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1 The Brauer Group

In the last Lecture we have motivated
the importance of the second cohomol-
ogy group of the multiplicative group of
local fields.

1.1 Definition and First Properties of Brauer

Groups

Let K be a field.

Definition 1.1 The Brauer group of
K is the cohomology group

H2(GK, K∗
s ).

It is denoted by

Br(K).
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Br(K) is a torsion group.

One can interpret its elements as classes
of simple K-algebras with center K.
The addition in the cohomology group
corresponds to the tensor product.
The unit element in Br(K) corresponds
to the class of full matrix algebras.
Let L be an extension field of K, A an
algebra representing c ∈ Br(K).

A⊗K L represents

cL = resK/L(c).
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Recall that for Galois extensions L/K
the inflation map from H2(G(L/K), L∗)
to H2(GK, K∗

s ) is injective and that
the kernel of the restriction map resK/L

is equal to H2(G(L/K), L∗) := Br(L/K),
the relative Brauer group.

Assume that L/K is a cyclic extension
of degree n with G(L/K) =< τ >.
Algebras corresponding to elements in
H2(G(L/K), L∗) are called cyclic al-
gebras.
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Recall: We get all cyclic algebras split
be L as cohomology classes of cocycles
in the following way:
For a ∈ K∗.
define fτ,a : G×G → L∗ by

fτ,a(τ i, τ j) =

{
a : i + j ≥ n
1 : i + j < n

For two elements a, a′ the cocycles fτ,a

and fτ,a′ are in the same cohomology

class if and only if a · a′−1 ∈ NL/KL∗.
We denote the corresponding class of
cyclic algebras by

(L, τ, a ·NL/KL∗).
We get Br(L/K) ∼= K∗/NL/K(L∗).

Note that this isomorphism depends on
the choice of τ !
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1.2 Brauer Groups of Local Fields

1.2.1 Invariants

Let Lu be the unique unramified exten-
sion of K of degree n.
G(Lu/K) =< φq > where φq is the lift
of the Frobenius automorphism of Fq.
Let c ∈ Br(K) be split by LU .
Since both Lu and φq are canonically
given we can characterize c in a canon-
ical way by

(Lu, φq, a ·NLu/K(L∗u)).

Since

NLu/K(L∗u) ∼=< π > / < πn >

with π an uniformizing element of K
the class of c is uniquely determined by
wp(a) mod n.
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Definition 1.2 Let c ∈ H2(G(Lu/K), L∗u)
be given by the triple (Lu, φq, a).
Then v(a) ∈ Z/nZ is the invariant
invK(c) of c.

It is obvious that the discrete logarithm
in H2(G(Lu/K), L∗u) is computable in
polynomial time if the elements in this
group are given in the “canonical” way,
i.e. as cyclic algebras with automor-
phism φq.

Lemma 1.3 Assume that τ is another
generator of G(Lu/K) and c is given
by the triple (Lu, τ, a). Let f ∈ Z be
such that τf = φq .
Then inv(c) = f · wp(a) mod n.
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Hence the computation of the invariant
of c leads to a discrete logarithm prob-
lem in G(Lu/K).

Example 1.4 Assume that Lu = K(α)
with α ∈ U(K) such that τ (α) = β ·α
with β ∈ K.
Then τf = φq if and only if βf ≡ αq

modulo the maximal ideal of K. So
we have to solve a discrete logarithm
problem in Fq.
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By the duality theorem we know that
Br(K)[n] is cyclic. Hence every element
of c in Br(K)[n] (resp. every central
simple algebra A over K) is equivalent
to a cyclic algebra split by Lu. So we
can associate to c (resp. A) its invariant
and we get an isomorphism

invK : Br(K)[p] → Z/p.

The discrete logarithm in Br(K)[n] would
be trivial if we could compute invari-
ants.
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The application of the Tate-Lichtenbaum
pairing leads to cyclic algebras split by
ramified extensions.
Assume that n | q − 1.

Take Ln = K(π1/n) and τ ∈ G(Ln/K)
with

τ (π1/n) = ζnπ1/n.

