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Chapter 1

Duality in Arithmetic
Geometry

1.1 Bilinear structures

1.1.1 DL in Cyclic Groups

Take n ∈ N and assume that

(Z/n, +)
f→ N

is given.
A := Im(Z/n) becomes a group with the composition ⊕ by the rule:

a1 ⊕ a2 := f(f−1(a1) + f−1(a2)).

⊕ has to be given “in coordinates” of the elements of A without using f−1.
The computation of ⊕ is required to be of polynomial time in log(n) and
hence for k ∈ Z/n the evaluation of k · idA =: k◦ requires polynomial time
in log(n).

Let P0 be a generator of A.
Define the discrete logarithm of P with respect to the base P0 by

logP0
(P ) := k ∈ Z/n with k ◦ P0 = P.

7



8 CHAPTER 1. DUALITY IN ARITHMETIC GEOMETRY

This function can serve (as we have learned from Diffie-Hellman, ElGamal
and many others) as crypto primitive in many protocols of public key cryp-
tography (key exchange, authentification, signatures and encryption).
The secret is the chosen element k ∈ Z/n∗, the public key is k ◦ P0.
Crucial for security is the complexity of the evaluation of logP0

. If this is
“large”, we call (A, ◦) a DL-system.

To define DL-systems requires only elementary “abstract” mathematics.
In order to find “strong groups”one has to look in rather sophisticated math-
ematical structures which we shall discuss in Chapter 2.
In fact, the realization of DL-systems used today is done in the frame of
arithmetic geometry. Typically the cyclic groups are embedded into torsion
groups in divisor classes resp. ideal classes of function rings of curves. Hence,
by their very nature, they carry a lot of structure.
One aspect is duality as a major theme in arithmetic - and so - of the lectures.

1.1.2 Definition

Let (A, ◦) be a DL-system.

Definition 1.1.1 Assume that there are Z-modules B and C and a bilinear
map

Q : A×B → C

with

• Q is computable in polynomial time

• Q(., .) is non-degenerate in the first variable. Hence, for random b ∈ B
we have Q(a1, b) = Q(a2, b) iff a1 = a2 .

Then we call (A,Q) a DL-system with bilinear structure.

Remark 1.1.2 If we need non-degeneracy in the second variable, too, we
can replace B by a quotient. But for computational reasons it may be better
to have some “freedom” in the choice of the second argument.
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Remark 1.1.3 One is used to describe bilinear maps on free modules by
matrices whose entries consist of the value of the form on pairs of elements
in fixed bases. For instance, assume that A is a cyclic group with n elements
with generator P0. Then

Q : A× A → Z/n

is determined by Q(P0, P0). Without further information the computation of
Q(P,Q) is equivalent with the discrete logarithm in A.

1.1.3 Some Applications of Bilinear Structures

We begin with destructive aspects:

Transfer of DL

The DL-system (A, ◦) is at most as secure as the discrete logarithm in (C, ◦).
For take random b ∈ B and c0 := Q(P0, b).
Then the map

< P0 >→< c0 >

P := n ◦ P0 7→ Q(P, b)

is a monomorphism, and the claim follows.

DDH

If we want to use a DL-system (A, ◦) as crypto primitive for public key
systems a necessary condition is the hardness of the discrete logarithm.
For many applications an even stronger condition is needed:

For random triples (P1, P2, P3) decide whether

logP0
(P3) = logP0

(P1) logP0
(P2).

If the complexity of the two problems differs one speaks of a gap group. The
identities

Q(P1, P2) = logP0
(P1) · logP0

(P2)Q(P0, P0),

Q(P3, P0) = logP0
(P3)Q(P0, P0)

show that bilinear structures with A = B yield gaps.
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1.1.4 Constructive Aspects

Since the following applications are discussed at many places I only list them.
A first step to get more information is to visit Paulo Barretos Pairing Based
Crypto Lounge.
Bilinear structures are used for

• Tripartite Key Exchange

• Identity Based Protocols

• Short Signatures

From the algebraic point of view there are pairings “everywhere”.
But: Because of the condition about the computational complexity it is much
harder to find DL-systems with bilinear structure.

1.2 Class Field Theory

A natural source for pairings are duality theorems of Arithmetic Geometry.
Their background is one of the most beautiful theories of Mathematics which
I shall state in two lines.

For 0 ≤ i ≤ 3 we have a perfect duality of finite groups

H i
et(X,F )× Ext3−i

X (F, Gm) → H3
et(X, Gm) = Q/Z.

Here, X is the spectrum of the ring of integers of a number field, the co-
homology is with respect to the étale situs, and F is a constructible sheaf
(eg. there is a finite set of points in X such that the pull back of F to
X −{x1, . . . , xn} and to x1, . . . xn is a locally constant abelian sheaf). I can-
not explain this result in detail, not to speak of proving it. A nice reference
is B. Mazur: Notes on étale cohomology of number fields; Ann. sci. ENS t.6,
no 4 (1973),p.521-552.
I shall have to restrict myself to special cases and to state consequences.
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1.3 Dual Groups

1.3.1 Pairings in the world of functions

Let S be a (non-empty) set and C an abelian group.

F (S,C) := {f : S → C}
becomes, in a natural way, an abelian group, and the evaluation map

S × F (S, C) → C

is non-degenerate and Z-linear in the second argument.1 Define Z(S) as the
group of functions h from S to Z for which h(z) = 0 for almost all z ∈ Z.
S is embedded into Z(S) by sending s to fs with f−1

s (1) = {s} and f−1
s (0) =

S \ {s}.
Z(S) is the free abelian group generated by S.
A function f from S to C can be extended “linearly” (and then is denoted
again by f) to Z(S) by

f : g0 7→
∑
s∈S

g0(s) ◦ f(s).

By this construction we map F (S,C) to Hom(Z(S), C).
We get the evaluation pairing

Q : Z(S) × F (S, C) → C

by
Q(g0, f) 7→ f(g0).

1.3.2 Pairings in the World of Homomorphisms

Now assume that S is a group. We restrict from F (S, C) to Hom(S,C), the
group of homomorphisms from S to C.
The evaluation map gives rise to

D : S × Hom(S,C) → C.

1In many contexts both the groups S and C are endowed with a topology. In this case
we tacitly assume that all functions are continuous.
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D is linear and non-degenerate in the second argument. As function of the
first argument, it is a group homomorphism.
Since C is assumed to be abelian every homomorphism vanishes on the com-
mutator subgroup S ′ of S, and hence D gives rise to a pairing

D : S/S ′ × Hom(S, C) → C.

The algebraic duality theorem

Take a topological group S and C = R/Z with the discrete topology.
Functions from S to R/Z are continuous if they are locally constant. For a
homomorphism from S to R/Z this means that its kernel is open.
If S is compact then a function is locally constant iff its image is finite.

The (topological) group Hom(S,R/Z) is called the Pontryagin dual S∗ of S.
If S/S ′ is locally compact (finite) then S∗ is locally compact (finite).
If S is compact then S∗ is discrete.

The group R/Z has a very special property, it is an injective Z-module:
Assume that S is abelian.
For injective

ι : S1 ↪→ S

the restriction map

ι∗ : Hom(S,R/Z) → Hom(S1,R/Z)

is surjective.
Consequence: The pairing

D : S/S ′ × S∗ → R/Z

is non-degenerate in both variables.
We have an embedding of S/S ′ into (S∗)∗, and if S/S ′ is compact (finite)
then S/S ′ ∼= (S∗)∗in a canonical way (by evaluating functions).
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1.4 Arithmetical Duality

We add more structure to S.
Let K be a field of characteristic p ≥ 0.
For simplicity we shall assume in the following that group orders are prime
to p.
Let Ks be the separable closure of K and GK = AutK(Ks) the absolute
Galois group of K. This is a topological group with profinite topology and
hence it is compact.
A Galois module M is a discrete Z-module with continuous GK-action. In
particular, this implies that

M =
⋃
U

MU

where U runs over all subgroups of G which have finite index. We define a
functor

M : { fields between K and Ks} 7→ { Abelian groups }

sending L to MGL .

Example 1.4.1 Take M = K∗
s .

The corresponding functor is called Gm. It has a nice property: It is repre-
sentable.
This means: There is a scheme,also denoted by Gm, defined over K such that
for commutative algebras R over K the set of R-rational points of Gm is

Gm(R) = R∗,

the group of invertible elements in (R, ·).
Gm is an affine curve with coordinate ring

K[X, Y ]/(XY − 1).

This example is generalized in the following way.
Assume that A is an étale commutative group scheme defined over K.
Then A = A(Ks) is a GK-module and the corresponding functor is repre-
sented by A. A finite Galois module is always represented by an (affine) étale
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commutative group scheme, and conversely, the Ks-rational points of a finite
étale commutative group scheme are a finite Galois module.
Let A,B be GK-modules. Then

Hom(A,B)

is a GK-module in a natural way: For ϕ ∈ Hom(A,B) and σ ∈ GG define

σ(ϕ) = ϕσ := σ ◦ ϕ ◦ σ−1.

The subgroup of GK-invariant homomorphisms (ie σ ◦ ϕ = ϕ ◦ σ) is denoted
by HomK(A,B).

