Wiener's Lemma for the Heisenberg Group and a Class of Pseudodifferential Operators

Brendan Farrell* University of California, Davis farrell@math.ucdavis.edu

In collaboration with Thomas Strohmer

December 12, 2006

*Supported by NSF VIGRE grant DMS-0135345.

- 1. Motivation
 - Harmonic Analysis
 - Mobile Communications
- 2. Integral Operator Result
- 3. Wiener's Lemma for $L_v^1(\mathbb{H})$
- 4. Twisted convolution, Pseudodifferential Operators and Mobile Communications

Wiener's lemma (1932) states that if a periodic function $f : \mathbb{R} \to \mathbb{R}$ has an absolutely summable Fourier series

$$f(t) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n t}$$

and is nowhere zero, then 1/f also has an absolutely convergent Fourier series.

Our Harmonic Analysis question: for what nonabelian groups does Wiener's lemma hold? Wiener's lemma in terms of Banach algebras

 \mathcal{A} : Banach algebra of 1-periodic functions f: $\mathbb{R} \to \mathbb{R}, f(t) \neq 0 \ \forall t \in \mathbb{R}.$

 $\mathcal{B}: \{f \in \mathcal{A}: f(t) = \sum_{n} a_n e^{2\pi i n t}, \sum_{n} |a_n| < \infty\}$

If $f \neq 0$, $1/f \in \mathcal{A}$.

If $f \in \mathcal{B}$ and $f \neq 0$, is $1/f \in \mathcal{B}$?

Wiener's lemma: YES.

A Wiener-type Theorem: the subalgebra \mathcal{B} is inverse-closed in \mathcal{A} . That is, $\mathbf{b} \in \mathcal{B}$ and \mathbf{b} invertible $\Rightarrow \mathbf{b}^{-1} \in \mathcal{B}$.

 $\widetilde{\mathcal{A}}$: \mathcal{A} with adjoined identity.

Bochner and Phillips (1942) contributed the first essential step towards a general operator version of Wiener's lemma. They showed that the a_n in

$$f(t) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n t}$$

may belong to a noncommutative Banach algebra. Gohberg, Kaashoek and Woerdeman (1989) and Baskakov (1992): Let X_n be subspaces of X, indexed by a discrete abelian group \mathbb{I} , satisfying $X_i \cap X_j = \emptyset$ for $i \neq j$ and $X = \bigcup_{i \in \mathbb{I}} X_i$. Set P_i to be the projection onto X_i . For the linear operator $T: X \to X$ they set

$$a_n = \sum_{i-j=n} P_i T P_j,$$

and consider the operator-valued Fourier series

$$f(t) = \sum_{n \in \mathbb{I}} a_n e^{2\pi i n t} \tag{1}$$

satisfying $\sum_{n \in \mathbb{Z}} ||a_n|| < \infty$. They use Bochner and Phillips's work to establish that operators of the form (1) satisfying $\sum_{n \in \mathbb{Z}} ||a_n|| =$ $\sum_{n \in \mathbb{Z}} \sup_{i-j=n} ||P_iTP_j|| < \infty$ form an inverseclosed Banach algebra in $\mathcal{B}(X)$. In the commutative setting, Gelfand, Raikov and Shilov (1964) addressed the important question: what rates of decay of an element are preserved in its inverse?

Definition: A weight function $v : \mathbb{G} \to \mathbb{R}$ is admissible *if*:

- 1. v is continuous, even in each coordinate, and normalized so that v(0) = 1.
- 2. v is submultiplicative, i.e. $v(x+y) \le v(x)v(y)$ for all x, y.
- *3. v* satisfies the Gelfand-Raikov-Shilov (GRS) condition:

$$\lim_{n \to \infty} v(nx)^{1/n} = 1 \quad \text{for all } x.$$

Typical examples: $v(x) = (1 + |x|^2)^{k/2}$ $v(x) = e^{-x^{\alpha}}, \ 0 \le \alpha < 1.$ GRS showed that $l_v^1(\mathbb{Z})$ is inverse-closed in $(l^1(\mathbb{Z}), *)$. Baskakov incorporated the GRS condition and proved the following operator version of Wiener's lemma: let v be an admissible weight; if the linear operator T satisfies

$$\sum_{n \in \mathbb{Z}} \sup_{i-j=n} \|P_i T P_j\| v(n) < \infty$$
(2)

and is invertible, then

$$\sum_{n\in\mathbb{Z}}\sup_{i-j=n}\|P_iT^{-1}P_j\|v(n)<\infty.$$
 (3)

