ISAAC Workshop on Pseudo-Differential Operators

Plancherel Formulas for Integral Transforms in Time-Frequency Analysis

M. W. Wong
York University

Scope of the Tallk

■ This is an EXPOSITORY talk leading to some NEW results at the end.

Signnals and lmages

■ Signals and images: f in $L^{2}\left(\mathbb{R}^{n}\right)$
■ Configuration Representation: $f(x), x \in \mathbb{R}^{n}$
■ Frequency Representation: $\hat{f}(\xi), \xi \in \mathbb{R}^{n}$
■ Fourier Transform:

$$
\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x, \quad \xi \in \mathbb{R}^{n} .
$$

■ Fourier Spectrum: $\left\{\hat{f}(\xi): \xi \in \mathbb{R}^{n}\right\}$

The Classic Plancherel Formula

■ Theorem $(f, g)=(\hat{f}, \hat{g}), f, g \in L^{2}\left(\mathbb{R}^{n}\right)$.
■ A Useful Reformulation: For each $\xi \in \mathbb{R}^{n}$, define the function e_{ξ} on \mathbb{R}^{n} by

$$
e_{\xi}(x)=e^{i x \cdot \xi}, \quad x \in \mathbb{R}^{n}
$$

■ Theorem For all $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
(f, g)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}}\left(f, e_{\xi}\right)\left(e_{\xi}, g\right) d \xi
$$

Resolution of the ldenfity Formuld

- We can reconstruct a signal or image f in $L^{2}\left(\mathbb{R}^{n}\right)$ from its Fourier spectrum $\left\{\hat{f}(\xi): \xi \in \mathbb{R}^{n}\right\}$ by means of the following resolution of the identity formula.
■ Theorem For all $f \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
f=(2 \pi)^{-n} \int_{\mathbb{R}^{n}}\left(f, e_{\xi}\right) e_{\xi} d \xi
$$

- Lie Group: \mathbb{R}^{n}, a group with respect to addition

■ Haar Measure: $d \xi=$ the Lebesgue measure on \mathbb{R}^{n}
■ Unitary Representation: $\pi: \mathbb{R}^{n} \rightarrow U\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$, where $U\left(L^{2}\left(\mathbb{R}^{n}\right)\right)=$ group of unitary operators on $L^{2}\left(\mathbb{R}^{n}\right)$,

$$
(\pi(\xi) f)(x)=e^{i x \cdot \xi} f(x), \quad x, \xi \in \mathbb{R}^{n} ; f \in L^{2}\left(\mathbb{R}^{n}\right)
$$

■ Admissible Wavelet: $\varphi(x)=1, \quad x \in \mathbb{R}^{n}$.
■ $e_{\xi}=\pi(\xi) \varphi, \xi \in \mathbb{R}^{n}$

The Plancherel Formula in Modern Perspective

■ Theorem For all f and g in $L^{2}\left(\mathbb{R}^{n}\right)$,

$$
(f, g)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}}(f, \pi(\xi) \varphi)(\pi(\xi) \varphi, g) d \xi
$$

■ Ingredients: Lie group, Haar measure, unitary representation on $L^{2}\left(\mathbb{R}^{n}\right)$, admissible wavelet
■ Remark The group \mathbb{R}^{n} is commutative.

Defiectis of the Fourier Transform

- To compute the spectrum $\hat{f}(\xi)$ of f localized at a single frequency ξ, information about f for all x is required.
- The Fourier transform gives the spectrum with precise information about frequency, but no information about time or position.

■ Idea: Look at the signal f through a window $\varphi \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$ at time b and compute the Fourier transform. For simplicity, we let $n=1$ in \mathbb{R}^{n}.
■ Gabor Transform: For all $b, \xi \in \mathbb{R}$,

$$
\left(G_{\varphi} f\right)(b, \xi)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} e^{-i x \xi} f(x) \overline{\varphi(x-b)} d x
$$

■ Windowed Fourier Transform or Short-Time Fourier Transform

Reformulation of the Gabor Transiorm

■ Gabor Transform Reformulated:

$$
\left(G_{\varphi} f\right)(b, \xi)=(2 \pi)^{-1 / 2}\left(f, M_{\xi} T_{-b} \varphi\right), \quad b, \xi \in \mathbb{R}
$$

where

$$
\begin{aligned}
\left(M_{\xi} h\right)(x)=e^{i x \xi} h(x), & x \in \mathbb{R}, \\
\left(T_{-b} h\right)(x)=h(x-b), & x \in \mathbb{R},
\end{aligned}
$$

for all signals h.
■ $M_{\xi}=$ Modulation; $T_{-b}=$ Translation

The Plancherel Formula for the Galbor Transiorm

■ Theorem Suppose that $\|\varphi\|_{2}=1$. Then for all $f, g \in L^{2}(\mathbb{R})$,
$(f, g)=(2 \pi)^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(f, M_{\xi} T_{-b} \varphi\right)\left(M_{\xi} T_{-b} \varphi, g\right) d b d \xi$.

