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1 Ideal Class Groups

The most important source for finding
candidates for DL-systems are ideal class
groups attached to curves C over finite
fields Fq.
Take O the ring of holomorphic
functions
of an (affine) curve CO defined over a
finite field Fq with q elements.
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1.1 Picard Groups

1.1.1 Curves and Rings

Let K be a field and CO be an abso-
lutely irreducible curve defined over K
with function field F and with O as ring
of holomorphic functions on CO. We as-
sume that Quot(O) = F and so CO is
an affine curve.
Note that we allow singularities.
Let C̃O be the desingularization with
ring of holomorphic functions Õ.
Õ is a Dedekind domain, it is the inte-
gral closure of O.
Completion
There is a unique projective irreducible
regular curve C with function field F
containing C̃O as affine part.
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1.1.2 Base Extension

As always, Ks is the separable closure
of K. For simplicity we assume that all
singular points on CO become rational
over Ks.
By overlining we denote objects obtained
by base change from K to Ks.
So C = C × Spec(Ks) with function
field F = FKs.
The integral closure of O (resp. Õ) in

F is denoted by O (resp. Õ).
It is the ring of holomorphic functions

of the curve CO (resp. C̃O).
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Definition 1.1 T∞ = C(Ks)\C̃O(Ks)
is the set of “infinite points“ of C.

By S ⊂ C̃O(Ks) we denote the points
which correspond to singular points
on CO.

GK acts on C(Ks) mapping T∞ and S
into themselves.
We assume that there is a K-rational
point P∞ in T∞.

1.1.3 Conductor

The conductor mC0
of Õ/O is an ideal

which reflects the singularities of CO.
We assume that CO has only ordinary
double points.
Hence mCO

< Õ corresponds to
∏

P∈S mP .
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1.1.4 Ideal Classes

Definition 1.2 Let R ⊂ F be an in-
tegrally closed subring,f ∈ F .
Then

(f )R := f ·R.

For H ⊂ F we define

(H)R = {(f )R; f ∈ H}.
(F
∗
)R form a group in a natural way

which is the group of principal ideals
of R denoted by PrincR.
The group of invertible ideals in R
is denoted by IR. The Picard group
PicR is defined by the exact sequence

1 → PrincR → IR → PicR → 0.
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Example 1.3 Take for R the ring of
holomorphic functions on C(Ks)\P∞
which is equal to OP∞. For P ∈ C(Ks)
let vP be the normalized valuation with
valuation ideal mP < R.
Then

(f ) =
∏

P∈C(Ks)\P∞
m

vP (f )
P

and PicOP∞
is isomorphic to the

divisor class group of degree 0, Pic0
C

of C.
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Proposition 1.4 We have the exact
sequence of GK-modules

0 → CT∞/(UT∞) → Pic(OP∞) → Pic(Õ) → 0

with

CT∞ =< mP ; P ∈ T \ P∞ >⊂ IOP∞
and UT∞ the functions which have no
zeros and poles outside of T \ P∞.

Next we want to describe Pic(O).
Let group of invertible ideals IO) in O

is generated by ideals of O which are
prime to mCO

.

Let F 1
S denote the functions f ∈ F for

which f (P ) = 1 for all P ∈ S.
We get the exact sequence of GK-modules

1 → (F 1
S) → IO → PicO → 0.
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Using the approximation theorem for
functions in F we get:

1. In every class c ∈ Pic(Õ) there is
an ideal which is prime to S. So we
have a natural surjective map

ϕ : Pic(O) → Pic(Õ)

which is GK-invariant.

2. The kernel of ϕ is in a canonical way
isomorphic to

∏
P∈S (K∗

s )P/∆(K∗
s )

where GK acts on
∏

P∈S (K∗
s )P by

σ(. . . , xP , . . . ) = (. . . , σ(xP )σ(P ), . . . )

and ∆(K∗
s ) is the diagonal embed-

ding.
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A more geometric way to express this is

Proposition 1.5 There is a torus TS
of dimension | S | −1 defined over K
such that we have the exact sequence
of GK-modules

1 → TS(Ks) → Pic(O) → Pic(Õ) → 0.

Remark 1.6 The isomorphism class
of TS is determined by its character
group X, and this group is determined
by the set S as GK-set.
So the Proposition 1.5 (applied to K =
Fq) gives a tool to realize discrete log-
arithms in subgroups of multiplicative
groups of extension fields of Fq as sub-
groups of ideal class groups of rings
of holomorphic functions of affine curves.
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1.2 Pic and Jacobians

Using that Pic0
C
∼=GK

JC(Ks) and putting

all pieces together we get

Theorem 1.7 We have the exact se-
quences of GK-modules

1 → PrincO → IO → PicO → 0

.