Kurbatov (1999)considered a class of operators satisfying

$$(Tf)(t) \le \int \beta(t-s)|f(s)|ds \tag{4}$$

for some $\beta \in L^1$. If $\alpha_1 I + T$ is invertible and Tsatisfies (4) for $\beta_1 \in L^1$, then $(\alpha_1 I + T)^{-1} = \alpha_2 I + T_2$ and T_2 satisfies (4) for $\beta_2 \in L^1$.

This theorem, as stated for integral operators, is our point of departure.

Other recent Wiener-type results:

- Sjöstrand (1995): Pseudodifferential operators with symbol in $M^{\infty 1}(\mathbb{R}^{2d})$.
- Gröchenig (2004): Generalization of Sjöstrand using time-frequency techniques
- Gröchenig and Leinert (2004, 2006): $(l_v^1(\mathbb{Z}^d \times \mathbb{Z}^d), \natural_{\theta})$.
- Gröchenig and Strohmer (2006): Pseudodifferential operators with symbol in $M^{\infty 1}(\mathbb{G} \times \widehat{\mathbb{G}})$.
- Balan (2006): Summable time-frequency shifts on a discrete subset of \mathbb{R}^{2d} .

All of these recent results feature locally compact abelian groups, their dual groups, and various forms of twisted convolution.

Fundamental property:

$$(T_x M_\omega)(T_{x'} M_{\omega'}) = e^{2\pi i x' \cdot \omega} T_{x+x'} M_{\omega+\omega'}$$

It is, therefore, natural to look at the Heisenberg group:

$$\mathbb{H} = \mathbb{G} \times \widehat{\mathbb{G}} \times \mathbb{T}$$

$$\mathbf{h}\mathbf{h}' = (x, \omega, e^{2\pi i\tau})(x', \omega', e^{2\pi i\tau'})$$
$$= (x + x', \omega + \omega', e^{2\pi i(\tau + \tau')}e^{\pi i(x' \cdot \omega - x \cdot \omega')})$$
$$(F_1 \star F_2)(\mathbf{h}_0) = \int_{\mathbb{H}} F_1(\mathbf{h})F_2(\mathbf{h}^{-1}\mathbf{h}_0)d\mathbf{h}$$

Our question: Is $\widetilde{L_v^1}(\mathbb{H})$ inverse-closed with respect to convolution \star ?

Our Second Motivation: Propagation Channel of a Mobile Communication System

View f(t) as a signal transmitted by a single source.

- Reflections result in various paths with different travel times
- Movement causes Doppler effect, a frequency shift
- Collection of time-shifted and frequencyshifted (modulated) copies of transmitted signal is received

$$f_{rec}(t) = \int_{\mathbb{R}} \int_{\mathbb{R}^+} \hat{\sigma}(x,\omega) T_x M_\omega f_{trans}(t) dx d\omega.$$

$$T_x f(t) = f(t - x) \qquad M_\omega f(t) = e^{2\pi i \omega \cdot t} f(t)$$

Mobile communication channel:

$$f_{rec}(t) = \int_{\mathbb{R}} \int_{\mathbb{R}^+} \widehat{\sigma}(x,\omega) T_x M_\omega f_{trans}(t) dx d\omega.$$

Weyl pseudodifferential operator L_{σ} :

$$L_{\sigma}f(t) = \int_{\mathbb{G}} \int_{\widehat{\mathbb{G}}} \widehat{\sigma}(\omega, x) e^{-\pi i \omega \cdot x} T_{-x} M_{\omega}f(t) dx d\omega.$$

In practice, we must numerically "invert" L_{σ} .

$$L_{\sigma} \cong \mathbf{A}, \quad \mathbf{A}_{k,l} = \langle L_{\sigma} \phi_l, \phi_k \rangle$$

If $\hat{\sigma} \in L^1_v(\mathbb{G})$, A will decay off the diagonal.

$$L_{\sigma}^{-1} \cong \mathbf{B}, \quad \mathbf{B}_{k,l} = \langle L_{\sigma}^{-1} \phi_l, \phi_k \rangle$$

Want to know if L_{σ}^{-1} , and hence **B**, will have the same off-diagonal decay.

