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Gauss first “proof” of the fundamental

theorem of algebra

For any degree n complex polynomial f(z), consider the plane

algebraic curves:

R(f) := {(x, y) | Re(f(x + i y)) = 0}, and

I(f) := {(x, y) | Im(f(x + i y)) = 0}.

then

Z(f) = R(f) ∩ I(f)
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For any degree n complex polynomial f(z), consider the plane

algebraic curves:

R(f) := {(x, y) | Re(f(x + i y)) = 0}, and

I(f) := {(x, y) | Im(f(x + i y)) = 0}.

then

Z(f) = R(f) ∩ I(f)

For example, if f(z) = z5 − z4 − 2 z3 + 2 z2 + z + 1 then

R(f) = {(x, y) | x5 − 10 x3y2 + 5 xy4 − x4 + 6 x2y2 − y4

−2 x3 + 6 xy2 + 2 x2 − 2 y2 + x + 1 = 0}

I(f) = {(x, y) | 5 x4y − 10 x2y3 + y5 − 4 x3y + 4 xy3

−6 x2y + 2 y3 + 4 xy + y = 0}
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Example

Figure 1: f(z) = z5 − z4 − 2 z3 + 2 z2 + z + 1.
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Example

Figure 1: f(z) = z5 − z4 − 2 z3 + 2 z2 + z + 1.

x2 + y2 = ρ2 ≫ 0
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Imaginary part

Figure 2: 5 x4y−10 x2y3+y5−4 x3y+4 xy3−6 x2y+2 y3+4 xy+y = 0.
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Imaginary part

Figure 2:
√

x2 + y2 → ∞.
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Imaginary part

Figure 2: e5 θ i − 1 ≈ 0.
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Imaginary part

Figure 2: e5 θ i − 1 ≈ 0.

What are the
possible combinatorial

configurations?
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Basketball

Figure 3: A basketball.
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Basketball

Figure 4: Imaginary part of f(z) = z3 + 6 z2 + 1.
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Non singular Basketballs

Jeremy Martin, David Savitt, and Ted Singer:

“Harmonic Algebraic Curves and Noncrossing Partitions”

To appear in: Discrete and Computational Geometry.

arXiv:math.CO/0511248
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Simple reduction

We assume that f is of the form

f(z) = zn + c2z
n−2 + . . . + cn

In other words, f is monic with the average of its roots equal to 0.

Evident symmetries

Letting ρn be the rotation of the plane by an angle of π/n

R(f(e−πi/n z) = ρn(R(f(z))),

I(f(e−πi/2n z) = ρn(I(f(z)))

also

R(f(z)) = τ(R(f(z)))

with τ being the reflection in the real axis.
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Reformulation

R(f) = {z | f(z) = i t, with t ∈ R}, and

I(f) = {z | f(z) = t, with t ∈ R}.

since

R(f) = R(g), iff f(z) − g(z) ∈ i R

I(f) = I(g), iff f(z) − g(z) ∈ R

In other words, R(f) decomposes into n branches ρi : R −→ C,

such that

f(z) − i t = (z − ρ1(t))(z − ρ2(t)) · · · (z − ρn(t)),

Let us call them the real branches. Likewise

f(z) − t = (z − ι1(t))(z − ι2(t)) · · · (z − ιn(t)),
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f(z) − t i, with t going from −∞ to +∞
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Real/Imaginary Intersections

Observe that:

1) Each real branch intersects one “and only one” imaginary

branch.

2) Multiple intersections occur only at singular points of the

respective components, with agreeing multiplicities.

Figure 5: f(z) = (z + 2q)(z − q)2, with q = eiθ.
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Figure 6: ρ2(t).
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Figure 6: ρ2(t) and half of ρ1(t).
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No singularity
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Figure 7: ρ1(t) and ρ2(t).
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With singularity
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Figure 8: ρ1(t) crosses ρ2(t).
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The case n = 2

The possible basketballs for f(z) = z2 − (a + b i), are readily

classified as follows:

Figure 9: f(z) = z2 − (a + b i)
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The generic (non singular) case
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Figure 10: f(z) = z5 − eπ i/5z + 1
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The generic (non singular) case
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A Result of Martin, Savitt and Singer

Defining non singular n-basketballs as pairs of noncrossing

matchings, such that each edge of the first crosses one and only one

edge from the second, then

Theorem (MSS-2005). The non singular n-basketball

configurations number
1

3 n + 1

(

4n

n

)

,

and each such configuration is realizable as a pair (R(f), I(f)), for

some polynomial f(z).
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Singular Basketballs
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Possible shapes for the real and

imaginary parts

Observe that

R(i f(e−πi/2n z) = ρ2n(I(f)),

I(i f(e−πi/2n z) = ρ2n(R(f))

In other words, we may exchange the role of the real and imaginary

parts by a rotation of π/2 n.

Non singular shapes for the real (or imaginary) part are

noncrossing matchings. Recall that they number

1

2 n + 1

(

2 n

n

)
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f(z) = z3 − 3 z
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Critical values

If f ′(w) = 0, it is said that f(w) is a critical value for f(z). It this

case, f(z) − f(w) has a multiple root.

