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Abstract

Functional integrals have long been used, formally, to

provide intuition about the behaviour of quantum field

theories. For the past several decades, they have also

been used, rigorously, in the construction and analysis of

those theories. I will talk about the rigorous derivation

of some functional integral representations for the parti-

tion function and correlation functions of (cutoff) many

Boson systems that provide a suitable starting point for

their construction.

Outline
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• One Result
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The Physical Setting

Consider a gas of small (i.e. quantum mechanical effects

are important) particles that are bosons (i.e. integer spin;

e.g. photons, Helium-4 atoms).

• Each particle has a kinetic energy. The corresponding

quantum mechanical observable is an operator h. For

example, if the energy is p
2

2m , then h = − 1
2m∆.

• The particles interact with each other through a repul-

sive two-body potential, v(x,y).

• The system is in thermodynamic equilibrium through

contact with a heat bath. The gas and the heat bath

can exchange both energy and particles. The probabil-

ity distributions for the energy and for the number of

particles in the gas are controlled by the temperature

T = 1
kβ and chemical potential µ respectively.

• The space of all states of this system is

F =
∞⊕

n=0
Fn with Fn = L2

s(IR
3n)

• Two interesting observables (=self–adjoint operators)

for this system are the HamiltonianH (built from h and

v) and the number operator N (defined by N ↾ Fn =

n1l).
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• I will concentrate on one quantity of interest, the par-

tition function

Z = Tr e−β(H−µN)
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The Goal

Formally,

Tr e−β(H−µN) =

∫

φβ=φ0

D(φ∗, φ) eA(φ∗,φ) (1)

where

D(φ∗, φ) =
∏

x∈IR3

0≤τ≤β

dφ∗
τ (x) dφτ (x)

2πi

and

A(φ∗, φ) =

∫ β

0

dτ

∫

IR3

d3
x φ∗τ (x)∂

∂τ φτ (x)

−
∫ β

0

dτ K
(
φτ

)

and

K(φ) =

∫∫
dxdy φ(x)∗h(x,y)φ(y)

− µ

∫
dx φ(x)∗φ(x)

+

∫∫
dxdy φ(x)∗φ(y)∗v(x,y)φ(x)φ(y)

Both sides of (1) require careful definition.
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The definition of the left hand side is similar in spirit to

the definition of the Riemann integral. You take a limit

of obviously well–defined approximations. One way to

get (pretty) obviously well–defined approximation is to

replace space IR3 by a finite number of points X. Then

• The space of all states of this system is

F =
∞⊕

n=0
Fn with Fn = L2

s(X
n) = C|X|n/Sn

• Tr e−β(H−µN) is well–defined because

H,N : Fn→Fn

N ↾Fn = n1l

H ↾Fn ≥ (Cn−D)n1l

dimFn ≤ |X|n

=⇒ TrFn
e−β(H−µN) ≤ e−β(Cn2−Dn−µn)|X|n

• The analog of (1) is again

Tr e−β(H−µN) =

∫

φβ=φ0

D(φ∗, φ) eA(φ∗,φ) (2)

but with

D(φ∗, φ) =
∏

x∈X

0≤τ≤β

dφ∗
τ (x) dφτ (x)

2πi
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and
∫
IR3 d3

x replaced by
∫
dx = (cell volume)

∑

x∈X

The goal is to get a rigorous version of (2) which can

provide a useful starting point for a study of the limit

X → IR3.

WARNING

The exponent A(φ∗, φ) is complex.

=⇒ eA(φ∗,φ) oscillates wildly

=⇒ 1
const D(φ∗, φ)epart ofA(φ∗,φ) cannot be turned into

an ordinary well–defined complex measure on some space

of paths, in contrast to Wiener measure.