Galois Duality

A pairing between the GK-modules A,B in a GK-module C is a Z-bilinear
map

Q : A×B → C

with
Q(σ ◦ a, σ ◦ b) = σQ(a, b)

for all (a, b, σ) ∈ A×B ×GK .

The key example is that C = K∗
s and B = Hom(A,K∗

s ) := Â, the Cartier
dual of A.

Theorem 1.4.2 The evaluation pairing A × Â → K∗
s is a non-degenerate

Galois pairing. If A is a finite étale group scheme with order prime to p then

Â := Hom(A, Gm) is the Cartier dual of A and Â(Ks) = Â(Ks).

Gm(Ks)tor is (non-canonically) isomorphic as abstract group to (R/Z)′tor,
where ′ means that we restrict ourselves to elements of order prime to p.
For finite group schemes of order prime to p we get

Â(Ks) ∼= A(Ks)
∗.



1.4. ARITHMETICAL DUALITY 15

Key Examples

1. Take A = µn, the group of roots of order dividing n.
Then A = ker(n ◦ idGm) =: Gm[n] and we have the Kummer sequence

1 → Gm[n] → Gm → Gm → 1

of group schemes yielding the exact sequence of Galois modules

1 → µn → K∗
s → K∗

s → 1.

The Cartier dual of Gm[n] is the constant group scheme Z/n (with triv-
ial Galois action) since every endomorphism of µn is an exponentiation.

2. Let A be be an abelian variety defined over K. Take

A[n] := ker(n ◦ idA).

Again we have a Kummer sequence

0 → A[n] → A→ A→ 0

yielding the exact sequence

0 → A(Ks)[n] → A(Ks) → A(Ks) → 0

of Galois modules.

There is an abelian variety Â dual to A such that, in a canonical way,

(̂A[n]) is isomorphic to Â[n].
In particular, we get a non-degenerate Galois pairing between the points
of order dividing n of A(Ks) and Â(Ks).
An important special case is that A is principally polarized (eg., A
a Jacobian of a curve). Then A is isomorphic to Â, and so A[n] is
self-dual.
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Computational Aspects

• In general it is not clear how to compute the evaluation pairing fast.

• In special cases (ie. if A is a subscheme of an abelian variety) there is
an explicit and fast evaluation function, the Weil pairing.

• But even in this case one has to deal with objects in large extension
fields L of K in general (eg., L = K(A[n](Ks))) even though one is only
interested in the group of K-rational points. In general it is not true
that the restriction of the pairing to A(K)×A(K) is non-degenerate.

• Caution: Assume that the exponent of A is n and that K contains the
n-th roots of unity hence µn is isomorphic to Z/n. Assume that we can
compute the duality pairing fast. Then this does not imply that we
can transfer the discrete logarithm from A to Z/n. We only transfer it
to the multiplicative group of K.

The negative aspects of some of these items can be repaired by using “de-
rived” pairings.

1.4.1 Galois Cohomology and Induced Pairings

In this section we take G as profinite group. Of course G = GK is the
motivating example.

Galois Cohomology

Let A,B, C be G-modules such that

0 → A
α→ B

β→ C → 0

is exact. Then

0 → AG αG→ BG βG→ CG

is exact but in general βG is not surjective: the functor

H0(G, .)
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sending A to AG is left-exact but not right-exact.
To repair this “defect” one notes that there are “enough” injective modules
and uses either a general machinery or an explicit construction to show that
there is one derived cohomology functor H∗ with

1.

H0(G,A) = AG

2. The exact sequence

0 → A
α→ B

β→ C → 0

induces maps α(n), β(n) and δn such that there is an exact sequence of
G-modules

· · · δn−1→ Hn(G,A)
α(n)→

Hn(G,B)
β(n)→ Hn(G, C)

δn→ Hn+1(G, A) . . .

Hn(G,M) is a quotient of the group of n-cocycles Cn(G,A) ⊂ F (Gn, A)
satisfying a combinatorial condition modulo the subgroup of n-coboundaries
Bn(G,A).
Relevant examples for us:

1. 1-cocycles are maps

c1 : G → A

such that for all σ, τ ∈ G we have

c1(στ) = c1(σ) + σc1(τ).

1-coboundaries are maps

b1 : G → A

such that there exists an element a ∈ A with

b1(σ) = σ · a− a

for all σ ∈ G.
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2. 2-cocycles are maps
c2 : G×G → A

such that for all σ, τ, µ ∈ G we have

σc2(τ, µ)− c2(στ, µ) + c2(σ, τµ)− c2(σ, µ) = 0.

2−coboundaries are maps b2 : G × G → A such that there exists a
function f : G → A with b2(σ, τ) = σf(τ)− f(στ) + f(σ).

We shall need the connecting homomorphisms δn only for n = 0, 1.
Definition of δ0: For c ∈ CG choose b ∈ B with β(b) = c.
For all σ ∈ G the element σ(b)− b lies in A.
δ0(c) is the class of the cocycle

ζ : σ 7→ σ(b)− b.

Definition of δ1: Take c ∈ H1(G, C) and represent it by the cocycle

ζ : G → C.

For every σ ∈ G choose b(σ) ∈ B with β(b(σ)) = ζ(σ).
For σ, τ ∈ G define

δ(σ, τ) := σ(b(τ)) + b(σ)− b(στ)

which is, as ζ is a cocycle, in A.
Take δ1(c) as class of δ(σ, τ) in H2(G,A).

For closed subgroups U of G we can restrict functions from Gn to A to
functions of Un to A and get

resU : Hn(G,A) → Hn(U,A).

For normal closed subgroups U < G we can compose the quotient map

G → G/U

with cocycles and get the inflation map

infU/G : Hn(G/U,AU) → Hn(G,A).
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Because of continuity one gets

Hn(G,A) = lim
U

infG/U(Hn(G/U,AU))

where U runs over normal subgroups of G of finite index.

Consequence:
We can compute cohomology groups of GK acting on A by computing the
cohomology groups of the finite quotients G(L/K) of GK acting on AGL

where L runs over finite Galois extensions of K.
The inflation and the restriction maps are related. A special case is the very
useful sequence

0 → H1(G/U,MU)
infU/G→ H1(G,M)

resU→ H1(U,M).

In particular,

H1(G,M) =
⋃
U

H1(G/U,MU).

We can generalize this statement to the second cohomology group under
special assumptions on M .

Lemma 1.4.3 Assume that M is a G-module such that for all U < G one
has H1(U,M) = 0.
Then

infU/G : H2(G/U, MU) → H2(G, M)

is injective.

Example 1.4.4 Take G = GK and M = K∗
s .

Hilbert‘s Theorem 90 implies that for all L/K one has H1(GL, L∗s) = 0.
Hence

H2(GK , K∗
s ) =

⋃
L

infGL/GK
H2(G(L/K, L∗))

where L runs over all finite Galois extensions of K.
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Etale Cohomology around the Corner Take X = Spec(K). Etale
(connected) covers of X are separable extension fields L of K with the in-
duced map

Spec(L) → Spec(K).

They define the “open” sets of the étale topology of Spec(K). Galois modules
A define sheaves via the section functor

Γ(Spec(L), A) := AGL .

The functor Γ is left-exact and there are enough flask sheaves (injective
modules) and so we get a sheaf cohomology Hn

et(X,A) resp. Hn
et(X,A) which

is nothing but the Galois cohomology of A(= A(Ks)).
So we can embed Galois cohomology into a much wider and flexible frame
as it is done in the fundamental duality theorem of class field theory.

Pairings in Cohomology

Let A and B be two G−modules.
The tensor product (over Z)

A
⊗

B

becomes, in a natural way, a G-module.
We have a natural (and functorial) homomorphism ∪0,0 from AG

⊗
BGto

(A
⊗

B)G.
Fact: ∪0,0 induces a unique family of homomorphisms

∪p,q : Hp(G,A)×Hq(G,B)

→ Hp+q(G,A
⊗

B)

with functorial properties with respect to cohomology functors (especially
δn, this implies uniqueness).
∪p,q is called the cup product.
Explicit formulas can be found for instance in the book of Cartan-Eilenberg.
Now assume that there is a G-pairing

Q : A×B → C.
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Q defines a G-homomorphism φQ from A
⊗

B to C by sending a ⊗ b to
Q(a, b). Hence we get a bilinear pairing

Qp,q = φ
(p+q)
Q ◦ ∪p,q.

Example 1.4.5 The evaluation pairing induces a pairing

Ep,q : Hp(GK , A)×Hq(GK , Â)

→ Hp+q(GK , K∗
s ).

If A = A(Ks) we can interpret this as a pairing between étale cohomology
groups:

Ep,q : Hp
et(Spec(K),A)×Hq

et(Spec(K), Â) → Hp+q
et (Spec(K), Gm).

The Tate Pairing

Let J be an abelian variety (principally polarized for simplicity). As part of
the long exact sequence we have the exact sequence

0 → J(K)/nJ(K)
δ0→ H1(GK , J [n](Ks)) → H1(GK , J(Ks))[n] → 0.

Duality implies

E1,1 : H1(GK , J [n](Ks))×H1(GK , J [n](Ks)) → H2(GK , K∗
s ).

