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1. Motivation

• Harmonic Analysis

• Mobile Communications

2. Integral Operator Result

3. Wiener’s Lemma for L1
v(H)

4. Twisted convolution, Pseudodifferential Op-

erators and Mobile Communications
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Wiener’s lemma (1932) states that if a pe-

riodic function f : R → R has an absolutely

summable Fourier series

f(t) =
∑
n∈Z

ane
2πint

and is nowhere zero, then 1/f also has an ab-

solutely convergent Fourier series.

Our Harmonic Analysis question: for what non-

abelian groups does Wiener’s lemma hold?
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Wiener’s lemma in terms of Banach algebras

A: Banach algebra of 1-periodic functions f :

R → R, f(t) 6= 0 ∀t ∈ R.

B : {f ∈ A : f(t) =
∑
n ane

2πint,
∑
n |an| <∞}

If f 6= 0, 1/f ∈ A.

If f ∈ B and f 6= 0, is 1/f ∈ B?

Wiener’s lemma: YES.

A Wiener-type Theorem: the subalgebra B is

inverse-closed in A. That is, b ∈ B and b in-

vertible ⇒ b−1 ∈ B.

Ã: A with adjoined identity.
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Bochner and Phillips (1942) contributed the

first essential step towards a general operator

version of Wiener’s lemma. They showed that

the an in

f(t) =
∑
n∈Z

ane
2πint

may belong to a noncommutative Banach al-

gebra.
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Gohberg, Kaashoek and Woerdeman (1989)

and Baskakov (1992): Let Xn be subspaces

of X, indexed by a discrete abelian group I,
satisfying Xi∩Xj = ∅ for i 6= j and X =

⋃
i∈IXi.

Set Pi to be the projection onto Xi. For the

linear operator T : X → X they set

an =
∑

i−j=n

PiTPj,

and consider the operator-valued Fourier series

f(t) =
∑
n∈I

ane
2πint (1)

satisfying
∑
n∈Z ‖an‖ < ∞. They use Bochner

and Phillips’s work to establish that opera-

tors of the form (1) satisfying
∑
n∈Z ‖an‖ =∑

n∈Z supi−j=n ‖PiTPj‖ < ∞ form an inverse-

closed Banach algebra in B(X).
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In the commutative setting, Gelfand, Raikov
and Shilov (1964) addressed the important ques-
tion: what rates of decay of an element are
preserved in its inverse?
Definition: A weight function v : G → R is

admissible if:

1. v is continuous, even in each coordinate,
and normalized so that v(0) = 1.

2. v is submultiplicative, i.e. v(x+y) ≤ v(x)v(y)
for all x, y.

3. v satisfies the Gelfand-Raikov-Shilov (GRS)
condition:

lim
n→∞ v(nx)1/n = 1 for all x.

Typical examples: v(x) = (1 + |x|2)k/2
v(x) = e−x

α
, 0 ≤ α < 1.

GRS showed that l1v(Z) is inverse-closed in (l1(Z), ∗).
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Baskakov incorporated the GRS condition and

proved the following operator version of Wiener’s

lemma: let v be an admissible weight; if the

linear operator T satisfies∑
n∈Z

sup
i−j=n

‖PiTPj‖v(n) <∞ (2)

and is invertible, then∑
n∈Z

sup
i−j=n

‖PiT−1Pj‖v(n) <∞. (3)
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Kurbatov (1999)considered a class of opera-

tors satisfying

(Tf)(t) ≤
∫
β(t− s)|f(s)|ds (4)

for some β ∈ L1. If α1I + T is invertible and T

satisfies (4) for β1 ∈ L1, then (α1I + T )−1 =

α2I + T2 and T2 satisfies (4) for β2 ∈ L1.

This theorem, as stated for integral operators,

is our point of departure.
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Other recent Wiener-type results:

• Sjöstrand (1995): Pseudodifferential oper-

ators with symbol in M∞1(R2d).

• Gröchenig (2004): Generalization of Sjöstrand

using time-frequency techniques

• Gröchenig and Leinert (2004, 2006): (l1v(Zd×
Zd), \θ).