1 → TS(Ks) → Pic(O) → Pic(Õ) → 0

and

0 → CT∞ → JC(Ks) → Pic(Õ) → 0.

Remark 1.8 All the material of this
section is to be found in
J-P. Serre: Corps de classes et groupes
algébriques.

12



2 Lifting

The interesting case for applications in
cryptography is that K = Fq with q =

pd. In fact, all DL-systems with geo-
metric background can be realized as
GK-invariant subgroups of Galois sub-
modules of some PicO.
But in order to apply duality theorems
as presented in the first lecture we should
better switch to local fields as ground
fields always taking care that this lift-
ing is easy and that we do not loose fast
operations.

Remark 2.1 We recall that for point
counting a similar procedure is most
successful.
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So let K be complete with respect to a
normed valuation wp and with residue
field Fq.
Its separable closure is either a field of
Laurent series with coefficients in Fq or
the algebraic closure of the unramified
extension of Qp of degree d.

2.1 Lifting the Galois Group

The maximal unramified extension of
K is denoted by Knr. There is a canon-
ical lift (easily computable) of the Frobe-
nius automorphism φq to Knr also called
the Frobenius automorphism and denoted
by φq. This automorphism generates
the Galois group of Knr/K as topolog-
ical group. Algebraic extensions of Knr

are totally ramified.
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We are interested in tamely ramified ex-
tensions.
Let n be a natural number prime to p.
There is exactly one tamely ramified ex-
tension Ln of Knr of degree n given ex-
plicitly by Ln = Knr(π

1/n) where π is
an element in K with wp(π) = 1. (Such
elements are called uniformizing ele-
ments of K.) So Ln/Knr is cyclic. We
choose a primitive n-th root of unity ζn
and denote by τn the generator which
maps π1/n to ζn · π1/n. It follows that
Ln is a Galois extension of K whose
group is generated by φq and τn.
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If we assume that ζn ∈ K, or equiva-
lently, that n | (q − 1) then K(π1/n)
is Galois over K and τn and φq com-
mute and the maximal tamely ramified
extension of K whose Galois group has
exponent dividing n is the subfield of
Ln fixed by φqn.

Proposition 2.2 There is a totally
ramified extension of K of degree n
if and only if ζn ∈ K.
This extension is cyclic and, up to
“twists ” with unramified extensions,
unique.

Lifting gives more freedom, since in ad-
dition to unramified extensions we find
ramified extensions, too.
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2.2 Lifting of Curves

Let O be the ring of holomorphic func-
tions of an affine curve CO defined over
Fq, with singular points S ⊂ CO(Fqs
defining the conductor mO =

∑
P∈S P

and the corresponding desingularized curve
C̃ embedded in the projective nonsingu-
lar curve C. The set T∞ was defined as
C(Fq) \ C̃(Fq).
We denote by g0 the genus of C.
We state the following (rather elemen-
tary) facts from the reduction theory of
curves resp. abelian varieties.
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Theorem 2.3 1. There is a projec-
tive absolutely irreducible nonsin-
gular curve Cl over K and a Ga-
lois invariant set T∞l ⊂ Cl(K)
with

• The genus of Cl is equal to

g0+ | S | −1.

• Cl \ T∞l modulo the maximal
ideal of K is equal to CO.

• The Jacobian of Cl is a semi-
abelian group scheme over spec(OK),
the ring of integers of K, whose
connected component has as spe-
cial fiber the generalized Jaco-
bian of CO ∪ T∞.

• The set T∞l is GK-invariant. It
is mapped bijectively to T∞.
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2. Denote by Ol the ring of holomor-
phic functions on Cl\T∞l. For all
numbers n prime to q we get

• PicOl/[n]PicOl is canonically iso-
morphic to PicO/[n]PicO.