Fact: δ0(J(K)/nJ(K)) is isotrop w.r.t E1,1 and so E1,1 induces the Tate-
pairing

Tn : J(K)/n · J(K)×H1(GK , J(Ks))[n] → H2(GK , K∗
s )[n].
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1.4.2 The Local Case

We apply the fundamental duality theorem

H i
et(X, F )× Ext3−i

X (F,Gm) → H3
et(X, Gm) = Q/Z

to the special case that X = Spec(OK) and OK is the ring of integers in a
local field K, ie. K is a finite algebraic extension of a p-adic field Qp or a
power series field over a finite field.
F is assumed to be a finitely generated Galois module. Spec(OK) is a one-
dimensional schema with a closed point corresponding to the maximal ideal
p (or, to Spec(k) where k is the residue field of p) and a generic point corre-
sponding to Spec(K) as open subscheme of X.
Galois modules over X consist of a generic fiber, ie. a Galois module over
GK , a special fiber, which is a Galois module over the residue field, and a
reduction map.
Etale neighborhoods are given by unramified extensions of OK , by Galois
extensions of K and by Galois extensions of k.
The duality theorem takes care of these data. Restricting to the generic fiber
we come home to Galois cohomology.
We get the Duality Theorem of Tate:

Theorem 1.4.6 1. H3
et(X,Gm) is isomorphic (in a natural way) to the

Brauer group H2(GK , K∗
s ) =: Br(K) and hence this group is isomorphic

to Q/Z.

2. Let A be a finite GK-module with Cartier dual Â.
Then for 0 ≤ i ≤ 2 the cohomology groups H i(GK , A) are finite and
the evaluation pairing induces non-degenerate pairings

H i(GK , A)×H2−i(GK , Â) → Br(K).

Corollary 1.4.7 Let J be an abelian variety (for simplicity principally po-
larized). The Tate pairing

Tn : J(K)/nJ(K)×H1(GK , J(Ks))[n]

→ Br(K)

is a non-degenerate pairing.
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We shall discuss computational aspects (at least for Jacobian varieties) in
the next chapter in detail.
5
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Etale cohomology sees the unramified part of cohomology.
Let I be the inertia group of K.
A GK-module is unramified if I acts trivially on A.
This allows to see A as Ẑ-module, and the cohomology Hn(Ẑ, A) is called
Hn

nr(K,A).
Let A be finite.

• H1
nr(K,A) can be identified with a subgroup of H1(GK , A). Its order

is equal to the order of AGK .

• Hn
nr(GK , A) = 0 for n ≥ 2.

• H1
nr(K,A) is orthogonal to H1

nr(K, Â).

1.4.3 Global Situation

Now let K be a global field. In this case étale cohomology shows its full
strength. An important method is to study global objects by passing to
local ones. So let ΣK be the set of all places of K (including archimedean
places). For p ∈ ΣK we denote by Kp the completion of K at p. We choose
an extension p̃ of p to Ks and identify the decomposition group of p̃ with
GKp .
We have restriction maps

ρp : Hn(GK , A) → Hn(GKp , A).

Define

fn(A) : Hn(GK , A)
Q

ρp→
∏

p∈ΣK

Hn(GKp , A).

The key questions are: Describe the kernel and the cokernel of fn!
Consequences of the duality theorem: Assume that A is finite.

• The kernel of f1(A) is compact and dual to the kernel of f2(Â). In
particular, the kernel of f2(A) is finite.
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• We have an exact 9-term sequence, the celebrated Duality Theorem of
Tate-Poitou:

0 → AGK →
∏

H0(Kp, A) → H2(K, Â)∗ → H1(K,A) →
′∏

H1(Kp, A)

→ H1(K, Â)∗ → H2(K,A) →
∑

H2(Kp, A) → H0(K, Â)∗ → 0.

(Here GK is replaced by K, and
∏′ is the restricted product with

respect to the unramified cohomology.)

• The Hasse-Brauer-Noether Sequence

0 → Br(K)
P

ρp→
∑

Br(Kp) → Q/Z→ 0

is exact.

1.5 From Curves to Arithmetic

1.5.1 Evaluation of Functions

We return to arbitrary fields K.
Let C be a (projective absolutely irreducible regular) curve defined over K
with function field F .
Let L be an extension field of K, CL the curve obtained by constant exten-
sion to L and FL = F · L the function field of CL. The set of points of C
rational over L is denoted by C(L).
The field FKs is a Galois extension of F with Galois group GK .
GK is acting in a natural way on C(Ks) and the set of GL-invariant points is
C(L). The set C(Ks) is the disjoint union of (finite) GK-orbits. Each orbit
corresponds to a place p of F , ie. a class of equivalent valuations on F which
are trivial on K.
Let S be a set of places of F and CS ⊂ C(Ks) the set of points which occur
in orbits attached to S.
Let FKs,S be the subgroup of functions in F ∗

Ks
which have neither zeroes nor

poles in points of CS. Note that FKs,S is a GK-module.
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We can evaluate f ∈ FKs,S at points P ∈ CS and the map

Q : CS × FKs,S → K∗
s

Q(P, f) := f(P )

is GK-equivariant and linear in the second argument.

By DS we denote the free abelian group generated by CS. It is the group of
divisors of C with support in S. It is a GK-module with action induced by
the action of GK on points of C. If S is the set of all places of F we call
DS =: DC the divisor group of C.
By linear extension we get a Galois pairing

Q : DS × FKs,S → K∗
s .

Remark 1.5.1 One defines a “partial” map

DC × F ∗
Ks

99K K∗
s

for pairs (D, f) where the set of zeros and poles of f is disjoint to the support
of the divisor D.

1.5.2 Induced pairings in cohomology: The Lichten-
baum Pairing

Motivated by the duality theorems we are interested in the case that p+q = 2.
It is not difficult to see that H1(GK , DS) = H1(GK , DC) = 0.
Thus an interesting pairing is

Q : H0(GK , DS)×H2(GK , FKs,S) → H2(GK , K∗
s ).

An element c ∈ H2(GK , FKs,S) is represented by

(f(σ, τ) ∈ FKs,S; σ, τ ∈ GK),

H0(GK , DS) consists of divisors D which are sums of Galois orbits of points
on C with support in S.

Q(D, c) is the class of the cocycle (f(σ, τ)(D)).
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Pairings on Divisor Classes

Let S ′ be the complement of S in the set of places of F . To g ∈ F ∗
Ks,S′ we

can associate the principal divisor

(g) =
∑

P∈C(Ks)

vP (g) · P

where vP is the normed valuation in P .
These principal divisors form a GK-submodule of DS denoted by PS which
is contained in D0

S, the group of divisors of degree 0 in DS consisting of all
divisors for which the coefficients add up to 0. If S consists of all places we
denote by PC the subgroup of principal divisors in D0

C , the group of divisors
of degree 0. Restricting the evaluation pairing we get a pairing

ES : PS × FKs,S → K∗
s

with ES((g), f) = f((g)). We can interchange the role of f and g by replacing
S with its complement S ′ in the set of places of F and get ES′((f), g) =
g((f)).

Theorem 1.5.2
ES((g), f) = ES′((f), g)

This is the fundamental Reciprocity law of Weil.
Define the divisor class group of degree 0, Pic0

S, by the exact sequence

0 → PS → D0
S → Pic0

S → 0

and Pic0
C by

0 → PC → D0
C → Pic0

C → 0.

Remark 1.5.3 • (f) ∈ PS determines f up to a constant.
For D ∈ D0

S

(f)(D) := f(D)

is well defined, and we get an evaluation pairing

PS ×D0
S′ → K∗

s

with S ′ the complement of A in the set of places of F .
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• Given a finite set S0 of places and c ∈ Pic0
C we find a divisor D ∈ c

prime to S0.

Again take S ′ as complement of S in the set of places of F . We use the exact
sequence

0 → PS′ → D0
S′ → Pic0

S′ → 0

to get an injection

δ1 : H1(GK , Pic0
S′) → H2(GK , PS′).

Weil’s reciprocity theorem yields that

Q | (PS × δ1(H1(GK , Pic0
S′)) = 0

and so we get a pairing

LS : (Pic0
S)GK ×H1(GK , Pic0

S′) → H2(GK , K∗
s ).

Using Remark 1.5.3 we see that we can skip the subscript S and hence get
the Lichtenbaum pairing

L : (Pic0
C)GK ×H1(GK , Pic0

C) → H2(GK , K∗
s ).

Example 1.5.4 Let E be an elliptic curve over K. Then the Lichtenbaum
pairing is a Z-bilinear map

E(K)×H1(GK , E(Ks)) → H2(GK , K∗
s ).



Chapter 2

Ideal Class groups with
Bilinear Structure

At the end of the previous chapter we have defined the Lichtenbaum pairing
in terms of divisor classes of function fields.
We want to regain and to generalize this pairing in terms of ideal class groups,
and then use the Tate duality for local fields to get bilinear structures.

2.1 Ideal Class Groups

The most important source for finding candidates for DL-systems are ideal
class groups attached to curves C over finite fields Fq.