The Resolufion of the ldentity Formula for the Galbor Transiorm

■ Theorem Suppose $\|\varphi\|_{2}=1$. Then for all f in $L^{2}(\mathbb{R})$,

$$
f=(2 \pi)^{-1} \int_{-\infty}^{\infty}\left(f, M_{\xi} T_{-b}\right) M_{\xi} T_{-b} \varphi d b d \xi
$$

- This says that every signal can be reconstructed from its Gabor spectrum

$$
\left\{\left(G_{\varphi} f\right)(b, \xi): b, \xi \in \mathbb{R}\right\}
$$

The Weyl-Heisenberg Group

■ Set: $\mathbb{W} \mathbb{H}=\mathbb{R} \times \mathbb{R} \times[0,2 \pi]$

- Group Law:
$\left(b_{1}, \xi_{1}, t_{1}\right) \cdot\left(b_{2}, \xi_{2}, t_{2}\right)=\left(b_{1}+b_{2}, \xi_{1}+\xi_{2}, t_{1}+t_{2}+b_{1} \xi_{2}\right)$,
where $t_{1}+t_{2}+b_{1} \xi_{2}$ is understood to be addition modulo 2π.

■ WHI is a noncommutative Lie group with Haar measure $d b d \xi d t$

Represenfations

■ Irreducible and Unitary Representation:

$$
\pi: \mathbb{W} \mathbb{H} \rightarrow U\left(L^{2}(\mathbb{R})\right)
$$

- Action:

$$
(\pi(b, \xi, t) f)(x)=e^{i(x \xi-b \xi+t)} f(x-b)
$$

for $x \in \mathbb{R},(b, \xi, t) \in \mathbb{W} \mathbb{H}$ and $f \in L^{2}(\mathbb{R})$.

Square lniegrability

\square Square-Integrability (Admissibility): For all $\varphi \in L^{2}(\mathbb{R})$ with $\|\varphi\|_{2}=1$,

$$
\int_{0}^{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|(\varphi, \pi(b, \xi, t) \varphi)|^{2} d b d \xi d t=4 \pi^{2}
$$

■ Every φ in $L^{2}(\mathbb{R})$ with $\|\varphi\|_{2}=1$ is an admissible wavelet and has the same wavelet constant $4 \pi^{2}$.

The Plancherel Formula for the
Weyl-Heisenberg Group
$■$ Theorem Let $\varphi \in L^{2}(\mathbb{R})$ be such that $\|\varphi\|_{2}=1$. Then for all $f, g \in L^{2}(\mathbb{R})$,

$$
(f, g)=\frac{1}{4 \pi^{2}} \int_{\mathbb{W} \mathbb{H}}(f, \pi(z, t) \varphi)(\pi(z, t) \varphi, g) d z d t
$$

where $z=(b, \xi)$ and $d z=d b d \xi$.

- This formula is exactly the same as the Plancherel formula for the Gabor transform.

Defects of the cabor tronsforn

The window has fixed size. We want an adaptive window in the following sense:

- THE WINDOW IS WIDE FOR REGIONS WITH LOW FREQUENCY
■ THE WINDOW IS NARROW FOR REGIONS WITH HIGH FREQUENCY

How? The answer comes from wavelets.

■ Let $\varphi \in L^{2}(\mathbb{R})$ be such that $\|\varphi\|_{2}=1$ and

$$
\int_{-\infty}^{\infty} \frac{|\hat{\varphi}(\xi)|^{2}}{|\xi|} d \xi<\infty
$$

Then φ is admissible and is called a mother wavelet.
■ Wavelets: For all $b \in \mathbb{R}$ and $a \in \mathbb{R} \backslash\{0\}$, the wavelet $\varphi_{b, a}$ is defined by

$$
\varphi_{b, a}(x)=\frac{1}{\sqrt{|a|}} \varphi\left(\frac{x-b}{a}\right), \quad x \in \mathbb{R} .
$$

Waiveleft Refiormulated

■ Note:

$$
\varphi_{b, a}=T_{-b} D_{1 / a} \varphi,
$$

where

$$
\left(D_{1 / a} h\right)(x)=\frac{1}{\sqrt{|a|}} h\left(\frac{x}{a}\right), \quad x \in \mathbb{R},
$$

for all signals h.