Since π is a norm element and τ acts
trivially on the residue field of K the
class c is determined by a triple

(Ln, τ, ζk
n).
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Let Mn be the composite of Ln and
Lu. It is a Galois extension with Ga-
lois group < τ, φq > .
To compute the invariant of C we have
to find a number ` such that

inf
M/Ln

(c) = infM/Lu
((Lu, φ

`
q, πq)).

This can be worked out in an explicit
way, and as result we see that again we
have to compute a discrete logarithm in
Fq.
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1.3 The Local-Global Relation

We go one step further and lift local
fields to global fields.
K be a global field, i.e. K is either a fi-
nite algebraic extension of Q or a func-
tion field of one variable over a finite
field Fq.

1.3.1 Localization

Let v be a non-archimedean valuation
on K. Let ṽ be an extension of v to
Ks with decomposition group Gṽ which
will be identified with GKv

, the Galois
group of the completion of K at v. Kv

depends only on the place, ie the equiv-
alence class p of the valuation v and
hence is denoted by Kp.
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The decomposition group of v (or more
precisely, of a chosen extension of v), de-
pends up to conjugation only on p and
is denoted by Gp.
The set of all places of K is denoted by
ΣK .
A GK-module M has (by restriction) a
natural structure as Gp-module and so
we have restriction maps

ρp : Hn(GK,M) → Hn(Gp,M)

of cohomology groups.
If M is a Gp-submodule of Mp we can
interpret cochains with value in M as
cochains with value in Mp. Combin-
ing this with ρp we get maps (again
denoted by ρp) from Hn(GK,M) in
Hn(Gp,Mp).

14



We apply this to M = K∗
s , Mp = K∗

p,s
and n = 2 and get for all p ∈ ΣK the
restriction map

ρp : Br(K) → Br(Kp).

The kernel of this map consists of the
classes of simple algebras with center K
which become isomorphic to full rings of
matrices after tensorizing with Kp.
In terms of invariants this means:
for c ∈ Br(K) define invp(c) := invKp

(ρp(c)).
Then the kernel of ρp consists of the set
{c ∈ Br(K); invp(c) = 0}.
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Recall :

Theorem 1.5 Let K be a global field
and n ∈ N odd and prime to char(K).
Then the sequence

0 → Br(K)[n]
⊕p∈ΣK

ρp−→
⊕

p∈ΣK

Br(Kp)[n]
Σp∈ΣK

invp−→ Z/n → 0

is exact.
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Trivial but useful is

Corollary 1.6 Let T be a finite set
of places of K. For each p ∈ T let Ap

be a given cyclic algebra correspond-
ing to cp ∈ Br(Kp)[n].
For every cyclic algebra A over K of
order n with

A
⊗

Kp
∼= Ap

for p ∈ T
we get

−
∑

p∈ΣK\T
invp(ρp(A)) =

∑

p∈T

invp(Ap).
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Remark 1.7 For the existence of lifts
A of Ap we need existence theorems
for cyclic extensions of K with re-
stricted ramification, and such results
are delivered by global class field the-
ory (in an explicit way e.g. by CM
theory).
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Let m be an ideal in OK , the ring of
integers of K. We assume that there is
a cyclic extension L of odd degree n of
K unramified outside of Tm, the set of
places dividing m.
Let τ be a generator of G(L/K).
For p /∈ Tm let φp be a Frobenius auto-
morphism at p in G(L/K), and fp so
that

τfp = φp.
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For a ∈ K∗ define the cyclic algebra
A by (L, τ, a). Using Theorem 1.5 and
Lemma 1.3 we get

Proposition 1.8 For all p ∈ ΣK there
are numbers fp such that for all ele-
ments a ∈ K∗ we have

∑

p∈Tm

invp(A)fp ≡ −

 ∑

p/∈Tm

wp(a))fp mod n




where wp is the normed valuation in
p.
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1.4 Application to Ring Class Numbers

Apply Proposition 1.8 to the following
problem:
For m < OK compute the order ϕ(m)
of the ring class group of OK with mod-
ule m, i.e. the order of the ideal class
group of the order in K with conductor
m.
Define

Km = {a ∈ K∗ with
∑

p∈Tm

invp((L, τ, a)) = 0}

for all cyclic extensions of K with con-
ductor ≤ m.
A subset (?) of Km are the elements a
in K for which

wp(a− 1) ≥ 1; p ∈ Tm.
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Proposition 1.9 1. Take any subset
R ⊂ Km and an odd prime num-
ber `. If ` | ϕ(m) then the sys-
tem of linear equations LR given
by {La; a ∈ R} with

La :
∑

p∈ΣK\Tm

wp(a)Xp = 0

has a non-trivial solution
modulo l.

