-80’s,
using concentration (Milman, Pajor/T., Milman/Pisier, . . . . . . )
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Back to concentration phenomenona

T ⊂ Rn sym. (quasi-)convex; for ρ > 0, let Tρ = ρT ∩ Sn−1.

∀F ⊂ Rn, ρ > 0 diam(F ∩ T ) < 1/ρ equivalent F ∩ Tρ = ∅

For F = ker Γ, stronger: (∗) |Γx| ∼ constant for x ∈ Tρ

When ρ increases, Tρ become richer and the condition eventually fails.
Complicated formula for critical ρ, right measure of complexity of T is

`∗(T ) := E sup
t∈T

|
n∑

i=1

giti| for T ⊂ Rn; gi’s are i.i.d. N(0, 1).

MPT: for subgaussian measurements. Prime examples: coordinates of Xi

are Gaussian or Bernoulli (or any bounded) i.i.d. random variables
all examples of T studied earlier follow from our formula
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Exact reconstruction

Problem from signal processing: reconstruct exactly sparse vector
z ∈ Rn by performing k � n random linear measurements
Sparse: supported on at most r coordinates
We want k small, but how large does it have to be?

Surprise: possible with k ≥ Cr log(n/r)

For Gaussian results: Candes/Tao and M. Rudelson/R. Vershynin.

MPT: results for subgaussian measurements
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Geometry of random polytopes

A polytope is called m-neighborly if any set of less than m of its vertices
is the vertex set of a face.

Random {−1, 1} polytopes: Kn := conv {v1, . . . , vn} ⊂ Rk (n > k)
where vi ∈ Rk has coordinates i.i.d. Bernoulli random variables.

Surprise: with probability close to 1, a random {−1, 1}-polytope Kn in Rk

is m-neighborly for a relatively large m,

m ≤ ck

log(C n/k)
.
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Metric entropy

K, B subsets of a vector space, the covering number of K by B
N(K, B) = min N s.t. ∃x1, . . . , xN K ⊂

⋃
(xi + B)

The packing number M(K, B) = maxM s.t.
∃y1, . . . , yM ∈ K (yi + B) ∩ (yj + B) = ∅ for i 6= j.

Closely related, if B is centrally symmetric:
N(K, 2B) ≤ M(K, B) ≤ N(K, B).

If B is a ball in a Banach space X and K ⊂ X, it reduces to
smallest ε-nets or the largest ε-separated (or 2ε-separated) subsets of K.
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Duality of metric entropy

If u : Y → X bounded linear operator (X, Y Banach spaces)
the sequence of entropy numbers of u is defined by

ek(u) = inf{ε : N(u(BY ), εBX) ≤ 2k−1} for k ≥ 1 (ek(u)) ↓

lim ek(u) = 0 iff u is compact iff u∗ is compact
the limiting behaviour of {ek(u)} and {ek(u∗)} is the same.

Duality conjecture [Pietsch, 1972]:
Is it true that for some absolute constants a, b ≥ 1

a−1ebk(u) ≤ ek(u∗) ≤ aek/b(u) ?

For symm. convex bodies K, B ⊂ Rn: do we have
b−1 log N(B0, aK0) ≤ log N(K, B) ≤ b log N(B0, a−1K0),

uniformly in K, B and n? (K0, B0 are the polar bodies)

K0 := {x : | 〈x, y〉 | ≤ 1 for all y ∈ K}
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Duality of metric entropy, results

S. Artstein/Milman/Szarek [2004]: The duality holds when one of the
spaces X, Y is a Hilbert space; in geometric terms, when either K or B
is an ellipsoid.

Artstein/Milman/Szarek/T. [2004]: More generally, the same is true
if one of the spaces is K-convex.

K-convexity means the absence of large subspaces resembling f.d. `1-spaces
equivalently, nontrivial type p > 1; also, by deep theorem by Pisier,
equiv. boundedness of the Rademacher (or Gaussian) projection on L2(X).

Examples: all (classical and non-commutative) spaces Lp (1 < p < ∞),
all uniformly convex/uniformly smooth spaces.

Quantified by the K-convexity constant.
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Convexified packing I

Let K, B ⊂ Rn sym. convex bodies; the convexified packing number
M̂(K, B) is the maximal length M of a sequence x1, . . . , xM in K,

(xj + B) ∩ conv
⋃

i<j(xi + B) = ∅, for j = 2, . . . ,M .

Unlike for usual packing or covering, the order is important here.
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Convexified packing II

• For this modified notion, the duality holds: M̂(K, B) ≤ M̂(B0,K0/2)2.

• If K or B is K-convex and K ⊂ 4B then the packing numbers
M(K, B) and M̂(K, B) are equivalent.

These ideas were first used in Bourgain/Pajor/Szarek/T. (1987).
The first fact is a direct application of the Hahn-Banach separation theorem.
The second is simple for the Hilbert space case; for uniformly convex/smooth
spaces it follows from an elementary convexity argument.
In the K-convex case it is not elementary and follows from so-called
Maurey’s Lemma

• For a given B, if the duality conjecture holds for all K ⊂ Rn s.t. K ⊂ 4B,
then it holds for all K ⊂ Rn.

This was proved by Artstein/Milman/Szarek.
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