Then we can truncate the A to A_{trunc} , and $A_{trunc}^{-1}\approx B.$

This truncation is essential for real world computation.

$$L_{\sigma}f(t) = \int_{\mathbb{G}} \int_{\widehat{\mathbb{G}}} \widehat{\sigma}(\omega, x) e^{-\pi i \omega \cdot x} T_{-x} M_{\omega}f(t) dx d\omega.$$

Composition rule for Weyl symbols:

$$L_{\sigma}L_{\tau} = L_{\mathcal{F}^{-1}(\widehat{\sigma}\natural\widehat{\tau})}.$$

Thus, we are also (in fact, initially) interested in twisted convolution on $L_v^1(\mathbb{G} \times \widehat{\mathbb{G}})$.

If $(L_v^1(\mathbb{G} \times \widehat{\mathbb{G}}), \natural)$ is inverse closed, then the class of Weyl pseudodifferential operators is also inverse-closed.

We will see that $L_v^1(\mathbb{G} \times \widehat{\mathbb{G}})$ can be treated by our more general approach for $L_v^1(\mathbb{H})$. **Theorem 1 (B.F & T.S)** Let $\mathcal{N}_v^1(\mathbb{H})$ denote those bounded integral operators N of the form

$$(Nf)(\mathbf{h}_0) = \int_{\mathbb{H}} N(\mathbf{h}_0, \mathbf{h}) f(\mathbf{h}) d\mathbf{h},$$

for which there exists $\beta \in L_v^1(\mathbb{H})$ satisfying

 $|N(\mathbf{h}_0, \mathbf{h})| \leq \beta(\mathbf{h}_0^{-1}\mathbf{h})$

for all $\mathbf{h}_0, \mathbf{h} \in \mathbb{H}$. Let $\mathcal{N}_v^1(\mathbb{H})$ denote $\mathcal{N}_v^1(\mathbb{H})$ with adjoined unit. Then $\mathcal{N}_v^1(\mathbb{H})$ is an inverseclosed Banach algebra in $\mathcal{B}(L^p(\mathbb{H}))$ $1 \leq p \leq \infty$.. We begin with

- $\mathcal{N}_v^1(\mathbb{H})$: integral operators with kernel majorized by $\beta \in L_v^1(\mathbb{H})$.
- $\mathcal{N}^\infty_v(\mathbb{H})$: not necessarily integral operators, defined by the norm:

$$\|N\|_{\mathcal{N}_v^{\infty}(\mathbb{H})} = \sum_{i \in \mathbb{I}} \sup_{j-k=i} \|N : L^1(Q_j) \to L^{\infty}(Q_k)\|v(i) < \infty$$

- $\mathcal{N}^\infty_v(\mathbb{H})$ is a dense, two-side ideal in $\mathcal{N}^1_v(\mathbb{H})$
- We can apply Baskakov to $\mathcal{N}^\infty_v(\mathbb{H})$

Proof, Part 1: Structure for $L_v^1(\mathbb{H})$

GKW & B:

- $\bullet~\mathbb{I}$: discrete abelian group
- $X = \bigcup_{i \in \mathbb{I}} X_i$
- P_i : projection onto X_i

$$\sum_{i \in \mathbb{I}} \sup_{j-k=i} \|P_i T P_j\| < \infty, \text{ and } T \text{ invertible}$$

$$\Rightarrow \sum_{i \in \mathbb{I}} \sup_{j-k=i} \|P_i T^{-1} P_j\| < \infty.$$

By the structure theorem:

$$\mathbb{G} \cong \mathbb{R}^d \times \mathbb{G}_0 \cong \bigcup_{(i,d) \in \mathbb{Z}^d \times \mathbb{D}} (i,d) + [0,1)^d \times \mathbb{K}, \quad \mathbb{D} = \mathbb{G}_0 / \mathbb{K}$$

$$\begin{split} \mathbb{G} \times \widehat{\mathbb{G}} &\cong \mathbb{R}^{2d} \times \mathbb{G}_0 \times \widehat{\mathbb{G}}_0 \\ &\cong \bigcup_{\substack{(i,d) \in \mathbb{Z}^{2d} \times \mathbb{D} \\ \mathbb{D}}} (i,d) + [0,1)^{2d} \times \mathbb{K} \times \mathbb{K}^\perp \\ & \mathbb{D} &= (\mathbb{G}_0 \times \widehat{\mathbb{G}}_0) / (\mathbb{K} \times \mathbb{K}^\perp) \end{split}$$