2. Assume that we find R such that
the number of variables Xp occur-
ring with non-zero coefficient in at
least one of the equations in LR is
equal to the rank of LR then l di-
vides the determinant of the sys-
tem, and so the odd prime divisors
of ϕ(m) are a subset of the prime
divisors of the determinant.
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Example 1.10 Take K = Q.
For m ∈ N the function ϕ(m) is the
classical Euler totient function. The
global class field theory of Q is com-
pletely determined by the theorem of
Kronecker and Weber.
We now assume that the prime num-
ber ` divides ϕ(m) and consider a global
algebra A of the form A = (L/K, σ, a)
corresponding to this extension with
a prime to m. To be explicit we choose
a random number 1 < k < m and as-
sume that the exponentiation of m-th
roots of unity by k induces σ on L.
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For a =
∏

pnp the theorem by Hasse–
Brauer–Noether leads to a relation of
the form∑

p|m
invpA+

∑

gcd(p,m)=1

npfp ≡ 0 mod `

(1)
with fp ∈ Z such that p ≡ kfp mod
m.
Assume moreover that a = r/s with
r, s ∈ Z and gcd(r, s) = 1 such that
m | (r − s). Then

∑

gcd(p,m)=1

npfp ≡ 0 mod `. (2)
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1.5 Computation of the Classical DL

Let m = p0 be a prime ideal of the ring
of integers OK of K with residue field
Fq. We assume that ` is a prime num-
ber dividing q − 1 and that there is a
cyclic extension of K of degree ` totally
ramified at p0. For instance this is the
case if the class number of K is prime
to `.
Let ζ and ζ1 be two `-th roots of unity
which are the reduction modulo p0 of
two integers a and a1 in OK .
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Proposition 1.11 Let k ∈ Z. Then
ζk = ζ1 if and only if

k


 ∑

p∈ΣK\{p0}
fpwp(a)




≡
∑

p∈ΣK\{p0}
fpwp(a1) mod `.

Recall that we have seen already that
the discrete logarithm in Brauer groups
of local fields is (at least if we deal only
with cyclic algebras) transferred to the
discrete logarithm in their residue fields.
Proposition 1.11 shows that we can com-
pute the discrete logarithm in finite fields
if we can compute the numbers fp at
least for divisors of lifts of ζ and ζ1.
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1.6 Description of cyclic extensions

How can one describe extension fields
L of global fields K by objects defined
over K?
A first answer is to use polynomials (maybe
monic over the ring of integers OK) which
define L and then the decomposition of
these polynomials modulo the places of
K give all the information necessary for
studying the arithmetic of L.
In practice this method is working only
for small degrees of L/K and definitely
not for degrees of the size which occur
in cryptography (e.g. ` ∼ 1060)).
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Alternatively we could try to compute
for a given extension L and a given prime
p of OK the number fp.
If we would succeed we would have a
very satisfying description of the arith-
metic of L. It would be much finer than
a description of the splitting behavior of
primes in L which alone characterizes
L.
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2 Index-Calculus in Global Brauer Groups

The results of the previous sections mo-
tivate the search for algorithms to deter-
mine the numbers fp which characterize
the Frobenius automorphisms at places
p of K related to cyclic extensions with
conductor dividing an ideal m.
The method to do this is an index-calculus
algorithm of the type one is used to see
in factorization algorithms. But we use
the opportunity to stress that by com-
puting the fp we get the ϕ-function and
not the factorization of m.
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To demonstrate the principle we take
K = Q and so Fq = Fp.
The congruence (1) can be seen as solu-
tions of a system of linear equations re-
lating the indeterminates fp for p prime
to m and invp(A) for p | m. We use
cyclic algebras with trivial invariants at
primes dividing m.
At the other primes we want to have
wp(a) 6= 0 in a certain distinguished set
big enough such that many elements a
can be found, and small enough to make
linear algebra feasible.
The key concept is the notion of smooth
numbers.
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Let B be a natural number.