For example, if

dµ(~φ) =
e−

1

2
σ~φ·C~φ dn~φ

∫
IRn e−

1

2
σ~φ·C~φ dn~φ

with C > 0, Reσ > 0 and Imσ 6= 0, then
∫

IRn

∣∣dµ(~φ)
∣∣ =

{
Re σ
|σ|

}−n/2 n→∞−→ ∞

=⇒ The rigorous version is not going to be very aes-

thetically satisfying.
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One Result

Notation:

Tp =
{
τ = q β

p

∣∣ q = 1 , · · · , p
}

εp = β
p

dµp,r(φ
∗, φ) =

∏

τ∈Tp

∏

x∈X

[
dφ∗

τ (x) dφτ (x)
2πı χ(|φτ (x)| < r)

]

Theorem. Suppose that the sequence R(p) → ∞ as

p→ ∞ at a suitable rate. Then

Tr e−β (H−µN)

= lim
p→∞

∫
dµp,R(p)(φ

∗, φ)

∏
τ∈Tp

e
−
∫

dy [φ∗
τ (y)−φ∗

τ−εp
(y)]φτ (y)

e
−εpK(φ∗

τ−εp
,φτ )

with the convention that φ0 = φβ .
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The Main Ingredients – Coherent States

If |X| = 1, then

F =
∞⊕

n=0
Fn with Fn = C

Let en = 1 ∈ C = Fn. For each φ ∈ C the coherent

state

|φ 〉 =
∞∑

n=0

1√
n!
φnen ∈ F

is an eigenvector for the field (or annihilation) operator.

ψen =
√
n en−1

The inner product between two coherent states is

〈
α

∣∣ γ
〉

= eα γ

For general X, there is a similar coherent state |φ 〉 for

each φ ∈ C|X|. The inner product between two coherent

states is 〈
α

∣∣ γ
〉

= e
∫

dy α(y) γ(y)
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The Main Ingredients – Resolution of the identity

Formally

1l =

∫ ∏

x∈X

[
dφ∗(x) dφ(x)

2πı

]
e−

∫
dy |φ(y)|2 |φ 〉 〈φ |

Here

|φ 〉 〈φ | : v ∈ F 7→
{
inner product of v and |φ 〉

}
|φ 〉

Theorem. For each r > 0, let

Ir =
∏

x∈X

[ ∫

|φ(x)|<r

dφ∗(x) dφ(x)
2πı

]
e−

∫
dy |φ(y)|2 |φ 〉 〈φ |

(a) 0 < Ir < 1l.

(b) Ir commutes with N .

(c) Ir converges strongly to the identity operator as

r → ∞.

(d) For all n and r, the operator norm

∥∥(1l − Ir) ↾ Fn

∥∥ ≤ |X| 2n+1 e−r2/2
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Proof: It is easy to guess an orthonormal basis of eigen-

vectors for Ir and to find all of the eigenvalues:

If |X| = 1, then

F =
∞⊕

n=0
Fn with Fn = C

and
{
em = 1 ∈ C = Fm

∣∣ m = 0, 1, 2, 3, · · ·
}

is an

orthonormal basis for F . Recall that

|φ 〉 =

∞∑

n=0

1√
n!
φnen

So

Irem =

∫

|φ|<r

dφ̄ dφ
2πı e−|φ|2 |φ 〉

〈
φ

∣∣ em

〉

=

∫

|φ|<r

dφ̄ dφ
2πı e−|φ|2 |φ 〉 1√

m!
φ̄m

=
∞∑

n=0

1√
n!

√
m!

en

∫

|φ|<r

dφ̄ dφ
2πı e−|φ|2 φ̄mφn

=

{
1

m!

∫

|φ|<r

dφ̄ dφ
2πı e−|φ|2 |φ|2m

}
em

=

{
1 − 1

m!