• There is a torus T l
S defined over

K of dimension | S | −1 with
reduction TS such that the ele-
ments of order n in T l

S are mapped
to the elements of order n in TS
and we have the exact sequence
of finite abelian groups

1 → T l
S(UK)/(T l

S(UK))n →
PicOl/[n]PicOl → PicÕ/[n]PicÕ → 0

where UK are the units with re-
spect to the valuation of K.
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3. For T∞ = P∞ we get that
JCl(K)/[n]JCl(K) is canonically iso-
morphic to
PicO/[n]PicO.¡

4. The set T∞l can be chosen such
that the subgroup C

T∞l, the sub-

group of divisor classes generated
by divisors of degree 0 with support
in T∞l, is isomorphic to CT∞. So
we get the exact sequence

0 → (CT∞/[n]CT∞)GK →
JCl(K)/[n]JCl(K) → PicO/[n]PicO → 0.

Moreover there is an isogeny ϕ from
JC1 defined over K with kernel iso-
morphic to CT∞ such that PicO/[n]PicO
is isomorphic to ϕ(JC(K))/[n]ϕ(JC(K)).

20



Remark 2.4 It is important that all
interesting objects can be lifted over
K.
This is so since n is prime to q and
we are in the étale world. The next
important observation is that the fi-
nite modules defined over Fq can be
lifted to unramified Galois modules over
K which played a special role in the
cohomology theory of local fields.

Theorem 2.3 enables us to study all crypto
systems based on ideal classes of curves
over finite fields by using cohomology
theory of local fields.

21



In most instances the situation will be
rather simple.
The curve C will be either nonsingular (
good reduction) or will have genus equal
to zero (the toric case).
The set of missing points will consist
(e.g. in the case of Cab-curves ) of one
point and so the group CT∞ is the triv-
ial group.
The lift of curves in the toric case leads
to the interesting theory of Mumford
curves. Instead of proving the state-
ments of Theorem 2.3 we give the sim-
plest example for these curves.
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Example 2.5 We begin with the affine
curve

CO : Y 2 + XY = X3

defined over Fq and corresponding to

O = Fq[X,Y ]/(Y 2 + XY −X3).

We have T∞ = {P∞} where P∞ cor-
responds to the point (0, 1, 0) on the
projective curve

Y 2Z −XY Z = X3.

There is one singular point (0, 0) on
C. This point corresponds to 2 points
(we have two different tangents at this
point) on the desingularization. It
follows that PicO is isomorphic to F∗q.
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Let K be a local field with residue
field Fq and uniformizing element π.
Then

Cl := E : Y 2 −XY = X3 + π

is the affine part of an elliptic curve
with reduction equal to C. It is a
Tate curve with period Q with wp(Q) =
1. The group of rational points E(K)
is isomorphic to K∗/ < Q >∼= UK,
and all the assertions of the Theorem
2.3 can be checked immediately.
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3 The Lichtenbaum Pairing

We return to a general field K.
As promised in the first lecture I begin
with explicit definitions of relevant co-
homology groups.

3.1 Low Cohomology groups

Let G be a profinite group, i.e. G is
the projective limit of its finite quotient
groups.
Being a projective limit of finite groups
G carries in a natural way the Krull
topology and is compact in this topol-
ogy. As always we tacitly assume that
all maps are continuous.
Let M be a G-module.
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Definition 3.1 1.

H0(G,M) = MG

2. C1(G,M) consists of 1-cocycles

c1 : G → M

such that for all σ, τ ∈ G we have

c1(στ ) = c1(σ) + σc1(τ ).

B1(G,M) consists of 1-coboundaries

b1 : G → M

for which there exists an element
m ∈ M with

b1(σ) = σ ·m−m

for all σ ∈ G.
The first cohomology group of M
is

H1(G,M) = C1(G,M)/B1(G,M).
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3. 2-cocycles are maps

c2 : G×G → M

such that for all σ, τ, µ ∈ G we
have

σc2(τ, µ)−c2(στ, µ)+c2(σ, τµ)−c2(σ, µ) = 0.

They form the G-module C2(G,M).
2−coboundaries are maps

b2 : G×G → M

such that there exists a function
f : G → M with

b2(σ, τ ) = σf (τ )− f (στ ) + f (σ).

They form the G-module B2(G,M).
The second cohomology group of
M is

H2(G,M) = C2(G,M)/B2(G,M).
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Let U be a closed subgroup of G.
By restricting cocycles one gets restric-
tion homomorphisms

resG/U : Hn(G,M) → Hn(U,M).

Assume that U is a normal subgroup
of G and that MU is a G/U -module
contained in a G-module M . By com-
position with the quotient map

πU : G → G/U

one gets the inflation maps

infU/G : Hn(G/U,MU ) → Hn(G,M).

is called the inflation map.
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The inflation and the restriction maps
are related. Very useful is the sequence

0 → H1(G/U,MU )
infU/G→ H1(G,M)

resG/U→ H1(U,M).