2.1.1 Picard Groups

Curves and Rings

Let K be a field and CO be an absolutely irreducible curve defined over K
with function field F and with O as ring of holomorphic functions on CO.
We assume that Quot(O) = F and so CO is an affine curve.
Note that we allow singularities.

29
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Let C̃O be the desingularization with ring of holomorphic functions Õ.
Õ is a Dedekind domain, it is the integral closure of O.
The compactification of C̃O is the a unique projective irreducible non-singular
curve C with function field F containing C̃O as affine part.

Base Extension

As always, Ks is the separable closure of K. For simplicity we assume that
all singular points on CO become rational over Ks.
By overlining we denote objects obtained by base change from K to Ks.
So C = C × Spec(Ks) with function field F = FKs.

The integral closure of O (resp. Õ) in F is denoted by O (resp. Õ).

It is the ring of holomorphic functions of the curve CO (resp. C̃O).

Definition 2.1.1 T∞ = C(Ks) \ C̃O(Ks) is the set of “infinite points“ of C.

By S ⊂ C̃O(Ks) we denote the points which correspond to singular points on
CO.

GK acts on C(Ks) mapping T∞ and S into themselves.
We assume that there is a K-rational point P∞ in T∞.
The conductor mC0 of Õ/O is an ideal which reflects the singularities of CO.
We assume that CO has only one singular point Psing and mCO

< Õ corre-
sponds to

∏
P∈S mP where mP is the maximal ideal which correspond to the

point P ∈ C(Ks). In the ring O is mCO
is the ideal of functions vanishing in

Psing.

Remark 2.1.2 This looks like a strong assumptions but higher powers of
prime ideals in mCO

change the corresponding ideal class by linear unipotent
groups which are irrelevant for cryptology, and different singular points can
be treated separately.

Ideal Classes

To ease notation we denote the ring of holomorphic functions on C \ {P∞}
by OP∞ .
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Definition 2.1.3 Let R ⊂ F be a subring, f ∈ F . Then

(f)R := f ·R
is the principal ideal attached to f in R.
For H ⊂ F we define

(H)R = {(f)R; f ∈ H}.
(F

∗
)R is the set of of principal ideals of R.

The group of invertible ideals in R is denoted by IR. Its intersection with
(F

∗
)R is the group of invertible principle ideals denoted by denoted by PrincR.

The Picard group PicR is defined by the exact sequence

1 → PrincR → IR → PicR → 0.

Example 2.1.4 Take for R the ring OP∞ of holomorphic functions on C(Ks)\
P∞. For P ∈ C(Ks) let vP be the normalized valuation with valuation ideal
mP := {g ∈ F ; g(P ) = 0}.
Then

(f) =
∏

P∈C(Ks)\P∞
m

vP (f)
P

and PicOP∞
is isomorphic to the divisor class group of degree 0, Pic0

C
, of C.

In particular, we can represent every divisor class of degree 0 of F (resp.
ideal class of OP∞) by an ideal

A =
∏

P∈C(Ks)\{P∞}
mzP

P with
∑

P∈C(Ks)\{P∞}
zP = 0.

If we take more than one point P∞ away from C the ideal class group will
become smaller. The reason is that we pass to a localisation of OP∞ . This is
described in the next proposition.

Proposition 2.1.5 We have the exact sequence of GK-modules

0 → CT∞ → Pic(OP∞) → Pic(Õ) → 0

with
CT∞ =< mP ; P ∈ T∞ \ P∞ > /UT∞ .

Here UT∞ are the functions which have no zeros and poles outside of T∞\P∞.
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Next we want to describe Pic(O).
The group of invertible ideals IO in O is generated by ideals of O which are
prime to mCO

.

Let F 1
S denote the functions f ∈ F for which f(P ) = 1 for all P ∈ S.

We get the exact sequence of GK-modules

1 → (F 1
S) → IO → PicO → 0.

Now we use our assumption that we have only one singular point on CO and
that its conductor is squarefree.
The approximation theorem for functions in F yields

1. In every class c ∈ Pic(Õ) there is an ideal which is prime to S. So we
have a natural surjective map

ϕ : Pic(O) → Pic(Õ)

which is GK-invariant.

2. The kernel of ϕ is in a canonical way isomorphic to
∏

P∈S (K∗
s )P /∆(K∗

s )
where GK acts on

∏
P∈S (K∗

s )P by σ(. . . , xP , . . . ) = (. . . , σ(xP )σ(P ), . . . )
and ∆(K∗

s ) is the diagonal embedding.

A more geometric way to express this is

Proposition 2.1.6 There is a torus TS of dimension | S | −1 defined over
K such that we have the exact sequence of GK-modules

1 → TS(Ks) → Pic(O) → Pic(Õ) → 0.

Remark 2.1.7 The isomorphism class of TS is determined by its character
group X, and this group is determined by the first homology group of the dual
graph of CO (Grothendieck) (with GK-action). So Theorem 2.1.8 (applied to
K = Fq) gives a tool to realize discrete logarithms in subgroups of multiplica-
tive groups of extension fields of Fq as subgroups of ideal class groups of rings
of holomorphic functions of affine curves.
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Using that PicOP∞
∼=GK

JC(Ks) and putting all pieces together we get

Theorem 2.1.8 We have the exact sequences of GK-modules

1 → PrincO → IO → PicO → 0

.
1 → TS(Ks) → Pic(O) → Pic(Õ) → 0

and
0 → CT∞/(UT∞) → JC(Ks) → Pic(Õ) → 0.

Remark 2.1.9 All the material of this section is to be found in J-P. Serre:
Corps de classes et groupes algébriques.

2.2 The Lichtenbaum Pairing for Ideal Class

Groups

We continue to work with rings O resp. O as above.

2.2.1 The non-singular complete case

We assume that T∞ = {P∞} and so O = OP∞ . We repeat, for the convenience
of the reader, the definition of the Lichtenbaum pairing in the language of
ideal classes. We use the exact sequence

1 → (F ) → I(O) → PicO → 0

and get as part of the long exact cohomology sequence

H1(GK , IO) → H1(GK , PicO)
δ1→ H2(GK , (F )).
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We remark that IO is a direct sum of copies of GK-submodules isomorphic
to Z[G] with G a finite quotient group of GK and so H1(GK , IO) = 0 and
δ1 is injective. It is given by the following rule: Take c ∈ H1(GK , PicO) and
represent it by a cocycle

ζ : GK → PicO with ζ(σ) = D̄(σ)

where D̄(σ) is an ideal class. Choose an ideal D(σ) ∈ IO lying in c(σ).
Then for all σ, τ ∈ GK the ideal

A(σ, τ) = σD(τ) ·D(σ) ·D(στ)−1

is a principal ideal (f(σ, τ)) with f(σ, τ) ∈ F and δ1(c) is the cohomology
class of the 2− cocycle

γ : (σ, τ) 7→ (f(σ, τ)).

We note that, since T∞ is assumed to be {P∞} the function f(σ, τ) is deter-
mined up to a constant by its ideal.
We have some choices. For instance we can change D(σ) by a principal ideal.
So for a given ideal A ∈ IO and all σ ∈ GK we can and will choose D(σ)
prime to AO.
Hence f(σ, τ) has neither zeros nor poles in points P ∈ C for which the ideal
mP occurs with non-zero multiplicity zP in AO =

∏
P∈C\P∞ mzP

P and so the
evaluation pairing

Q(
∑

zP · P, f(σ, τ))

is defined and gives a 2-cocycle in H2(GK , K∗
s ).

Changing A by a principal ideal does not change the cohomology class as
we have seen in the first chapter (Weil reciprocity). Using the approxima-
tion theorem we see that we can change A by a principal ideal such that∑

P∈C\P∞ zP = 0.
Then

Q(
∑

zP · P, f(σ, τ))

is defined and independent of the choice of f(σ, τ).

Definition 2.2.1 The Lichtenbaum pairing

TL : PicOP∞ ×H1(GK , PicOP∞
) → H2(GK , K∗

s )
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is defined in the following way.

Choose A in P̄ ∈ PicOP∞ with AOP∞ =
∏

P∈C\P∞ mzP
P of degree 0.

Take c ∈ H1(GK , PicOP∞
) and represent δ1(c) by (f(σ, τ)) prime to A.

Then TL(P̄ , c) is the cohomology class of ζ(σ, τ) := Q(
∑

zP · P, f(σ, τ)).

The following example is important for applications.

Example 2.2.2 Let L/K be a cyclic extension with G(L/K) =< τ > . Take
c ∈ H1(< τ >, Pic

O
GL
P∞

) with representing cocycle ζ(τ i).

The cocycle condition implies that ζ(τ i) =
∑

j=0...i−1 τ j(ζ(τ)) and hence∑
j=0,...n−1 τ jζ(τ) = 0.

Choose D ∈ ζ(τ) and L−rational and D(τ j) =
∑

k=0...j−1 τ k(D).
It follows that ∑

k=0...n−1

τ k(D) = (f)c

with fc ∈ F.L, the function field of CL.
By applying the definition it is obvious that δ1(c) is presented by the cocycle

ζ(τ i, τ j) = 1 if i + j < n

and

ζ(τ i, τ j) = (fc) if i + j ≥ n.