Therefore,

$$\begin{split} \mathbb{H} &= \mathbb{G} \times \widehat{\mathbb{G}} \times \mathbb{T} \\ &\cong \bigcup_{(i,d) \in \mathbb{Z}^{2d} \times \mathbb{D}} (i,d,0) + [0,1)^{2d} \times \mathbb{K} \times \mathbb{K}^{\perp} \times \mathbb{T} \end{split}$$

We can set up subspaces while avoiding the noncommutativity of \mathbb{H} and apply Baskakov's result to $\mathcal{N}_v^{\infty}(\mathbb{H})$.

Proof, Part 2

Show that $\mathcal{N}_v^{\infty}(\mathbb{H})$ is a two-sided ideal in $\mathcal{N}_v^1(\mathbb{H})$.

The noncommutativity of \mathbb{H} makes this lemma a little technical and delicate.

Definition: $(\mathcal{I}, \mathbb{U})$ is a *partition* of \mathbb{G} if \mathcal{I} is a discrete subset of \mathbb{G} , \mathbb{U} is a compact subgroup of \mathbb{G} , and $\mathbb{G} = \bigcup_{i \in \mathcal{I}} (i + \mathbb{U})$.

Definition: Let \mathbb{G} be a group with partition $(\mathcal{I}, \mathbb{U})$ and v an admissible weight function, and set $Q_i = i + \mathbb{U}$. The *amalgam space* $W(L_v^p(\mathbb{G}), l_v^q)$ is the space of functions finite in the local L^p norm and the global l_v^q norm as follows:

$$\|f\|_{W(L^{p}(\mathbb{G}), l^{q}_{v})} = \left(\sum_{i \in \mathcal{I}} \|f\|^{q}_{L^{p}(Q_{i})} v(i)^{q}\right)^{1/q}$$

Proposition $\mathcal{N}_v^{\infty}(\mathbb{H})$ is equivalent to the class of integral operators with kernels majorized by functions in $W(L^{\infty}(\mathbb{H}), l_v^1)$.

Proof, Part 2

By previous propostion, we may equivalently prove that $W(L^1(\mathbb{H}), l_v^1)$ is a two-sided ideal in $W(L^\infty(\mathbb{H}), l_v^1)$.

Suppose $F \in W(L^1(\mathbb{H}), l_v^1)$ and $G \in W(L^\infty(\mathbb{H}), l_v^1)$ for v an admissible weight.

Show:

 $\|F \star G\|_{W(L^{\infty}(\mathbb{H}), l_{v}^{1})} \leq C \|F\|_{W(L^{1}(\mathbb{H}), l_{v}^{1})} \|G\|_{W(L^{\infty}(\mathbb{H}), l_{v}^{1})}$ $\|G \star F\|_{W(L^{\infty}(\mathbb{H}), l_{v}^{1})} \leq C \|F\|_{W(L^{1}(\mathbb{H}), l_{v}^{1})} \|G\|_{W(L^{\infty}(\mathbb{H}), l_{v}^{1})}$

- Noncommutative!
- \bullet Prove for any partition of $\mathbb H$
- Use $\mathbb H$ is unimodular, $\mathbb U$ is a group

Idea of Proof: Assume $\alpha I + N$ is invertible in $\widetilde{\mathcal{N}_v^1}(\mathbb{H})$.

1. Invertible implies $\alpha \neq 0$.

2. For $\alpha I + N$, $N \in \mathcal{N}_v^1(\mathbb{H})$, there exists $\overline{N} \in \mathcal{N}_v^\infty(\mathbb{H})$ s.t. $\|\overline{N} - \mathcal{N}\| < \alpha/2$.

$$K = (\alpha I + (N - \overline{N}))^{-1} (\alpha I + N)$$

= $(\alpha I + (N - \overline{N}))^{-1} (\alpha I + (N - \overline{N}) + \overline{N})$
= $I + (\alpha I + (N - \overline{N}))^{-1} \overline{N}.$