• Gröchenig and Strohmer (2006): Pseudod-

ifferential operators with symbol inM∞1(G×
Ĝ).

• Balan (2006): Summable time-frequency

shifts on a discrete subset of R2d.
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All of these recent results feature locally com-

pact abelian groups, their dual groups, and var-

ious forms of twisted convolution.

Fundamental property:

(TxMω)(Tx′Mω′) = e2πix
′·ωTx+x′Mω+ω′

It is, therefore, natural to look at the Heisen-

berg group:

H = G× Ĝ× T

hh′ = (x, ω, e2πiτ)(x′, ω′, e2πiτ
′
)

= (x+ x′, ω+ ω′, e2πi(τ+τ ′)eπi(x
′·ω−x·ω′))

(F1 ? F2)(h0) =
∫
H
F1(h)F2(h

−1h0)dh

Our question: Is L̃1
v(H) inverse-closed with re-

spect to convolution ??
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Our Second Motivation: Propagation Channel
of a Mobile Communication System

View f(t) as a signal transmitted by a single
source.

• Reflections result in various paths with dif-
ferent travel times

• Movement causes Doppler effect, a fre-
quency shift

• Collection of time-shifted and frequency-
shifted (modulated) copies of transmitted
signal is received

frec(t) =
∫
R

∫
R+

σ̂(x, ω)TxMωftrans(t)dxdω.

Txf(t) = f(t− x) Mωf(t) = e2πiω·tf(t)
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Mobile communication channel:

frec(t) =
∫
R

∫
R+

σ̂(x, ω)TxMωftrans(t)dxdω.

Weyl pseudodifferential operator Lσ:

Lσf(t) =
∫
G

∫
Ĝ
σ̂(ω, x)e−πiω·xT−xMωf(t)dxdω.

In practice, we must numerically “invert” Lσ.

Lσ
∼= A, Ak,l = 〈Lσφl, φk〉

If σ̂ ∈ L1
v(G), A will decay off the diagonal.

L−1
σ

∼= B, Bk,l = 〈L−1
σ φl, φk〉

Want to know if L−1
σ , and hence B, will have

the same off-diagonal decay.

Then we can truncate the A to Atrunc, and
A−1
trunc ≈ B.

This truncation is essential for real world com-
putation.
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Lσf(t) =
∫
G

∫
Ĝ
σ̂(ω, x)e−πiω·xT−xMωf(t)dxdω.

Composition rule for Weyl symbols:

LσLτ = LF−1(σ̂\τ̂).

Thus, we are also (in fact, initially) interested

in twisted convolution on L1
v(G× Ĝ).

If (L̃1
v(G × Ĝ), \) is inverse closed, then the

class of Weyl pseudodifferential operators is

also inverse-closed.

We will see that L1
v(G × Ĝ) can be treated by

our more general approach for L1
v(H).
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Theorem 1 (B.F & T.S) Let N1
v (H) denote

those bounded integral operators N of the form

(Nf)(h0) =
∫
H
N(h0,h)f(h)dh,

for which there exists β ∈ L1
v(H) satisfying

|N(h0,h)| ≤ β(h−1
0 h)

for all h0,h ∈ H. Let Ñ1
v (H) denote N1

v (H)

with adjoined unit. Then Ñ1
v (H) is an inverse-

closed Banach algebra in B(Lp(H)) 1 ≤ p ≤ ∞..
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We begin with

• N1
v (H): integral operators with kernel ma-

jorized by β ∈ L1
v(H).

• N∞
v (H): not necessarily integral operators,

defined by the norm:

‖N‖N∞
v (H) =∑

i∈I
sup
j−k=i

‖N : L1(Qj) → L∞(Qk)‖v(i) <∞

• N∞
v (H) is a dense, two-side ideal in N1

v (H)

• We can apply Baskakov to N∞
v (H)
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Proof, Part 1: Structure for L1
v(H)

GKW & B:

• I: discrete abelian group

• X =
⋃
i∈IXi

• Pi : projection onto Xi

∑
i∈I

sup
j−k=i

‖PiTPj‖ <∞, and T invertible

⇒
∑
i∈I

sup
j−k=i

‖PiT−1Pj‖ <∞.