Definition 2.1 A number n ∈ N is
B-smooth if all prime numbers divid-
ing n are bounded by B.

Theorem 2.2 (Theorem of Canfield-
Erdös-Pomerance)
Let x, y be natural numbers which grow
asymptotically such that (for some fixed
ε ∈]0, 1[) we have

(log x)ε < u < (log x)1−ε

with u = log x/ log y.
Let ψ(x, y) be the number of numbers
n < x which are y-smooth.
Then

ψ(x, y) = xu−u(1−o(1))

asymptotically for x →∞.
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Example 2.3 We define the subex-
ponential function
Lx(α, c) := exp(c log(x)α·log log(x)1−α).
Take y = Lx(1/2, c). Then

ψ(x, y)/x ∼ Lx(1/2,−1/2c).

Hence the heuristic probability to find
a smooth number with smoothness bound
B = Lx(1/2, c) in [1, x] is Lx(1/2,−1/2c).
If we want to find B such numbers
we have (again heuristically) to make
∼ Lx(1/2, 2c−1

2c ) trials.
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We are now ready to state the most sim-
ple version of the index-calculus algo-
rithm we have in mind.

An algorithm for K = Q Choose a smooth-
ness bound B and compute the factor
basis S consisting of the primes less than
or equal to B.
Let d be the smallest number ≥ √

m.
For δ ∈ L := [0, ..., l0] take a1(δ) :=
d + δ, a2(δ) := c0 + 2δ · d + δ2 (≡ a2

modulo m) with c0 = d2 −m.
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We get a linear equation of the type de-
scribed in Proposition 1.9

Lδ :
∑

p∈P
(2wp(a1(δ))− wp(a2(δ)))Xp.

Assume that for δ ∈ L both

a1(δ) and a2(δ)

are B-smooth. Then we get a relation
in which the coefficient of fp is 6= 0 only
if q is in the factor base. To find such
δ ∈ L we can use sieves.
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Relations Arising from Quadratic Fields We
are interested in cyclic extensions L of
odd degree ` with conductor m over
Q and generator τ of G(L/Q). The
composite of such an extension with a
quadratic extension field K of Q has
the same properties. So we can use
cyclic algebras over K given by a triple
A = (L/K, τ, c) with c ∈ K∗.
For places p ∈ ΣK we have numbers fp

such that τfp = φp.
If p ∈ p is inert in K then fp = 2fp.
Else we getfp = fp for p | p.
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We need that the sum of the invariants
of A taken over all places dividing m is
zero. This is certainly the case if c is
prime to m and if the norm of c is con-
gruent to 1 modulo m. If we assume
that all primes dividing m are split in
K and that the class number of K is
prime to ` we get that there is an cyclic
extension cyclic of degree ` unramified
outside of m if and only ` | ϕ(m). So
we can use relations by cyclic algebras
over K for our system of equations of
the type described in Proposition 1.9.
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Take odd ε ∈ N and d ∈ Z\Z2, gcd(d, ε) =
1 and d ≡ ε2 mod m. We denote by
Kd the field Q(

√
d).

We take u ∈ Z with gcd(εd, 1−u4) = 1.
(This implies that u is even.)
The element

c =
1 + u2

2u
+

1− u2

2εu

√
d

has norm

ε2(1 + u2)2 − (1− u2)2d

4ε2u2
≡ 1 mod m

and so we get∑

p∈ΣK

wp(ε(1 + u2) + (1− u2)
√

d)fp ≡

∑

p∈ΣK

wp(2εu)fp mod `.
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Straightforward calculations yield∑

p split in Kd

wp(ε
2(1+u2)2−(1−u2)2d)

≡ wp(2εu))fp mod `.

Assume that both εu and ε2(1+u2)2−
(1−u2)2d are B-smooth. Then we have
found an equation of the wanted form.
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3 Construction of Elements in the Brauer Group

We are looking for more methods to
construct element in the Brauer group
of number fields. The theoretical back-
ground for the success (or failure) is the
duality theorem of Tate-Poitou.