1. By the ideal property, $(\alpha I + (N - \overline{N}))^{-1}\overline{N} \in \mathcal{N}_v^{\infty}(\mathbb{H}).$

$$2. \Rightarrow K \in \widetilde{\mathcal{N}_v^{\infty}}(\mathbb{H})$$

3. K invertible $\Rightarrow K^{-1} \in \widetilde{\mathcal{N}_v^{\infty}}(\mathbb{H})$

4.
$$K^{-1} \in \widetilde{\mathcal{N}_v^{\infty}}(\mathbb{H}) \& (\alpha I + (N - \overline{N}))^{-1} \in \widetilde{\mathcal{N}_v^1}(\mathbb{H})$$

$$\Rightarrow K^{-1}(\alpha I + (N - \overline{N}))^{-1} \in \widetilde{\mathcal{N}_v^1}(\mathbb{H})$$

$$K^{-1}(\alpha I + (N - \overline{N}))^{-1} = (\alpha I + N)^{-1} \in \widetilde{\mathcal{N}_v^1}(\mathbb{H}).$$

Theorem 2 (B.F, T.S) Let \mathbb{H} be the general, reduced Heisenberg group as defined above, and v an admissible weight function. If $\alpha_1 \delta + f$, $f \in L_v^1(\mathbb{H})$, is invertible with respect to convolution over \mathbb{H} , then $(\alpha_1 \delta + f)^{-1} = \alpha_2 \delta + g$, $g \in L_v^1(\mathbb{H})$.

Idea of proof: Set $S_{\alpha\delta+F}f = (\alpha\delta+F) \star f$ and assume the $S_{\alpha\delta+F}$ is invertible. By the previous theorem, $(S_{\alpha\delta+F})^{-1} = \alpha_2\delta + A$, where Ais majorized by $\beta \in L_v^1(\mathbb{H})$. We use an approximate identity $\{\psi_n\}_{n\geq 0}$:

$$\theta = \alpha \delta + \lim_{n \to \infty} A \psi_n = \alpha \delta + G.$$

For $\phi \in \mathbb{C}_0(\mathbb{H})$,

$$S_{\alpha_{1}\delta+F} \quad (S_{\theta} - (\alpha_{2}I + A))\phi$$

$$= S_{\alpha_{2}\delta+F}S_{\alpha_{2}\delta+G}\phi - S_{\alpha_{1}\delta+F}S_{\alpha_{1}\delta+F}^{-1}\phi$$

$$= (\alpha_{1}\delta + F) \star (\alpha_{2}\delta + G) - \phi$$

$$= \delta \star \phi - \phi$$

$$= 0$$

22

Theorem 3 (Kurbatov (without weights)) Let \mathbb{G} be a locally compact abelian group. Then $\widetilde{\mathcal{N}_v^1}(\mathbb{G})$ is an inverse-closed Banach algebra in $\mathcal{B}(L^p(\mathbb{G}))$.

Twisted convolution is defined by

 $F \natural G(x_0, \omega_0) = \int_{\mathbb{G}} \int_{\widehat{\mathbb{G}}} F(x, \omega) G(x_0 - x, \omega_0 - \omega) e^{\pi i (x \omega_0 - \omega x_0)}$

Theorem 4 (B.F. & T.S.) Let \mathbb{G} be a locally compact abelian group and $\widehat{\mathbb{G}}$ its dual group. If $\alpha_1\delta + f$, $f \in L_v^1(\mathbb{G} \times \widehat{\mathbb{G}})$, is invertible with respect to twisted convolution, then $(\alpha_1\delta + f)^{-1} = \alpha_2\delta + g$, $g \in L_v^1(\mathbb{G} \times \widehat{\mathbb{G}})$.

Proof: The proof for the analogous theorem for $L^1_v(\mathbb{H})$ holds with the substitution of $\mathbb{G} \times \widehat{\mathbb{G}}$ for \mathbb{H} .

Our mobile communication channel:

$$f_{rec}(t) = \int_{\mathbb{R}} \int_{\mathbb{R}^+} \widehat{\sigma}(x,\omega) T_x M_\omega f_{trans}(t) dx d\omega$$

The assumption that $\hat{\sigma} \in L_v^1(\mathbb{R}^2)$ is appropriate: Why is $L_v^1(\mathbb{G} \times \widehat{\mathbb{G}})$ the appropriate spreading function space for modile communications?