In particular,

H1(G,M) =
⋃

U

H1(G/U,MU ).

We can generalize this statement to the
second cohomology group under special
assumptions on M .
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Lemma 3.2 Assume that M is a G-
module such that for all U < G one
has H1(GL,M) = 0.
Then

infU/G : H2(G(L/K),MGL) → H2(GK,M)

is injective.

Example 3.3 Take G = GK and M =
K∗

s .
Hilbert‘s Theorem 90 implies that for
all L/K one has H1(GL, L∗s) = 0.
Hence

Br(K) = H2(GK, K∗
s ) =⋃

L

infGL/GK
H2(G(L/K, L∗)

where L runs over all finite Galois
extensions of K.
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3.1.1 The Boundary Maps

We assume that

0 → A
α→ B

β→ C → 0

is an exact sequence of G-modules.
For n ≥ 0 the maps α resp. β induce
(by composition with cocycles) in a nat-
ural way homomorphisms
αn : Hn(G,A) → Hn(G,B) resp.
βn : Hn(G,B) → Hn(G,C).
There are homomorphisms

δn : Hn(G,C) → Hn+1(G,A)

such that the infinite sequence

. . . Hn(G,A)
αn

→ Hn(G,B)
βn

→ Hn(G,C)

δn

→ Hn+1(G,A)
αn+1

→ Hn+1(G,B) → . . .

is exact.
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We shall need the connecting homomor-
phisms δn only for n = 0, 1.
Definition of δ0: For c ∈ CG choose
b ∈ B with β(b) = c.
For all σ ∈ G the element σ(b)− b lies
in A.
δ0(c) is the class of the cocycle

ζ : σ 7→ σ(b)− b.

Definition of δ1: Take c ∈ H1(G,C)
and represent it by the cocycle ζ : G →
C.
For every σ ∈ G choose b(σ) ∈ B with
β(b(σ)) = ζ(σ).
For σ, τ ∈ G define

δ(σ, τ ) := σ(b(τ )) + b(σ)− b(στ )

which is, as ζ is a cocycle, in A.
Take δ1(c) as class of δ(σ, τ ) in H2(G,A).
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3.2 Definition of the Pairing

We continue to work with rings O resp.
O as above. In view of Theorem 2.3 we
take S = ∅ and hence

PicO
∼=GK

JC(Ks).

3.2.1 The complete Case

We assume that T∞ = {P∞} and so
O = OP∞. We use the exact sequence

1 → (F ) → I(O) → PicO → 0

and get as part of the long exact coho-
mology sequence

H1(GK, IO) → H1(GK, PicO)
δ1

→

H2(GK, (F )).

33



We remark that IO is a direct sum of
copies of GK-submodules isomorphic to
Z[G] with G a finite quotient group of
GK and so H1(GK, IO) = 0.

So the map δ1 is injective. As described
above it is given by the following rule:
Take c ∈ H1(GK, PicO) and represent
it by a cocycle

ζ : GK → PicO with ζ(σ) = D̄(σ)

where D̄(σ) is an ideal class with a (cho-
sen) representative D(σ) ∈ IO.
Then for all σ, τ ∈ GK the ideal

A(σ, τ ) = (σD(τ )) ·D(σ) ·D(στ )−1

is a principal ideal (f (σ, τ )) and δ1(c) is
the cohomology class of the 2− cocycle

γ : (σ, τ ) 7→ (f (σ, τ )).
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We have some choices. For instance we
can change D(σ) by a principal ideal.
So for a given ideal A ∈ IO we can and
will choose D(σ) prime to AO.
Hence f (σ, τ ) has neither zeros nor poles
in points P ∈ C for which the ideal mP
occurs with non-zero multiplicity zP in
AO =

∏
P∈C\P∞ m

zP
P and so the eval-

uation pairing

Q(zP · P, f (σ, τ ))

is defined and gives a 2-cocycle in H2(GK, K∗
s ).

Changing A by a principal ideal does
not change the cohomology class as we
have seen in the first lecture (Weil reci-
procity).
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Using the approximation theorem we see
that we can change A by a principal
ideal such that

∑
P∈C\P∞ zP = 0.

Then
Q(zP · P, f (σ, τ ))

is defined and independent of the choice
of f (σ, τ ).