Critical value

Critical value

Critical value
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Critical values

The passeport of a polynomial is the sequence of partitions of n

giving the multiplicities of the roots of f(z) − f(w); one partition

for each critical value. This notion appears in the study of Hurwitz

problem.

This has given rise to many recent (and less recent) studies. For a

very nice description of many aspects of these questions, see

Graphs on Surfaces and Their Applications,

S.K. Lando and A.K. Zvonkin

Part of the originality of the basketball approach lies in the study

of the disposition of critical values, as well as giving a

combinatorial description of how they relate.
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Critical values

(3,2,1,1)

(2,2,2,1)

(4,1,1,1)
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Rigid classification of generic polynomials

On the space of degree n complex polynomials consider the

LL-mapping (Lyaschko-Looinjenga):

LL : f(z) 7→ Discz(f(z) − t)

normalized to be monic in t.

For example,

Discz(z
4 + a2z

2 + a3z + a4 − t) = t3 +
1

2
(a2

2 − 6 a4)t
2

+
1

16
(a4

2 + 9 a2a
2
3 − 16 a2

2a4 + 48 a2
4)t

−
1

256
(16 a4

2a4 − 4 a3
2a

2
3 − 128 a2

2a
2
4

+144 a2a4a
2
3 − 27 a4

3 + 256 a3
4)
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An Enumeration Result

Theorem (Lyashko–Looijenga, 1974). The LL-mapping is of

degree (number of preimages of a generic point)

nn−2.

In other words, taking n = 4, the system of equations

e1 = a2
2 − 6 a4

e2 = a4
2 + 9 a2a

2
316 a2

2a4 + 48 a2
4

e3 = 16 a4
2a4 − 4 a3

2a
2
3 − 128 a2

2a
2
4

+144 a2a4a
2
3 − 27 a4

3 + 256 a3
4

has 16 solutions (a2, a3, a4), for generic values of e1, e2 and e3.
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Other Results in that direction

(1) A proof (not the simplest) of Cayley formula for the number of

labelled trees (Looijenga,1974).

(2) A theorem of Lando–Zvonkine (1999) gives the degree of the

LL-mapping restricted to the stratum consisting of polynomials

with a given passeport.

(3) The enumerative content of (2) is equivalent to the

Goulden-Jackson (1992) enumerative formula for “cacti”.

(4) Formulas for the number of ramified coverings of the sphere by

the torus. Formulas for Hurwitz numbers and Hodge integrals,

etc.

Fields, August 2006 25



Singularity locus

R(f) is singular if and only if

Discz(f(z) − i t) = 0

for some real value t. Similarly, I(f(z)) is singular if and only if

Discz(f(z) − t) = 0,

for some t ∈ R.

We want to classify the possible “shapes” for these singular

situations. We will then construct basketballs by combining

“compatible” shapes. Observe that

I(f2) = R(f) ∪ I(f),

so that there is a link between properties of the shapes, and these

compatibility conditions.
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Even internal degree plane trees
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Enumeration, including degree sequence

indicator

Let

xA(x,d) :=
∑

n,λ

an,λdλx2n,

where an,λ is the number of plane trees with 2n leaves on a

circumscribed circle (A-trees), and internal vertex of degree

sequence λ = (2λ1, . . . , 2λk). Then we have the functionnal

equation

A = x +
∑

k≥2

d2kA
2 k−1

Or simply

A = x +
A3

1 −A2

if we set all dk = 1.
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Enumeration, including degree sequence

indicator

We get

xA(x, z) = x2 + d4x
4 + (3 d2

4 + d6)x
6 + (12 d3

4 + 8 d6d4 + d8)x
8

+(55 d4
4 + 55 d6 d2

4 + 10 d8d4 + 5 d2
6 + d10)x

10 + . . .

And specializing the dk parameters to t:

xA(x; t) = x2 + t x4 + (3 t2 + t)x6 + (12 t3 + 8 t2 + t)x8

+(55 t4 + 55 t3 + 15 t2 + t)x10

+(273 t5 + 364 t4 + 156 t3 + 24 t2 + t)x12 + . . .
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. . . + (3 d2
4 + d6)x

6 + . . .
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Noncrossing partitions with even part

size
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Noncrossing partitions,

with even part sizes

They number:

1, 1, 3, 12, 48, . . .

and taking into account the size of the parts

1, π2, (2 π2
2 + π4), (5 π3

2 + 6 π2π4 + π6),

(14 π4
2 + 24 π2

2π4 + 3 π2
4 + 5 π2π6 + π8), . . .

The forests of A-trees are obtained by choosing a noncrossing

partition, with even part sizes, and then choosing an A-tree of

corresponding size for each part.
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Some results

Proposition (1). The shape of R(f) is a tree, if and only if all

critical values of f(z) share the same real part.

Proposition (2). In general, the shape of R(f) is a forest of

noncrossing A-trees.

Proposition (3). The possible shapes of (R(f), I(f)), for degree n

polynomials, is classified by the set of basketballs. These are the set

of “compatible” pairs of forests of A-trees.

Two forests of A-trees are said to be compatible, if their union is a

forest of A-trees.
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Trois racines
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Close to the singular locus
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Rational Fraction
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Meromorphic Case
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