By the structure theorem:

G ∼= Rd×G0
∼=

⋃
(i,d)∈Zd×D

(i, d)+[0,1)d×K, D = G0/K

G× Ĝ ∼= R2d ×G0 × Ĝ0
∼=

⋃
(i,d)∈Z2d×D

(i, d) + [0,1)2d ×K×K⊥

D = (G0 × Ĝ0)/(K×K⊥)
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Therefore,

H = G× Ĝ× T
∼=

⋃
(i,d)∈Z2d×D

(i, d,0) + [0,1)2d ×K×K⊥ × T

We can set up subspaces while avoiding the

noncommutativity of H and apply Baskakov’s

result to N∞
v (H).
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Proof, Part 2

Show that N∞
v (H) is a two-sided ideal in N1

v (H).

The noncommutativity of H makes this lemma
a little technical and delicate.

Definition: (I,U) is a partition of G if I is a
discrete subset of G, U is a compact subgroup
of G, and G =

⋃
i∈I(i+ U).

Definition: Let G be a group with partition
(I,U) and v an admissible weight function, and
set Qi = i+U. The amalgam space W (Lpv(G), lqv)
is the space of functions finite in the local Lp

norm and the global lqv norm as follows:

‖f‖W (Lp(G),lqv)
=

∑
i∈I

‖f‖q
Lp(Qi)

v(i)q

1/q

.

Proposition N∞
v (H) is equivalent to the class

of integral operators with kernels majorized by
functions in W (L∞(H), l1v).
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Proof, Part 2

By previous propostion, we may equivalently

prove that W (L1(H), l1v) is a two-sided ideal in

W (L∞(H), l1v).

Suppose F ∈W (L1(H), l1v) and G ∈W (L∞(H), l1v)

for v an admissible weight.

Show:

‖F?G‖W (L∞(H),l1v)
≤ C‖F‖W (L1(H),l1v)

‖G‖W (L∞(H),l1v)

‖G?F‖W (L∞(H),l1v)
≤ C‖F‖W (L1(H),l1v)

‖G‖W (L∞(H),l1v)

• Noncommutative!

• Prove for any partition of H

• Use H is unimodular, U is a group
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Idea of Proof: Assume αI + N is invertible in
Ñ1
v (H).

1. Invertible implies α 6= 0.

2. For αI + N , N ∈ N1
v (H), there exists N ∈

N∞
v (H) s.t. ‖N −N‖ < α/2.

K = (αI + (N −N))−1(αI +N)

= (αI + (N −N))−1(αI + (N −N) +N)

= I + (αI + (N −N))−1N.

1. By the ideal property, (αI +(N −N))−1N ∈
N∞
v (H).

2. ⇒ K ∈ Ñ∞
v (H)

3. K invertible ⇒ K−1 ∈ Ñ∞
v (H)

4. K−1 ∈ Ñ∞
v (H) & (αI +(N −N))−1 ∈ Ñ1

v (H)

⇒ K−1(αI + (N −N))−1 ∈ Ñ1
v (H)

K−1(αI + (N −N))−1 = (αI +N)−1 ∈ Ñ1
v (H).
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Theorem 2 (B.F, T.S) Let H be the gen-

eral, reduced Heisenberg group as defined above,

and v an admissible weight function. If α1δ+f ,

f ∈ L1
v(H), is invertible with respect to convo-

lution over H, then (α1δ + f)−1 = α2δ + g,

g ∈ L1
v(H).

Idea of proof: Set Sαδ+Ff = (αδ + F ) ? f and

assume the Sαδ+F is invertible. By the previ-

ous theorem, (Sαδ+F )−1 = α2δ + A, where A

is majorized by β ∈ L1
v(H). We use an approx-

imate identity {ψn}n≥0:

θ = αδ+ lim
n→∞Aψn = αδ+G.