Hence TL(D̄, c) is (the inflation of) the class of the cocycle

ζ(τ i, τ j) = 1 if i + j ≤ n

and

ζ(τ i, τ j) =
∏

fc(P )zP if i + j > n.

This is an element in the subgroup H2(G(L/K), L∗) of H2(GK , K∗
s ) corre-

sponding to a cyclic algebra (see third chapter).

We still assume that we are in the complete non-singular case.
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The Tate-Lichtenbaum Pairing

Since PicOP∞
= JC(Ks) the Lichtenbaum pairing induces for every n ∈ N a

pairing

Tn : JC(K)/nJC(K)×H1(GK , JN(Ks))[n] → H2(GK , K∗
s )[n].

We recall that we have defined the Tate pairing between these modules.

Theorem 2.2.3 (Lichtenbaum) Up to a sign the pairing Tn is equal to
the Tate pairing.

We call the pairing Tn the Tate-Lichtenbaum pairing.

2.2.2 The non-complete non-singular case

A first application of this theorem is the definition of the Lichtenbaum pairing
when T∞ is contains more than one element.
We have the exact sequence

0 → CT∞ → PicOP∞

ϕ→ PicO → 0.

We want to define the Lichtenbaum pairing for PicO resp. H1(GK , PicO). But
it is not true in general that H0(GK , PicO) is equal to PicO = ϕ(PicOP∞ ).
Moreover the map from F̄ to PrincO has as kernel the group of functions UT∞ .
Hence we cannot evaluate the image of δ1 : H1(GK , PicO) → H2(GK , P rincO)
at points on C\T∞. To overcome these difficulties we have to apply an isogeny
ψ to JC with CT∞ = kernel(ψ). Hence we have to leave the world of Jacobian
varieties and to switch to the Tate pairing. In addition we have to use the
functoriality of the Weil pairing with respect to isogenies. Finally we get

Proposition 2.2.4 The Lichtenbaum pairing induces a pairing, also denoted
by TL from PicO × ψ1(H1(GK , PicO)) to H2(GK , K∗

s ).
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2.2.3 The singular case

To make things not too complicated we assume that T∞ = {P∞}. We recall
the exact sequence

1 → TS(Ks) → PicO → PicOP∞
→ 0.

where TS is a torus determined by the conductor
∑

P∈S mP and PicOP∞
=

JC(Ks).
From this sequence we get the exact sequence

1 → TS(K) → PicO → JC(Ks) → H1(GK , TS(Ks))

and since H1(GK , TS(Ks)) = 0 by Hilbert’s theorem 90 we have the exact
sequence

1 → TS(K) → PicO → JC(Ks) → 0

as well as
0 → H1(GK , PicO) → H1(GK , JC(Ks)).

We can restrict the boundary map δ1 to H1(GK , PicO) and we get a pairing
as above but we cannot expect to get any information about TS(K). We
shall show in the next Section how one can overcome this difficulty in the
case which is relevant for cryptography.

2.2.4 Conclusion

Let O be the ring of holomorphic functions of an affine curve CO defined
over K. For all n prime to char(K) we have defined the Tate-Lichtenbaum
pairing

Tn : PicO/nPicO ×H1(GK , PicO)[n] → H2(GK , K∗
s )[n].

2.3 Lifting

The interesting case for applications in cryptography is that K = Fq with
q = pd. In fact, all DL-systems with geometric background can be realized
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as GK-invariant subgroups of Galois submodules of some PicO.
But over finite fields the Tate-Lichtenbaum pairing is trivial since

H2(GFq ,Fq) = 0.

The way out is to switch to local fields as ground fields always taking care
that this lifting is easy and that we do not loose either relevant information or
fast operations. Then the local duality theorem will imply the non-triviality
of the pairing, and, at the same time, we shall get information about the
“torus part” related to singularities.

Remark 2.3.1 We recall that for point counting a similar procedure is most
successful.

So let K be complete with respect to a normed valuation wp and with residue
field Fq.
Its separable closure is either a field of Laurent series with coefficients in Fq

or the algebraic closure of the unramified extension of Qp of degree d.

2.3.1 Lifting the Galois Group

The maximal unramified extension of K of K is denoted by Knr. There
is a canonical lift (easily computable) of the Frobenius automorphism φq

to Knr also called the Frobenius automorphism and denoted by φq. This
automorphism generates the Galois group of Knr/K as topological group.
Algebraic extensions of Knr are totally ramified.
We are interested in tamely ramified extensions.
Let n be a natural number prime to p. There is exactly one tamely ramified
extension Ln of Knr of degree n given explicitly by Ln = Knr(π

1/n) where
π is any of the elements in K with wp(π) = 1. (Such elements are called
uniformizing elements of K.) So Ln/Knr is cyclic. We choose a primitive
n-th root of unity ζn and denote by τn the generator which maps π1/n

to ζn · π1/n. It follows that Ln is a Galois extension of K whose group is
generated by φq and τn.
If we assume that ζn ∈ K, or equivalently, that n | (q − 1) then K(π1/n)
is Galois over K, τn and φq commute and the maximal tamely ramified
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extension of K whose Galois group has exponent dividing n is the subfield
of Ln fixed by φqn .

Proposition 2.3.2 There is a totally ramified extension of K of degree n if
and only if ζn ∈ K.
This extension is cyclic and, up to “twists ” with unramified extensions,
unique.

Lifting gives more freedom, since in addition to unramified extensions we
find ramified extensions, too.

2.3.2 Lifting of Curves

Let O be the ring of holomorphic functions of an affine curve CO defined over
Fq, with singular points S ⊂ CO(Fqs) defining the conductor mO =

∑
P∈S mP

and the corresponding desingularized curve C̃ embedded in the projective
nonsingular curve C. The set T∞ was defined as C(Fq) \ C̃(Fq).
We denote by g0 the genus of C.
We state the following (rather elementary) facts from the reduction theory
of curves resp. abelian varieties.1

Theorem 2.3.3 1. There is a projective absolutely irreducible nonsingu-
lar curve C l over K and a Galois invariant set T∞

l ⊂ C l(K) with

• The genus of C l is equal to

g0+ | S | −1.

• C l \ T∞
l modulo the maximal ideal of K is equal to CO.

• The Jacobian of C l extends to a scheme JCl over Spec(OK), the
ring of integers of K, whose connected component J0 := J0

Cl is
a semi-abelian variety which has as special fiber the generalized
Jacobian of CO ∪ T∞.

1Recall that we have assumed that C0 has only one singular point and the conductor
is squarefree.
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• The set T∞
l is GK-invariant. It is mapped bijectively to T∞.

We assume from now on that n is prime to q and to the number of
connected components of the special fiber of JCl.

2. Denote by Ol the ring of holomorphic functions on C l \ T∞
l.

• PicOl/[n]PicOl, is canonically isomorphic to PicO/[n]PicO.

• There is a torus T l
S defined over K of dimension | S | −1 with

reduction TS such that the elements of order n in T l
S are mapped

to the elements of order n in TS and we have the exact sequence
of finite abelian groups

1 → T l
S(UK)/(T l

S(UK))n → PicOl/[n]PicOl → PicÕ/[n]PicÕ → 0

where UK are the units with respect to the valuation of K.

3. For T∞ = {P∞} we get that JCl(K)/[n]JCl(K) is canonically isomor-
phic to PicO/[n]PicO.

4. The set T∞
l can be chosen such that the subgroup CT∞l, the subgroup of

divisor classes generated by divisors of degree 0 with support in T∞
l, is

isomorphic to CT∞. So we get the exact sequence

0 → (CT∞/[n]CT∞)GK → JCl(K)/[n]JCl(K) → PicO/[n]PicO → 0.

Moreover there is an isogeny ϕ from JC1 defined over K with kernel iso-
morphic to CT∞ such that PicO/[n]PicO is isomorphic to ϕ(JC(K))/[n]ϕ(JC(K)).

Theorem 2.3.3 enables us to study all crypto systems based on ideal classes
of curves over finite fields by using cohomology theory of local fields.

In most instances the situation will be rather simple. The curve C will be
either non-singular ( good reduction) or will have genus equal to zero (the
toric case).
The set of missing points will consist (e.g. in the case of Cab-curves ) of one
point and so the group CT∞ is the trivial group.
The lift of curves in the toric case leads to the interesting theory of Mumford
curves.
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Remark 2.3.4 It is important that all interesting objects can be lifted over
K.
This is so since n is prime to q and we are in the étale world. The next
important observation is that the finite modules defined over Fq can be lifted
to unramified Galois modules over K which played a special role in the coho-
mology theory of local fields.

Connected components and ramification In Theorem 2.3.3 we have
assumed that n is prime to the number of connected components of the
special fiber of the Jacobian of the lifted curve. This is a very mild condition.
On the one hand we have many choices for the construction of C l and we can
do it such that this number is very small. On the other side the assumption
is not really necessary; it only simplifies the formulation of Theorem 2.3.3
(which is long enough as it is). In certain cases it may be even desired to
have an appropriate number of components which deliver torsion points on
JCl which are not coming from points on PicO.
If, after the lifting, we extend K by a ramified extension and if there was a
singularity on C0 then the group of connected components of the semi-abelian
group scheme over OK will be multiplied by the ramification index, and so
there is a ramified part of the torsion group of JCl if there are singular points
on CO. This makes the cohomology theory of Galois modules attached to
torsion points much richer.