∫ ∞

√
r

e−ttm dt

}
em
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The Main Ingredients – Trace

Formally,

TrB =

∫ ∏

x∈X

[
dφ∗(x) dφ(x)

2πı

]
e−

∫
dy |φ(y)|2 〈φ |B | φ 〉

Proposition. Let B be a bounded operator on F that

commutes with N . For all r > 0, BIr is trace class

and

TrBIr =
∏

x∈X

[∫

|φ(x)|<r

dφ∗(x) dφ(x)
2πı

]
e−

∫
dy |φ(y)|2〈φ |B | φ 〉

Proof: Let Pn be the orthogonal projection from F
onto the direct sum

⊕
0≤m≤n

Fm. If |X| = 1,

Tr BIrPn =
∑

m≤n

〈 em |BIr | em 〉

=
∑

m≤n

∫

|φ|<r

dφ̄ dφ
2πı e−|φ|2 〈 em |B |φ 〉

〈
φ

∣∣ em

〉

=

∫

|φ|<r

dφ̄ dφ
2πı e

−|φ|2 ∑
m≤n

〈
φ

∣∣ em

〉
〈 em |B |φ 〉

=

∫

|φ|<r

dφ̄ dφ
2πı e−|φ|2 〈φ |PnB | φ 〉

Now take limits.
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Combining the previous two results,

Tr e−β(H−µN) = Tr
∏

τ∈Tp

e−
β

p
(H−µN)

= lim
p→∞

Tr
∏

τ∈Tp

e−
β

p
(H−µN)IR(p)

= lim
p→∞

∏

x∈X

τ∈Tp

[ ∫

|φτ (x)|<R(p)

dφ∗
τ (x) dφτ (x)

2πı e−|φτ (x)|2
]

∏
τ∈Tp

〈
φτ

∣∣∣ e−
β

p
(H−µN)

∣∣∣ φτ+ β

p

〉

Proposition. For each ε > 0, there is an analytic func-

tion F (ε, α∗, φ) such that
〈
α

∣∣∣ e−ε(H−µN)
∣∣∣ φ

〉
= eF (ε,α∗,φ)

on the domain ‖α‖∞, ‖φ‖∞ < C 1√
ε
. Write

F (ε, α∗, φ) =

∫

X

dxα(x)∗φ(x)− εK(α∗, φ) +F0(ε, α
∗, φ)

There is a constant const such that for all 0 < ε ≤ 1

|F0(ε, α
∗, φ)| ≤ const ε2(Φ2 + ‖v‖2

1,∞Φ6)

for all ‖α‖∞, ‖φ‖∞ ≤ Φ ≤ 1
2C

1√
ε
.
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Idea of Proof:
〈
α

∣∣ e−ε(H−µN)
∣∣ φ

〉
is an entire func-

tion of α∗ and φ and a C∞ function of ε for ε ≥ 0.

Since
〈
α

∣∣φ
〉

= e
∫

α∗(x)φ(x) dx 6= 0, the matrix element

has the representation

〈
α

∣∣∣ e−ε(H−µN)
∣∣∣ φ

〉
= eF (ε,α∗,φ)

in a neighbourhood of 0, with F (ε, α∗, φ) is analytic in

α∗, φ. F satisfies the differential equation

∂
∂εF = −K(α∗, ∂

∂α∗ )F

−
∫∫

X

dxdy α(x)∗α(y)∗ v(x,y) ∂ F
∂α(x)∗

∂ F
∂α(y)∗

with the initial condition

F (0, α∗, φ) = ln
〈
α

∣∣φ
〉

=

∫

X

dxα(x)∗φ(x)

It is tedious but straight forward to convert this into a

system of integral equations for coefficients in the Taylor

expansion of F (ε, α∗, φ) in powers of α∗ and φ. The

system can be solved and bounded by iteration.
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So we now have

Tr e−β (H−µN)

= lim
p→∞

∫
dµp,R(p)(φ

∗, φ)

∏
τ∈Tp

e
−
∫

dy [φ∗
τ (y)−φ∗

τ−εp
(y)]φτ (y)

e
−εpK(φ∗

τ−εp
,φτ )

∏
τ∈Tp

e
−F0(εp,φ∗

τ−εp
,φτ )

and we just have to eliminate the F0’s. The sum

∑

τ∈Tp

F0(εp, φ
∗
τ−εp

, φτ )

◦ has p terms.

◦ Each term is bounded by
1

p2

times an unbounded function of the |φτ |’s.
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