Definition 3.4 To define the Licht-
enbaum pairing

TL : PicOP∞×H1(GK, PicOP∞
) → H2(GK, K∗

s )

choose A in P̄ ∈ PicOP∞ with AOP∞ =∏
P∈C\P∞ m

zP
P of degree 0.

Take c ∈ H1(GK, PicOP∞
) and repre-

sent δ1(c) by (f (σ, τ )) prime to A.
Then TL(P̄ , c) is the cohomology class
of ζ(σ, τ ) := Q(

∑
zP · P, f (σ, τ )).
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Example 3.5 Let L/K be a cyclic ex-
tension with G(L/K) =< τ > . Take
c ∈ H1(< τ >, Pic

OP∞
GL

) with rep-

resenting cocycle ζ(τ i).
It follows that ζ(τ i) =

∑
j=0...i−1 τ j(ζ(τ ))

and hence
∑

j=0,...n−1 τ jζ(τ ) = 0.
Choose D ∈ ζ(τ ) and L−rational and
D(τ j) =

∑
k=0...j−1 τ (D).

It follows that∑

k=0...n−1

τk(D) = (f )c

with fc ∈ F.L, the function field of
CL.
Then δ1(c) is presented by the cocycle

ζ(τ i, τ j) = 1 if i + j ≤ n

and

ζ(τ i, τ j) = (fc) if i + j > n.
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Hence TL(D̄, c) is (the inflation of)
the class of the cocycle

ζ(τ i, τ j) = 1 if i + j ≤ n

and

ζ(τ i, τ j) =
∏

fc(P )zP if i + j > n.

This is an element in H2(GK, K∗
s )

corresponding to a cyclic algebra(see
third lecture).
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3.3 The Tate-Lichtenbaum Pairing

Since PicOP∞
= JC(Ks) the Lichten-

baum pairing induces for every n ∈ N
a pairing

Tn : JC(K)/nJC(K)×H1(GK, JN (Ks))[n]

→ H2(GK, K∗
s )[n].

We recall that we have defined the Tate
pairing between these modules.

Theorem 3.6 (Lichtenbaum) Up to
a sign the pairing Tn is equal to the
Tate pairing.

We call the pairing Tn the Tate-Lichtenbaum
pairing.
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3.3.1 The General Case

A first application is the definition of
the Lichtenbaum pairing when T∞ is
contains more than one element.
We have the exact sequence

0 → CT∞ → PicOP∞
ϕ→ PicO → 0.

We want to define the Lichtenbaum pair-
ing for PicO resp. H1(GK, PicO). But

it is not true in general that H0(GK, PicO)
is equal to PicO = ϕ(PicOP∞).

Secondly the map from F̄ to PrincO
has as kernel the group of functions UT .
Hence we cannot evaluate the image of
δ1 : H1(GK, PicO) → H2(GK, P rincO)
at points on C \ T∞.

40



To overcome these difficulties we have
to apply an isogeny ψ to JC with CT∞ =
kernel(ψ). Hence we have to leave the
world of Jacobian varieties and to switch
to the Tate pairing. In addition we have
to use the functoriality of the Weil pair-
ing with respect to isogenies. Finally we
get

Proposition 3.7 The Lichtenbaum pair-
ing induces a pairing, also denoted by
TL from Pic(O) × ψ1(H1(GK, O)) to
H2(GK, K∗

s ).
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4 The Tate-Lichtenbaum Pairing over Finite

and Local Fields

Theorem 4.1 Let K be a local field.
Then the Tate-Lichtenbaum pairing
Tn is nondegenerate.

Corollary 4.2 Assume that Dn is a
cyclic subgroup of JCl(K)/[n]JCl(K).
Then there is an element

c ∈ H1(GK, JC(Ks))[n]

such that the restriction Tn |Dn×{c}
is a monomorphism. Hence the dis-
crete logarithm in Dn is transferred
to the discrete logarithm in H2(GK, K∗

s )[n]
with costs arising from the complex-
ity of computing Tn |Dn×{c}.
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4.1 Explicit Description over Local Fields

We assume that K is a local field with
residue field Fq.
Though the general case is interesting
we restrict ourselves to the case that the
the curve C has good reduction (hence
is the lift of a nonsingular curve C0 over
Fq) and that we look for Picard groups
with only one point at infinity.
So we have a non-degenerate pairing

Tn : JC(K)/nJC(K)×H1(GK, JC(Ks))[n]

→ H2(GKs
, JC(Ks))[n].