The Tate elliptic curve Instead of proving the statements of Theorem
2.3.3 we give a simple but important example.

Example 2.3.5 We begin with the affine curve

CO : Y 2 + XY = X3

defined over Fq and corresponding to

O = Fq[X, Y ]/(Y 2 + XY −X3).

We have T∞ = {P∞} where P∞ corresponds to the point (0, 1, 0) on the
projective curve

Y 2Z −XY Z = X3.
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There is one singular point (0, 0) on C. This point corresponds to 2 points
(we have two different tangents at this point) on the desingularization. It
follows that PicO is isomorphic to F∗q.
Let K be a local field with residue field Fq and uniformizing element π, k ∈ N.
Then

C l := E : Y 2 −XY = X3 + πk

is the affine part of an elliptic curve with reduction equal to C. It is a Tate
curve with period Q with wp(Q) = k. The number of connected components in
the special fiber is equal to k. The group of rational points E(K) is isomorphic
to K∗/ < Q >,we get the exact sequence

1 → UK → E(K) → Z/kZ→ 0,

and all the assertions of the Theorem 2.3.3 can be checked immediately.

2.4 The Tate-Lichtenbaum Pairing over Fi-

nite and Local Fields

Let K be a local field and let CO be an affine curve defined over K with
corresponding projective curve C. Since we are interested in curves lifted
from curves over finite fields we can simplify the situation by using the results
of the previous section and assume that CO has no singularities.

Theorem 2.4.1 The Tate-Lichtenbaum pairing

Tn : PicO/nPicO ×H1(GK , PicO)[n] → H2(GK , K∗
s )[n]

is non-degenerate.

Corollary 2.4.2 Assume that Dn is a cyclic subgroup of JC(K)/[n]JC(K).
Then there is an element

c ∈ H1(GK , JC(Ks))[n]

such that the restriction Tn |Dn×{c} is a monomorphism. Hence the discrete
logarithm in Dn is transferred to the discrete logarithm in H2(GK , K∗

s )[n]
with costs arising from the complexity of computing Tn |Dn×{c}.

So we can suspect that PicO/nPicO has a bilinear structure. To decide this
we have to describe how to compute Tn.
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2.4.1 Explicit Description over Local Fields

We assume that K is a local field with residue field Fq.
Though the general case is interesting we restrict ourselves to the case that
the curve C has good reduction (hence is the lift of a nonsingular curve C0

over Fq) and that we look for Picard groups with only one point at infinity.
So we have a non-degenerate pairing

Tn : JC(K)/nJC(K)×H1(GK , JC(Ks))[n] → H2(GKs , JC(Ks))[n].

Since we have assumed good reduction and n prime to q we get

H1
nr(K, JC(Ks))[n] = 0.

Hence we need ramified extensions and so we have to adjoin ζn to K (or,
equivalently, to Fq).
Let k be the smallest number with

qk ≡ 1 mod n.

k is called the “embedding degree”.
Define K(ζn) := Kn and let L be “the” ramified extension of degree n of

Kn,eg. take L = Kn(π
1/n
K ), and take τ as generator of G(L/Kn).

We note that φq acts on τ by conjugation which is equal to the exponenti-
ation with the cyclotomic character, ie. powering by q. We are now ready
to determine H1(GK , J(Ks))[n]. Every element of this group is split by L
and hence (using the inflation map) it can be identified with an element
in H1(G(L/K), J(L)) which is invariant under the action of φq. Here we
use that elements of order n in H1(GK , J(Ks)) are split by field extensions of
degree n (which necessarily have to be ramified) and the inflation-restriction-
sequence.
As seen in Example 2.2.2 we get for a ζ ∈ c ∈ H1(GK , JC(Ks))[n] that ζ(τ)
modulo wpL

is a point of order n. Hence we can assume that P = ζ(τ) has
order n and that it is contained in JC(Kn).
But this means that ζ ∈ Hom(< τ >, JC(Kn)[n]). The invariance condition
yields that

φq((ζ(τ)) = q ◦ ζ(τ).

Hence we can identify (depending on the choice of τ) H1(GK , JC(Kn))[n])
with the eigenspace of φq with eigenvalue q mod n in JC(Ks)[n] which we
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denote by JC(Ks)[χq].
Now take ϕ ∈ Hom(GK , JC(Kn)[n]) with ϕ(τ) = P and φq(P ) = q ◦ P .
Let nP = (fP ) and assume that a representative of Q of Q ∈ JC(K) is chosen
such that fP (Q) is defined.
Then

Tn(P, Q)

is the class of cyclic algebra corresponding (wrt. τ) given by fP (Q).

Moreover, we can change fP (Q) by a factor in NL/Kn without changing the
class of the algebra, and so we can interpret Tn as pairing with values in

K∗
n/NL/Kn

∼= F∗qk/(F∗qk)
n.

Hence we get a pairing

Tn,0 : JC(K)× JC(Ks)[n][χq] → F∗qk/(F∗qk)
n

which is non-degenerate on the right side and has radical nJC(K) on the
left side.

2.4.2 The Tate-Lichtenbaum Pairing over Finite Fields

We can look at the result above modulo mv (cf. Theorem 2.3.3) and get
an explicit description of the Tate-Lichtenbaum pairing in the case of good
reduction which only uses objects attached to the curve modulo mv.

Theorem 2.4.3 Assume that C is a projective irreducible non-singular curve
define over Fq. Then we get a pairing

Tn : JC(Fq)× JC(Fq)[χq] → F∗qk/(F∗qk)
n

which is non-degenerate on the right side and has radical nJC(Fq) on the left
side.

So the lifting is not necessary for the definition of Tn but the relation with
Brauer groups is remarkable and to see the whole background may be advis-
able even if one wants to use the extremely simple pairing only.

Certainly this is necessary for the general case. We use the results stated in
Theorem 2.3.3 and get
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Theorem 2.4.4 The discrete logarithm in ideal classes of rings of holo-
morphic functions of affine curves C over finite fields Fq is transferred to
H2(GK , K∗

s ) by the Tate-Lichtenbaum pairings Tn.

Remarks 2.4.5 1. By lifting curves from finite fields to local fields we
get the non-triviality of cohomology groups involved in the pairings as
well as a smoothing of the curve. We do not loose information about
the torus part of the ideal class groups. The reason is that we have
ramified extensions at hand.

2. Of course the practical value of Theorem 2.4.4 depends on the assump-
tion that the pairing Tn has low computational complexity. At present,
this means that the embedding degree k has to be small.

2.4.3 Evaluation

To compute Tn one has to evaluate a divisor D at fP .
A naive approach is, because of the high degrees needed in practice, not
possible.
The way out was found by V. Miller for elliptic curves (applied to the
Weil pairing). The background is the theory of Mumford‘s Theta groups
which describes extensions of (finite subgroups of) abelian varieties by linear
groups.
The basic step for the computation is:
For given positive divisors A1, A2 of degree g find a positive divisor A3 of
degree g and a function h on C such that

A1 + A2 − A3 − gP0 = (h).

One has to repeat such an step O(log(n)) times.
CONSEQUENCE:
We can reduce the discrete logarithm in ideal class groups of rings of holomor-
phic functions of curves over Fq to the discrete logarithm in H2(GK , K∗

s )[n]
with the costs O(log(| Fqk) |).

It is easy to implement the algorithm at least in the case that the ideal class
group is equal to the divisor class group of degree 0 of a function field, and
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one can find it at many places including various tricks which speed up the
pairing.
For the constructive applications it is necessary to have an embedding degree
∼ 12 · g. It is a very nice problem in computational number theory to find
such k. For elliptic curves the situation is not so bad.
But for g > 1 nothing is known if JC is not supersingular.
A successful approach to this problem could be interesting since one can
speed up the computation of Tn by a factor g in interesting protocols.



Chapter 3

Brauer Groups of Local and
Global Fields

3.1 The Brauer Group

In the second chapter we motivated the importance of the second cohomology
group of the multiplicative group of local fields.

3.1.1 Definition and First Properties of Brauer Groups

Let K be a field.

Definition 3.1.1 The Brauer group of K is the cohomology group

H2(GK , K∗
s ).

It is denoted by
Br(K).

Br(K) is a torsion group.
One can interpret its elements as classes of simple K-algebras with center K.

47
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The addition in the cohomology group corresponds to the tensor product.
The unit element in Br(K) corresponds to the class of full matrix algebras.
Let L be an extension field of K, A an algebra representing c ∈ Br(K).
Then A ⊗K L represents cL = resK/L(c). Recall that for Galois extensions
L/K the inflation map from H2(G(L/K), L∗) to H2(GK , K∗

s ) is injective and
that the kernel of the restriction map resK/L is equal to H2(G(L/K), L∗) :=
Br(L/K), the relative Brauer group.
Assume that L/K is a cyclic extension of degree n with G(L/K) =< τ >.
Algebras corresponding to elements in H2(G(L/K), L∗) are called cyclic al-
gebras. Recall: We get all cyclic algebras split be L as cohomology classes of
cocycles in the following way:
For a ∈ K∗ define fτ,a : G×G → L∗ by

fτ,a(τ
i, τ j) =

{
a : i + j ≥ n
1 : i + j < n

For two elements a, a′ the cocycles fτ,a and fτ,a′ are in the same cohomology
class if and only if a · a′−1 ∈ NL/KL∗. We denote the corresponding class of
cyclic algebras by

(L, τ, a ·NL/KL∗).