3.1 Pairings with Dirichlet Characters

This method is due to Huang-Raskind.
It uses the duality between Z/n and µn

and leads to well known “symbols” in
class field theory (cf. J.P. Serre: Corps
locaux). H1(GK,Q/Z) = Hom(GK,Q/Z)
consists of Dirichlet characters of K.
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We use the Kummer sequence for the
multiplicative group and map
K∗ to H1(GK, µn) (in fact, this is the
original “Kummer theory”. The cup
product yields a pairing

K∗ ×Hom(GK,Z/n) → Br(K)

sending (a, χ) to < a, χ >.
By restriction we get local pairings (lo-
cal symbols) and of course there is a
reciprocity law for the invariant.
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We look at the Dirichlet characters as
test functions to get information about
discrete logarithms at various places.
Hence we are interested in finding Dirich-
let characters with prescribed ramifica-
tion (see discussion above). The answer
to this is given by the Tate-Poitou du-
ality theorem.
One nice application is: Let K be a real
quadratic field.
Under suitable conditions one proves the
existence of a Dirichlet ramified at two
given places. Applying <,> to a unit
of K one gets relations between the dis-
crete logarithm at the two places. For
details I refer to: Ming-Deh Huang and
Wayne Raskind: Signature Calculus and
Discrete Logarithm Problem, ANTS 2006.
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3.2 Pairings with Principal Homogenous Spaces

Of course, one can try to do analogue
things with abelian varieties instead of
using the multiplicative group.
Hence one uses elements in H1(GK, A(Ks)
as test functions, and of course, the pair-
ing is the Tate-Lichtenbaum pairing.
The situation is much more rigid. The
duality theorem of Tate-Poitou predicts
that there are not many suitable ele-
ments and our local description tells us
that we get “very sparse” relations.

42



Assume that we have a Jacobian variety
A (e.g. an elliptic curve) over a global
field K with a point P ∈ A(K) and
that we have an element

ϕ ∈ H1(GK, A(Ks))[n].

Then Tn(P, ϕ) is an element in Br(K)[n]
which is very sparse.
At all p prime to n · cond(A) at which
ϕ is unramified or at which the reduc-
tion of P lies in nA(Kp) the value of
the local pairing is 0. Hence∑

p∈S

invp(Tn(P, ϕ)) = 0

with

S = {p; p | n · cond(ϕ) · cond(A)}
∩{p; P /∈ nA(Kp)}.
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3.3 Cassel’s Pairing

One of the complications occurring when
we use ϕ ∈ H1(GK, A(Ks))[n] for test-
ing is that ϕ becomes trivial at many
places.
This has a geometric interpretation. In
a canonical way ϕ corresponds to a prin-
cipal homogeneous space Vϕ attached
to A which becomes isomorphic to A
over any field L with Vϕ(L) 6= ∅.
So its restriction at p becomes trivial iff
Vϕ has a Kp-rational point.
In the extreme case this happens at all
places. Then ϕ is an element of the
Tate-Shafarevich group TS(A).
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Hopefully this group is finite. But cer-
tainly its order cannot be bounded if we
vary A.
For elliptic curves Heegner points and
the corresponding Kolyvagin-Euler-systems
are good candidate for yielding elements
in TS(A).
Cassels has used the Tate-Shafarevich
group to define a very interesting skew
symmetric pairing which is non-degenerate
iff TS(A) is finite. And then the order
is a square!
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Cassels’ pairing is really a global object.
To define it one has to leave the world of
Brauer groups (which are good for local
duality) and go to the second cohomol-
ogy of idele classes, which is isomorphic
to Q/Z again.
Ideles (and so cocycles) have entries at
all places of K coming from local fields,
and so as result of the pairing we find
again a collection of elements in local
Brauer groups. But now the sum of in-
variants will not be 0 in general, but we
are not far away!
So, besides of the great importance of
Cassels’ pairing for theory it could be
an interesting object for cryptography,
and I refer to ongoing work done by K.
Eisentrager, D. Jetchev and K.Lauter.
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