■ Let φ be a mother wavelet. Then the wavelet transform $\Omega_{\varphi} f$ of a signal f is the function on $\mathbb{R} \times \mathbb{R} \backslash\{0\}$ defined by

$$
\left(\Omega_{\varphi} f\right)(b, a)=\left(f, \varphi_{b, a}\right)
$$

for all $b \in \mathbb{R}$ and $a \in \mathbb{R} \backslash\{0\}$.

The Plancherel Formula for the Wavelef Transiorm

■ Theorem Let φ be a mother wavelet. Then for all $f, g \in L^{2}(\mathbb{R})$,

$$
(f, g)=\frac{1}{c_{\varphi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(f, \varphi_{b, a}\right)\left(\varphi_{b, a}, g\right) \frac{d b d a}{a^{2}},
$$

where

$$
c_{\varphi}=2 \pi \int_{-\infty}^{\infty} \frac{|\hat{\varphi}(\xi)|^{2}}{|\xi|} d \xi .
$$

The Resolufion of the ldentity Formula for the Waveleft Transiorm

■ Theorem Let φ be a mother wavelet. Then for all $f \in L^{2}(\mathbb{R})$,

$$
f=\frac{1}{c_{\varphi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(f, \varphi_{b, a}\right) \varphi_{b, a} \frac{d b d a}{a^{2}} .
$$

■ This says that every signal f can be reconstructed from its wavelet spectrum

$$
\left\{\left(f, \varphi_{b, a}\right): b \in \mathbb{R}, a \in \mathbb{R} \backslash\{0\}\right\}
$$

The Affiline Group

■ Set: $\mathbb{A}=\mathbb{R} \times \mathbb{R} \backslash\{0\}$

- Group Law:

$$
\left(b_{1}, a_{1}\right) \cdot\left(b_{2}, a_{2}\right)=\left(b_{1}+a_{1} b_{2}, a_{1} a_{2}\right)
$$

$\square \mathbb{A}$ is a noncommutative Lie group with left Haar measure $\frac{d b d a}{a^{2}}$.

Represenfations

■ Irreducible and Unitary Representation:

$$
\pi: \mathbb{A} \rightarrow U\left(L^{2}(\mathbb{R})\right)
$$

- Action:

$$
(\pi(b, a) f)(x)=\frac{1}{\sqrt{|a|}} f\left(\frac{x-b}{a}\right)
$$

for $x \in \mathbb{R},(b, a) \in \mathbb{A}$ and $f \in L^{2}(\mathbb{R})$.

Square-lintegrability

■ Square-Integrability (Admissibility): For all $\varphi \in L^{2}(\mathbb{R})$ with $\|\varphi\|_{2}=1$,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|(\varphi, \pi(b, a) \varphi)|^{2} \frac{d b d a}{a^{2}}=2 \pi \int_{-\infty}^{\infty} \frac{|\hat{\varphi}(\xi)|^{2}}{|\xi|} d \xi .
$$

■ So, LHS $<\infty \Leftrightarrow$ RHS $<\infty$.

The Plancherel Formula for the Afitine Group

■ Theorem Let φ be a mother wavelet. Then for all $f, g \in L^{2}(\mathbb{R})$,

$$
(f, g)=\frac{1}{c_{\varphi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(f, \pi(b, a) \varphi)(\pi(b, a) \varphi, g) \frac{d b d a}{a^{2}} .
$$

The Stockwell Transiorm

■ Let $\varphi \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Then the Stockwell transform $S_{\varphi} f$ of a signal f is the function on $\mathbb{R} \times \mathbb{R}$ defined by

$$
\left(S_{\varphi} f\right)(b, \xi)=(2 \pi)^{-1 / 2}|\xi| \int_{-\infty}^{\infty} e^{-i x \xi} f(x) \overline{\varphi(\xi(x-b))} d x
$$

for all $b, \xi \in \mathbb{R}$.
■ R. G. Stockwell, L. Mansinha and R. P. Lowe, IEEE Trans. Signal Processing 44 1996, 998-1001