For φ ∈ C0(H),

Sα1δ+F (Sθ − (α2I +A))φ

= Sα2δ+FSα2δ+Gφ− Sα1δ+FS
−1
α1δ+Fφ

= (α1δ+ F ) ? (α2δ+G)− φ
= δ ? φ− φ
= 0
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Theorem 3 (Kurbatov (without weights)) Let

G be a locally compact abelian group. Then

Ñ1
v (G) is an inverse-closed Banach algebra in

B(Lp(G)).

Twisted convolution is defined by

F\G(x0, ω0) =
∫
G

∫
Ĝ
F (x, ω)G(x0−x, ω0−ω)eπi(xω0−ωx0)dxdω.

Theorem 4 (B.F. & T.S.) Let G be a lo-

cally compact abelian group and Ĝ its dual

group. If α1δ + f , f ∈ L1
v(G × Ĝ), is invert-

ible with respect to twisted convolution, then

(α1δ+ f)−1 = α2δ+ g, g ∈ L1
v(G× Ĝ).

Proof: The proof for the analogous theorem

for L1
v(H) holds with the substitution of G× Ĝ

for H.
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Our mobile communication channel:

frec(t) =
∫
R

∫
R+

σ̂(x, ω)TxMωftrans(t)dxdω

The assumption that σ̂ ∈ L1
v(R2) is appropri-

ate: Why is L1
v(G× Ĝ) the appropriate spread-

ing function space for modile communications?

• In practice, strength of delayed copies fades

quickly

• Doppler effect depends on relative speeds

and angles of bodies and signal

• These are bounded, so Doppler effect is

bounded, say to [−D,D]

• If signal is band-limited to [−W,W ], then

the support of σ̂(x, ·) ∈ [−W − D,W + D]

for all x
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Theorem 5 (B.F. & T.S.) Let OP(F−1L1
v(Ĝ×

G)) denote the space of pseudodifferential op-
erators with Weyl symbol σ satisfying σ̂ ∈ L1(Ĝ×
G).

Then OP(F−1L̃1
v(Ĝ × G)) is an inverse-closed

subalgebra of B(Lp(G)). That is

(i) αI + Lσ is bounded on all Lp(G).

(ii) If σ̂, τ̂ ∈ L1(Ĝ×G), then (α1I + Lσ)(α2I +
Lτ) = (α3I + Lγ), where γ̂ ∈ L1

v(Ĝ×G).

(iii) If α1I + Lσ is invertible on Lp(G), then
(α1I+Lσ)−1 = (α2I+Lτ) where τ̂ ∈ L1

v(Ĝ×
G).

iii. means that the matrices for α1I + Lσ and
(α1I + Lσ)−1 will have the same off-diagonal
decay and can be truncated to a small number
of diagonals.
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Proof: (i).

‖Lσf‖pLp ≤
∫ ∣∣∣∣∫ ∫

σ̂(ω, x)e−πiξ·xT−xMωdxdω

∣∣∣∣p dt
≤

∫ (∫ ∫
|σ̂(ω, x)||f(t+ x)|dωdx

)p
dt

=
∫ (∫

‖σ̂(·,−x)‖L1|f(t+ x)|dx
)p
dt

= ‖σ̂(·, u) ∗ |f |‖pLp
≤ ‖σ̂‖p

L1‖f‖
p
Lp

≤ ‖σ̂‖p
L1
v
‖f‖pLp

Therefore, ‖(αI+Lσ)f‖Lp ≤ (|α|+‖σ̂‖L1)‖f‖Lp.

(ii). (α1I+Lσ)(α2I+Lτ) = LF−1((α1δ+σ̂)(α2δ+τ̂)).

Therefore, by Theorem 4, if σ̂, τ̂ ∈ L1(Ĝ × G),

(α1δ + σ̂)\(α2δ + τ̂) = (α3δ + γ̂), where γ̂ ∈
L1(Ĝ × G). Then F−1(αδ + γ̂) = α + γ, and

(α1I + Lσ)(α2I + Lτ) = (α3I + Lγ).

(iii). Follows immediately from Theorem 4.
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