Since we have assumed good reduction
and n prime to q we get

H1
nr(K, JC(Ks))[n] = 0.
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We need ramified extensions and so we
have to adjoin ζn to K (or, equivalently,
to Fq).
Let k be the smallest number with

qk ≡ 1 mod n.

k is called the “embedding degree”.

We extend Fq to Fqd and K to K(ζn) :=

Kn.
Let L be “the” ramified extension of de-
gree n of Kn,eg. take L = Kn(π

1/n
K ),

and take τ as generator of G(L/Kn).
We can use Example 3.5. In particular
we get for a ζ ∈ c ∈ H1(GK, JC(Ks))[n]
that ζ(τ ) modulo vKn

is a point of order
n. Hence we can assume that P = ζ(τ )
has order n and that it is contained in
JC(Kn).
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Identify (depending on the choice of τ )
H1(GK, JC(Ks)[n])
with
Hom(GK, JC(Ks)[n]).
Take ϕ ∈ Hom(GK, JC(Ks)[n]) with
ϕ(τ ) = P ; P ∈ JC(Kn)[n] and
πq(P ) = χnP
where χn is the cyclotomic character
applied to πq.
Let nP = (fP ) and assume a repre-
sentative of Q ∈ JC(K) is chosen such
that fP (Q) is defined.
Then

Tn(P,Q)

is the class of cyclic algebra correspond-
ing (wrt. τ ) given by fP (Q).

45



Moreover, we can change fP (Q) by a
factor in NL/Kn

without changing the
class of the algebra, and so we can in-
terpret Tn as pairing with values in

K∗
n/NL/Kn

∼= F∗
qk/(F∗n

qk .

Hence we get a pairing

Tn,0 : JC(K)×JC(Ks)[n][χq] → F∗
qk/(F∗

qk)
n

which is non-degenerate on the right
side and has radical nJC(K) on the left
side.
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4.2 The Tate-Lichtenbaum Pairing over Finite

Fields

In the general case we use the results
stated in Theorem 2.3 we get

Corollary 4.3 The discrete logarithm
in ideal classes of rings of holomor-
phic functions of affine curves C over
finite fields Fq is transferred to the
Brauer group of local fields K with
residue field Fq by the Tate-Lichtenbaum
pairings Tn.
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Remarks 4.4 1. By lifting curves from
finite fields to local fields we get
the nontriviality of cohomology groups
involved in the pairings as well as
a smoothing of the curve. We do
not loose information about the torus
part of the ideal class groups. The
reason is that we have ramified ex-
tensions at hand.

2. Of course the practical value of Corol-
lary 4.3 depends on two assump-
tions: the pairing Tn has to have
low computational complexity.
The reason is that only in this case
we have ramified extensions cyclic
of degree n defined over K. The
second assumption will be discussed
in the following sections.
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In the case that C has no singularities
we can reduce the Tn-pairing given in
Subsection 4.1 and get

Tn,0 : JC(Fq)×JC(Fq)[n][χq] → F∗
qk/(F∗

qk)
n

which is non-degenerate on the right
side and has radical nJC(Fq) on the left
side.
So the lifting is not necessary for the
definition of Tn but the relation with
Brauer groups is remarkable and to see
the whole background may be advisable
even if one wants to use the extremely
simple pairing only.
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4.3 Evaluation

To compute Tn one has to evaluate a
divisor D at fP .
A naive approach is, because of the high
degrees needed in practice, not possible.
The way out was found by V. Miller
for elliptic curves (applied to the Weil
pairing). The background is the theory
of Mumford‘s Theta groups which de-
scribes extensions of (finite subgroups
of) abelian varieties by linear groups.
The basic step for the computation is:
For given positive divisors A1, A2 of de-
gree g find a positive divisor A3 of de-
gree g and a function h on C such that

A1 + A2 − A3 − gP0 = (h).
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One has to repeat such an step O(log(n))
times.
CONSEQUENCE:
We can reduce the discrete logarithm in

JC(K)/nJC(K)

to the discrete logarithm in

Br(K)n

with the costs

O(log(| Fqk) |).
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It is easy to implement the algorithm,
and one can find it at many places in-
cluding various tricks which speed up
the pairing.
For the constructive applications it is
necessary to have an embedding degree
∼ 12 · g. It is a very nice problem
in computational number theory to find
such k. For elliptic curves the situation
is not so bad.
But for g > 1 nothing is known if JC is
not supersingular.
A successful approach to this problem
could be interesting since one can speed
up the computation of Tn by a factor g
in interesting protocols (T.Lange).
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