A transparenit Expression for the stockwell transiorm

■ For all $b, \xi \in \mathbb{R}$,

$$
\left(S_{\varphi} f\right)(b, \xi)=\left(f, \varphi^{b, \xi}\right)
$$

where

$$
\varphi^{b, \xi}=(2 \pi)^{-1 / 2} M_{\xi} T_{-b} \tilde{D}_{\xi} \varphi .
$$

Here,

$$
\left(\tilde{D}_{\xi} h\right)(x)=|\xi| h(\xi x), \quad x \in \mathbb{R},
$$

for all signals h.

The Plancherel Formuld for the Stockwell transiorm

■ Theorem Let $\varphi \in L^{2}(\mathbb{R})$ be such that $\|\varphi\|_{2}=1$ and

$$
c_{\varphi}=\int_{-\infty}^{\infty} \frac{|\hat{\varphi}(\xi-1)|^{2}}{|\xi|} d \xi<\infty .
$$

Then for all $f, g \in L^{2}(\mathbb{R})$,

$$
(f, g)=\frac{1}{c_{\varphi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(f, \varphi^{b, \xi}\right)\left(\varphi^{b, \xi}, g\right) \frac{d b d \xi}{|\xi|}
$$

The Resolution of the ldentity Formula for the Stockwell Transiorm

■ Theorem Let $\varphi \in L^{2}(\mathbb{R})$ be such that $\|\varphi\|_{2}=1$ and

$$
c_{\varphi}=\int_{-\infty}^{\infty} \frac{|\hat{\varphi}(\xi-1)|^{2}}{|\xi|} d \xi<\infty .
$$

Then for all $f \in L^{2}(\mathbb{R})$,

$$
f=\frac{1}{c_{\varphi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(f, \varphi^{b, \xi}\right) \varphi^{b, \xi} \frac{d b d \xi}{|\xi|}
$$

Remarks on the Stockwell Transiorm

■ The admissibility condition

$$
\int_{-\infty}^{\infty} \frac{|\hat{\varphi}(\xi-1)|^{2}}{|\xi|} d \xi<\infty
$$

means that $\hat{\varphi}(-1)=0$ whenever $\hat{\varphi}$ is continuous at
-1 .

- The Gaussian window φ used exclusively for the Stockwell transform in the literature is not "admissible" because $\hat{\varphi}(-1) \neq 0$.

More Remarks on the Stockwell Transiorm

■ The Gabor, wavelet and Stockwell reconstruction formulas in this talk can be discretized using frames.
■ The Stockwell and wavelet transforms are related by

$$
\varphi^{b, \xi}=(2 \pi)^{-1 / 2}|\xi|^{1 / 2} M_{\xi} \varphi_{b, 1 / \xi}
$$

for all $b \in \mathbb{R}$ and $\xi \in \mathbb{R} \backslash\{0\}$, but the Stockwell transform is not a special case of a wavelet transform.

Further Rennarks on the stockwell transtorm

■ Jingde Du, M. W. Wong and Hongmei Zhu, Continuous and Discrete Reconstruction Formulas for the Stockwell Transform, to appear in Integral Equations and Special Functions
■ Yu Liu: 2-D Polar Stockwell Transforms

Absolutely Referenced Phase liformation

The modulation in the Stockwell transform gives the following result:

■ Theorem Suppose that $\|\varphi\|_{1}=1$. Then

$$
\int_{-\infty}^{\infty}\left(S_{\varphi} f\right)(b, \xi) d b=\hat{f}(\xi), \quad \xi \in \mathbb{R}
$$

The Timeritime Transiorm

■ If we take the inverse Fourier transform of the Stockwell transform with respect to frequency, then we get a new integral transform known as the time-time transform or $T T$-transform. The $T T$-transform is an integral operator whose kernel is given in terms of Dawson's integral.
■ Dawson's Integral: $D(x)=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t, x \in \mathbb{R}$.
■ C. R. Pinnegar, M. W. Wong and Hongmei Zhu, Integral Representations of the $T T$-Transform, Applicable Analysis 85 2006, 933-940

■ Wigner Transform: Let $f, g \in L^{2}(\mathbb{R})$. The Wigner transform $W(f, g)$ of f and g is defined by

$$
\begin{aligned}
& W(f, g)(x, \xi) \\
= & (2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} e^{-i \xi p} f\left(x+\frac{p}{2}\right) \overline{g\left(x-\frac{p}{2}\right)} d p
\end{aligned}
$$

for all $x, \xi \in \mathbb{R}$.