- In practice, strength of delayed copies fades quickly
- Doppler effect depends on relative speeds and angles of bodies and signal
- These are bounded, so Doppler effect is bounded, say to $\left[-D, D\right]$
- If signal is band-limited to [-W, W], then the support of $\hat{\sigma}(x, \cdot) \in [-W D, W + D]$ for all x

Theorem 5 (B.F. & T.S.) Let $OP(\mathcal{F}^{-1}L_v^1(\widehat{\mathbb{G}}\times \mathbb{G}))$ denote the space of pseudodifferential operators with Weyl symbol σ satisfying $\widehat{\sigma} \in L^1(\widehat{\mathbb{G}}\times \mathbb{G})$.

Then $OP(\mathcal{F}^{-1}\widetilde{L_v^1}(\widehat{\mathbb{G}}\times\mathbb{G}))$ is an inverse-closed subalgebra of $\mathcal{B}(L^p(\mathbb{G}))$. That is

(i) $\alpha I + L_{\sigma}$ is bounded on all $L^{p}(\mathbb{G})$.

(ii) If $\hat{\sigma}, \hat{\tau} \in L^1(\widehat{\mathbb{G}} \times \mathbb{G})$, then $(\alpha_1 I + L_{\sigma})(\alpha_2 I + L_{\tau}) = (\alpha_3 I + L_{\gamma})$, where $\hat{\gamma} \in L_v^1(\widehat{\mathbb{G}} \times \mathbb{G})$.

(iii) If $\alpha_1 I + L_{\sigma}$ is invertible on $L^p(\mathbb{G})$, then $(\alpha_1 I + L_{\sigma})^{-1} = (\alpha_2 I + L_{\tau})$ where $\hat{\tau} \in L^1_v(\widehat{\mathbb{G}} \times \mathbb{G})$.

iii. means that the matrices for $\alpha_1 I + L_{\sigma}$ and $(\alpha_1 I + L_{\sigma})^{-1}$ will have the same off-diagonal decay and can be truncated to a small number of diagonals.

$$\begin{aligned} \|L_{\sigma}f\|_{L^{p}}^{p} &\leq \int \left| \int \int \widehat{\sigma}(\omega, x) e^{-\pi i \xi \cdot x} T_{-x} M_{\omega} dx d\omega \right|^{p} dt \\ &\leq \int \left(\int \int |\widehat{\sigma}(\omega, x)| |f(t+x)| d\omega dx \right)^{p} dt \\ &= \int \left(\int \|\widehat{\sigma}(\cdot, -x)\|_{L^{1}} |f(t+x)| dx \right)^{p} dt \\ &= \|\widehat{\sigma}(\cdot, u) * |f|\|_{L^{p}}^{p} \\ &\leq \|\widehat{\sigma}\|_{L^{1}}^{p} \|f\|_{L^{p}}^{p} \\ &\leq \|\widehat{\sigma}\|_{L^{1}}^{p} \|f\|_{L^{p}}^{p} \end{aligned}$$

Therefore, $\|(\alpha I + L_{\sigma})f\|_{L^{p}} \leq (|\alpha| + \|\hat{\sigma}\|_{L^{1}}) \|f\|_{L^{p}}.$

(ii). $(\alpha_1 I + L_{\sigma})(\alpha_2 I + L_{\tau}) = L_{\mathcal{F}^{-1}((\alpha_1 \delta + \hat{\sigma})(\alpha_2 \delta + \hat{\tau}))}$. Therefore, by Theorem 4, if $\hat{\sigma}, \hat{\tau} \in L^1(\widehat{\mathbb{G}} \times \mathbb{G})$, $(\alpha_1 \delta + \hat{\sigma}) \natural (\alpha_2 \delta + \hat{\tau}) = (\alpha_3 \delta + \hat{\gamma})$, where $\hat{\gamma} \in L^1(\widehat{\mathbb{G}} \times \mathbb{G})$. Then $\mathcal{F}^{-1}(\alpha \delta + \hat{\gamma}) = \alpha + \gamma$, and $(\alpha_1 I + L_{\sigma})(\alpha_2 I + L_{\tau}) = (\alpha_3 I + L_{\gamma})$.

(iii). Follows immediately from Theorem 4.