We get Br(L/K) ∼= K∗/NL/K(L∗).
Note that this isomorphism depends on the choice of τ !

3.1.2 Brauer Groups of Local Fields

Invariants

Let Lu be the unique unramified extension of K of degree n. So

G(Lu/K) =< φq >

where φq is the lift of the Frobenius automorphism of Fq.
Let c ∈ Br(K) be split by Lu.
Since both Lu and φq are canonically given we can characterize c in a canon-
ical way by

(Lu, φq, a ·NLu/K(L∗u)).

Since
K∗/NLu/K(L∗u) ∼=< π > / < πn >
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with π an uniformizing element of K the class of c is uniquely determined
by wp(a) mod n.

Definition 3.1.2 Let c ∈ H2(G(Lu/K), L∗u) be given by the triple (Lu, φq, a).
Then wp(a) ∈ Z/nZ is the invariant invK(c) of c.

It is obvious that the discrete logarithm in H2(G(Lu/K), L∗u) is computable
in polynomial time if the elements in this group are given in the “canonical”
way, i.e. as cyclic algebras with automorphism φq.

Lemma 3.1.3 Assume that τ is another generator of G(Lu/K) and c is
given by the triple (Lu, τ, a). Let f ∈ Z be such that τ f = φq .
Then inv(c) = f · wp(a) mod n.

Hence the computation of the invariant of c leads to a discrete logarithm
problem in G(Lu/K).

Example 3.1.4 Assume that Lu = K(α) with α ∈ U(K) such that
τ(α) = β · α with β ∈ K.
Then τ f = φq if and only if βf ≡ αq−1 modulo the maximal ideal of K. So
we have to solve a discrete logarithm problem in Fq.

Because of the duality theorem we know that Br(K)[n] is cyclic. Hence every
element of c in Br(K)[n] (resp. every central simple algebra A over K) is
equivalent to a cyclic algebra split by Lu. So we can associate to c (resp. A)
its invariant and we get an isomorphism

invK : Br(K)[p] → Z/p.

The discrete logarithm in Br(K)[n] would be trivial if we could compute
invariants.
The application of the Tate-Lichtenbaum pairing leads to cyclic algebras split
by ramified extensions.
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Assume that n | q − 1.
Take Ln = K(π1/n) and τ ∈ G(Ln/K) with

τ(π1/n) = ζnπ1/n.

Since π is a norm element and τ acts trivially on the residue field of K the
class c is determined by a triple

(Ln, τ, ζk
n).

Let Mn be the composite of Ln and Lu. It is a Galois extension with Galois
group < τ, φq > .
To compute the invariant of c we have to find a number ` such that

inf
M/Ln

(c) = infM/Lu((Lu, φ
`
q, πq)).

This can be worked out in an explicit way, and as result we see that again
we have to compute a discrete logarithm in F∗q.

3.1.3 The Local-Global Relation

We go one step further and lift local fields to global fields.
Let K be a global field, i.e. K is either a finite algebraic extension of Q or a
function field of one variable over a finite field Fq.

Localization

Let p be a non-archimedean place on K. Let p̃ be an extension of p to Ks.
Its decomposition group depends up to conjugation only on p and is denoted
by Gp. It will be identified with GKp , the Galois group of the completion of
K at p.
The set of all places of K is denoted by ΣK .
A GK-module M has (by restriction) a natural structure as Gp-module and
so we have restriction maps

ρp : Hn(GK ,M) → Hn(Gp,M)
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of cohomology groups.
If M is a Gp-submodule of Mp we can interpret cochains with value in M
as cochains with value in Mp. Combining this with ρp we get maps (again
denoted by ρp) from Hn(GK ,M) in Hn(Gp,Mp).

We apply this to M = K∗
s , Mp = K∗

p,s and n = 2 and get for all p ∈ ΣK the
restriction map

ρp : Br(K) → Br(Kp).

The kernel of this map consists of the classes of simple algebras with center
K which become isomorphic to full rings of matrices after tensorizing with
Kp.
In terms of invariants this means:
for c ∈ Br(K) define invp(c) := invKp(ρp(c)). Then the kernel of ρp consists
of the set {c ∈ Br(K); invp(c) = 0}.
Recall :

Theorem 3.1.5 Let K be a global field and n ∈ N odd and prime to char(K).
Then the sequence

0 → Br(K)[n]
⊕p∈ΣK

ρp−→
⊕
p∈ΣK

Br(Kp)[n]
Σp∈ΣK

invp−→ Z/n → 0

is exact.

Trivial but useful is

Corollary 3.1.6 Let T be a finite set of places of K. For each p ∈ T let Ap

be a given simple algebra with center Kp in Br(Kp)[n].
Let L/K be a cyclic extension of order n with Galois group generated by τ .
Let A = (L, τ, c) be a cyclic algebra over K such that

A
⊗

Kp
∼= Ap

for p ∈ T .
Then

−
∑
p∈T

invp(ρp(A)) =
∑

p∈ΣK\T
invp((Lp, τ

hp , chp)

with G(Lp/Kp) =< τhp >.
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Remark 3.1.7 For the existence of lifts A of Ap we need existence theorems
for cyclic extensions of K with restricted ramification, and such results are
delivered by global class field theory (in an explicit way e.g. by CM theory).

We use Corollary 3.1.6 in the following situation.
Let m be an ideal in OK , the ring of integers of K. We assume that there is
a cyclic extension L of odd degree n of K unramified outside of Tm, the set
of places dividing m.
Let τ be a generator of G(L/K).
For p /∈ Tm let φp be a Frobenius automorphism at p in G(L/K), and fp so
that

τ fp = φp.

For a ∈ K∗ define the cyclic algebra A by (L, τ, a).Then

∑
p∈Tm

invp(A) ≡ −

∑

p/∈Tm

wp(a))fp


 mod n

where wp is the normed valuation in p.
We use this as a test for the existence of cyclic extensions unramified outside
of m.

Proposition 3.1.8 If there is a cyclic extension of K of degree n unramified
outside of m then the following holds:
For all p ∈ ΣK not dividing m there are numbers fp such that for all elements
a1, a2 ∈ K∗ prime to m with as

1 ≡ a2 mod m we have


∑

p/∈Tm

(s · wp(a2)− wp(a1))fp


 ≡ 0 mod n

where wp is the normed valuation in p.

3.1.4 Application to Ring Class Numbers

Apply Proposition 3.1.8 to the following problem:
For m < OK compute the order ϕ(m) of the ring class group of OK with
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module m, i.e. the order of the ideal class group of the order in K with
conductor m.
Define

Km = {a ∈ K∗ with
∑
p∈Tm

invp((L, τ, a)) = 0}

for all cyclic extensions of K with conductor ≤ m.
A subset of Km are the elements a in K for which

wp(a− 1) ≥ 1; p ∈ Tm.

1. Take any subset R ⊂ Km and an odd prime number `. If ` | ϕ(m) then
the system of linear equations LR given by {La; a ∈ R} with

La :
∑

p∈ΣK\Tm

wp(a)Xp = 0

has a non-trivial solution
modulo l.

2. Assume that we find R such that the number of variables Xp occurring
with non-zero coefficient in at least one of the equations in LR is equal
to the rank of LR then l divides the determinant of the system, and so
the odd prime divisors of ϕ(m) are a subset of the prime divisors of the
determinant.

Example 3.1.9 Take K = Q.
For m ∈ N the function ϕ(m) is the classical Euler totient function. The
global class field theory of Q is completely determined by the theorem of Kro-
necker and Weber.
We now assume that the prime number ` divides ϕ(m) and consider a global
algebra A of the form A = (L/K, σ, a) corresponding to this extension with
a prime to m. To be explicit we choose a random number 1 < k < m and
assume that the exponentiation of m-th roots of unity by k induces σ on L.
For a =

∏
pnp the theorem by Hasse–Brauer–Noether leads to a relation of

the form ∑

p|m
invpA +

∑

gcd(p,m)=1

npfp ≡ 0 mod ` (3.1)
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with fp ∈ Z such that p ≡ kfp mod m.
Assume moreover that a = r/s with r, s ∈ Z and gcd(r, s) = 1 such that
m | (r − s). Then ∑

gcd(p,m)=1

npfp ≡ 0 mod `. (3.2)

3.1.5 Computation of the Classical DL

Let m = p0 be a prime ideal of the ring of integers OK of K with residue
field Fq. We assume that ` is a prime number dividing q − 1 and that there
is a cyclic extension of K of degree ` totally ramified at p0. For instance this
is the case if the class number of K is prime to `.
Let ζ and ζ1 be two `-th roots of unity which are the reduction modulo p0 of
two integers a and a1 in OK .