- Moyal Identity: For all f_{1}, g_{1}, f_{2} and g_{2} in $L^{2}(\mathbb{R})$,

$$
\left(W\left(f_{1}, g_{1}\right), W\left(f_{2}, g_{2}\right)\right)=\left(f_{1}, f_{2}\right) \overline{\left(g_{1}, g_{2}\right)}
$$

■ Weyl Transform: Let $\sigma \in L^{2}(\mathbb{R} \times \mathbb{R})$. Then the Weyl transform $W_{\sigma}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is defined by

$$
\left(W_{\sigma} f, g\right)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma(x, \xi) W(f, g)(x, \xi) d x d \xi
$$

for all $f, g \in L^{2}(\mathbb{R})$.
■ M. W. Wong, Weyl Transforms, Springer-Verlag, 1998.

Localization Operators Associated fo the Stockwell Transiorm

■ Let $\varphi \in L^{2}(\mathbb{R})$ be admissible with respect to the Stockwell transform. Let $F \in L^{2}(\mathbb{R} \times \mathbb{R})$. Then we define the Stockwell localization operator $S_{F, \varphi}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ by

$$
\left(S_{F, \varphi} f, g\right)=\frac{1}{c_{\varphi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(b, \xi)\left(f, \varphi^{b, \xi}\right)\left(\varphi^{b, \xi}, g\right) \frac{d b d \xi}{|\xi|}
$$

for all f and g in $L^{2}(\mathbb{R})$.
■ M. W. Wong, Wavelet Transforms and Localization Operators, Birkhäuser, 2002.

Sfockwell Localization Operafors and Weyl lransiorms

Theorem Let $\varphi \in L^{2}(\mathbb{R})$ be admissible with respect to the Stockwell transform. Then for all $F \in L^{2}(\mathbb{R} \times \mathbb{R})$, $S_{F, \varphi}=W_{\sigma}$, where for all $q, p \in \mathbb{R}$,

$$
\begin{aligned}
& \sigma(q, p) \\
= & \frac{(2 \pi)^{1 / 2}}{c_{\varphi}} \int_{\mathbb{R}^{2}} F(b, \xi) \overline{W(\varphi, \varphi)(\xi(q-p),(p-\xi) / \xi)} \frac{d b d \xi}{|\xi|}
\end{aligned}
$$

Proof

The proof is based on a key computation.

\square Lemma Let $\varphi \in L^{2}(\mathbb{R})$. Then for all q, p, b and ξ in \mathbb{R} with $\xi \neq 0$,

$$
W\left(\varphi^{b, \xi}, \varphi^{b, \xi}\right)=W(\varphi, \varphi)(\xi(q-b),(p-\xi) / \xi) .
$$

Proof Confinued

Let $u, v \in L^{2}(\mathbb{R})$. Then

$$
\begin{aligned}
& \left(S_{F, \varphi} u, v\right) \\
= & \frac{1}{\varphi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(b, \xi)\left(u, \varphi^{b, \xi}\right)\left(\varphi^{b, \xi}, v\right) \frac{d b d \xi}{|\xi|} \\
= & \frac{1}{\varphi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(b, \xi)\left(W(u, v), W\left(\varphi^{b, \xi}, \varphi^{b, \xi}\right)\right) \frac{d b d \xi}{|\xi|}
\end{aligned}
$$

Proof Confinued

Using the lemma on the Wigner transform of $\varphi^{b, \xi}$, we get

$$
\begin{aligned}
& \left(W(u, v), W\left(\varphi^{b, \xi}, \varphi^{b, \xi}\right)\right) \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(u, v) \overline{W(\varphi, \varphi)(\xi(q-p),(p-\xi) / \xi)} d q d p .
\end{aligned}
$$

Proof Confinued

So, putting the formulas in the previous two slides together, we get

$$
\left(S_{\varphi} u, v\right)=(2 \pi)^{-1 / 2} \int_{-\infty} \int_{-\infty}^{\infty} \sigma(q, p) W(u, v)(q, p) d q d p .
$$

Therefore

$$
S_{F, \varphi}=W_{\sigma} .
$$