Proposition 3.1.10 Let k ∈ Z. Then ζk = ζ1 if and only if

k


 ∑

p∈ΣK\{p0}
fpwp(a)


 ≡

∑

p∈ΣK\{p0}
fpwp(a1) mod `.

Recall that we have seen already that the discrete logarithm in Brauer groups
of local fields is (at least if we deal only with cyclic algebras) transferred to
the discrete logarithm in their residue fields. Proposition 3.1.10 shows that
we can compute the discrete logarithm in finite fields if we can compute the
numbers fp at least for divisors of lifts of ζ and ζ1.

3.1.6 Description of cyclic extensions

How can one describe extension fields L of global fields K by objects defined
over K?
A first answer is to use polynomials (maybe monic over the ring of integers
OK) which define L and then the decomposition of these polynomials modulo
the places of K give all the information necessary for studying the arithmetic
of L.
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In practice this method is working only for small degrees of L/K and defi-
nitely not for degrees of the size which occur in cryptography (e.g. ` ∼ 1060)).
Alternatively we could try to compute for a given extension L and a given
prime p of OK the number fp.
If we would succeed we would have a very satisfying description of the arith-
metic of L. It would be much finer than a description of the splitting behavior
of primes in L which alone characterizes L.

3.2 Index-Calculus in Global Brauer Groups

The results of the previous sections motivate the search for algorithms to
determine the numbers fp which characterize the Frobenius automorphisms
at places p of K related to cyclic extensions with conductor dividing an ideal
m.
The method to do this is an index-calculus algorithm of the type one is used
to see in algorithms for factoring numbers. To demonstrate the principle we
take K = Q and so Fq = Fp.
The congruences (3.1) can be seen as system of linear equations relating the
indeterminates fp for p prime to m and invp(A) for p | m. We use cyclic
algebras with trivial invariants at primes dividing m.
At the other primes we want to have wp(a) 6= 0 in a certain distinguished
set big enough such that many elements a can be found, and small enough
to make linear algebra feasible.
The key concept is the notion of smooth numbers.
Let B be a natural number.

Definition 3.2.1 A number n ∈ N is B-smooth if all prime numbers divid-
ing n are bounded by B.

There are results from analytic number theory, eg. the Theorem of Canfield-
Erdös-Pomerance which predict the probability to find smooth numbers.

Example 3.2.2 We define the subexponential function
Lx(α, c) := exp(c log(x)α · log log(x)1−α).
The heuristic probability to find a smooth number with smoothness bound
B = Lx(1/2, c) in [1, x] is Lx(1/2,−1/2c).
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If we want to find B such numbers we have (again heuristically) to make
∼ Lx(1/2,

2c−1
2c

) trials.

We are now ready to state the most simple version of the index-calculus
algorithm we have in mind.

An algorithm for K = Q Choose a smoothness bound B and compute
the factor basis S consisting of the primes less than or equal to B.
Let d be the smallest number ≥ √

m.
For δ ∈ L := [0, ..., l0] take a1(δ) := d + δ, a2(δ) := c0 + 2δ · d + δ2 (≡ a2

modulo m) with c0 = d2 −m. We get a linear equation

Lδ :
∑

p∈P
(2wp(a1(δ))− wp(a2(δ)))Xp = 0.

Assume that for δ ∈ L both

a1(δ) and a2(δ)

are B-smooth. Then we get a relation in which the coefficient of fp is 6= 0
only if p is in the factor base. To find such δ ∈ L we can use sieves.

Relations Arising from Quadratic Fields We are interested in cyclic
extensions L of odd degree ` with conductor m over Q and generator τ of
G(L/Q). The composite of such an extension with a quadratic extension
field K of Q has the same properties. So we can use cyclic algebras over K
given by a triple A = (L/K, τ, c) with c ∈ K∗.
For places p ∈ ΣK we have numbers fp such that τ fp = φp.
If p ∈ p is inert in K then fp = 2fp.
Else we getfp = fp for p | p. We need that the sum of the invariants of A
taken over all places dividing m is zero. This is certainly the case if c is prime
to m and if the norm of c is congruent to 1 modulo m. If we assume that all
primes dividing m are split in K and that the class number of K is prime to
` we get that there is an cyclic extension cyclic of degree ` unramified outside
of m if and only ` | ϕ(m). So we can use relations by cyclic algebras over K
for our system of equations.
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Take odd ε ∈ N and d ∈ Z \ Z2, gcd(d, ε) = 1 and d ≡ ε2 mod m. We
denote by Kd the field Q(

√
d).

We take u ∈ Z with gcd(εd, 1− u4) = 1. (This implies that u is even.)
The element

c =
1 + u2

2u
+

1− u2

2εu

√
d

has norm
ε2(1 + u2)2 − (1− u2)2d

4ε2u2
≡ 1 mod m

and so we get ∑
p∈ΣK

wp(ε(1 + u2) + (1− u2)
√

d)fp ≡
∑

p∈ΣK

wp(2εu)fp mod `.

Straightforward calculations yield
∑

p split in Kd

wp(ε
2(1 + u2)2 − (1− u2)2d)

≡ wp(2εu))fp mod `.

Assume that both εu and ε2(1 + u2)2 − (1− u2)2d are B-smooth. Then we
have found an equation of the wanted form.

3.3 Construction of Elements in the Brauer

Group

We are looking for more methods to construct elements in the Brauer group
of number fields. The theoretical background for the success (or failure) is
the duality theorem of Tate-Poitou.

3.3.1 Pairings with Dirichlet Characters

This method is due to Huang-Raskind.
It uses the duality between Z/n and µn and leads to well known “symbols”
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in class field theory.
H1(GK ,Q/Z) = Hom(GK ,Q/Z) consists of Dirichlet characters of K.
We use the Kummer sequence for the multiplicative group and map K∗ to
H1(GK , µn) (in fact, this is the original “Kummer theory”). The cup product
yields a pairing

K∗ × Hom(GK ,Z/n) → Br(K)

sending (a, χ) to < a, χ >.
By restriction we get local pairings (local symbols) and of course there is a
reciprocity law for the invariant. We look at the Dirichlet characters as test
functions to get information about discrete logarithms at various places.
Hence we are interested in finding Dirichlet characters with prescribed ramifi-
cation (see discussion above). The answer to this is given by the Tate-Poitou
duality theorem.
One nice application is: Let K be a real quadratic field.
Under suitable conditions one proves the existence of a Dirichlet character
ramified at two given places. Applying <,> to a unit of K one gets rela-
tions between the discrete logarithm at the two places. For details I refer
to: Ming-Deh Huang and Wayne Raskind: Signature Calculus and Discrete
Logarithm Problem, ANTS 2006.

3.3.2 Pairings with Principal Homogenous Spaces

Of course, one can try to do analogue things with abelian varieties instead
of using the multiplicative group.
Hence one uses elements in H1(GK , A(Ks) as test functions, and of course,
the pairing is the Tate-Lichtenbaum pairing.
The situation is much more rigid. The duality theorem of Tate-Poitou pre-
dicts that there are not many suitable elements and our local description tells
us that we get “very sparse” relations.
Assume that we have a Jacobian variety A (e.g. an elliptic curve) over a
global field K with a point P ∈ A(K) and that we have an element

ϕ ∈ H1(GK , A(Ks))[n].

Then Tn(P, ϕ) is an element in Br(K)[n] which is very sparse.
At all p prime to n·cond(A) at which ϕ is unramified or at which the reduction
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of P lies in nA(Kp) the value of the local pairing is 0. Hence
∑
p∈S

invp(Tn(P, ϕ)) = 0

with
S = {p; p | n · cond(ϕ) · cond(A)}

∩{p; P /∈ nA(Kp)}.

3.3.3 Cassel’s Pairing

One of the complications occurring when we use ϕ ∈ H1(GK , A(Ks))[n] for
testing is that ϕ becomes trivial at many places.
This has a geometric interpretation. In a canonical way ϕ corresponds to a
principal homogeneous space Vϕ attached to A which becomes isomorphic to
A over any field L with Vϕ(L) 6= ∅.
So its restriction at p becomes trivial iff Vϕ has a Kp-rational point.
In the extreme case this happens at all places. Then ϕ is an element of the
Tate-Shafarevich group TS(A).
Hopefully this group is finite. But certainly its order cannot be bounded if
we vary A.
For elliptic curves Heegner points and the corresponding Kolyvagin-Euler-
systems are good candidate for yielding elements in TS(A).
Cassels has used the Tate-Shafarevich group to define a very interesting
skew symmetric pairing which is non-degenerate iff TS(A) is finite. And
then the order is a square! Cassels’ pairing is really a global object. To
define it one has to leave the world of Brauer groups (which are good for
local duality) and go to the second cohomology of idele classes, which is
isomorphic to Q/Z again.
Ideles (and so cocycles) have entries at all places of K coming from local
fields, and so as result of the pairing we find again a collection of elements in
local Brauer groups. But now the sum of invariants will not be 0 in general,
but we are not far away!
So, besides of the great importance of Cassels’ pairing for theory it could be
an interesting object for cryptography, and I refer to ongoing work done by
K. Eisenträger, D. Jetchev and K.Lauter.


