Continuity and compactness properties of pseudo-differential operators

Ernesto Buzano
Dipartimento di Matematica, Università di Torino
Via Carlo Alberto 10, 10123 Torino, Italy

Weyl-Hörmander calculus

Given a positive definite quadratic form G(X) on \mathbb{R}^{2d} , we define

• the dual quadratic form:

$$G^{\sigma}(X) = \sup_{G(Y)=1} \sigma(X,Y)^{2}$$

with respect to the *standard symplectic form* in \mathbb{R}^{2d} :

$$\sigma(X,Y) = QX \cdot PY - PX \cdot QY,$$

where $P: \mathbb{R}^{2d} \to \mathbb{R}^d \times \{0\}$ and $Q: \mathbb{R}^{2d} \to \{0\} \times \mathbb{R}^d$, are the orthogonal projections onto the first d coordinates and the last d coordinates.

• the Plank constant:

$$h_G = \sup_{X \in \mathbb{R}^{2d}} \sqrt{\frac{G(X)}{G^{\sigma}(X)}}.$$

An admissible metric is a measurable function $g: X \mapsto g_X$, of \mathbb{R}^{2d} into the set of positive definite quadratic forms on \mathbb{R}^{2d} and satisfying the following hypotheses:

ullet g is slowly-varying: there exists a positive constant r_g such that

$$g_X(T) \lesssim g_Y(T) \lesssim g_X(T),$$

for all $T \in \mathbb{R}^{2d}$ and all $X, Y \in \mathbb{R}^{2d}$ such that

$$g_X(Y - X) < r_g^2.$$

 \bullet g is σ -temperate: there exists a positive constant M_g such that

$$g_X(T) \lesssim g_Y(T) \Big(1 + g_X^{\sigma}(Y - X) \Big)^{M_g},$$

for all $X, Y, T \in \mathbb{R}^{2d}$.

• g satisfies the uncertainty principle:

$$h_g(X) = h_{g_X} \leqslant 1$$
, for all $X \in \mathbb{R}^{2d}$.

A g-weight is a positive measurable function $\mu:\mathbb{R}^{2d}\to\mathbb{R}_+$ such that

• $\mu(X) \lesssim \mu(Y) \lesssim \mu(X)$, for all $X, Y \in \mathbb{R}^{2d}$ such that

$$g_X(Y - X) < r_g^2,$$

ullet there exists a constant $M_{\mu}>0$ for which

$$\mu(X) \lesssim \mu(Y) \Big(1 + g_X^{\sigma}(X - Y) \Big)^{M_{\mu}},$$

for all $X, Y \in \mathbb{R}^{2d}$.

An example of g-weight is given by the Plank function h_g .

A smooth function $a:\mathbb{R}^{2d}\to\mathbb{C}$ is a *symbol* if there exists an admissible metric g and a g-weight μ such that

$$||a||_{\mu,k}^g = \sup_{j \le k} ||a|_j^g \mu^{-1}||_{L^\infty} < \infty,$$

for all $k \in \mathbb{N}$, where

$$|a|_j^g(X) = \sup_{T_1,\dots,T_j} \frac{\left|a^{(j)}(X;T_1,\dots,T_j)\right|}{g_X(T_1)^{1/2}\dots g_X(T_j)^{1/2}}.$$

We denote by $S(\mu, g)$ the class of all symbols of g-weight μ . $S(\mu, g)$ is a Frechét space with respect to the norms $\|a\|_{\mu, k}^g$.

The Weyl quantization of a symbol $a \in S(\mu, g)$ is the pseudo-differential operator defined by

$$\langle a^{\mathsf{W}}u,\overline{v}\rangle=(2\pi)^{-d/2}\langle a,\mathcal{W}(u,v)\rangle, \qquad \text{for all } u,v\in\mathbb{S}(\mathbb{R}^d),$$

where W(u,v) is the Wigner transform:

$$W(u,v)(X) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{-iy \cdot QX} u (PX + y/2) \overline{v (PX - y/2)} \, dy.$$

 a^w is a continuous operator on the Schwartz class $S(\mathbb{R}^d)$, which extends to a continuous operator on the tempered distributions $S'(\mathbb{R}^d)$.

The formal adjoint of a^w is \overline{a}^w :

$$\langle a^{W}u, \overline{v} \rangle = \langle u, \overline{a^{W}v} \rangle, \quad \text{for all } u, v \in \mathbb{S}(\mathbb{R}^d).$$

In $S(\mu, g)$ we consider also the *weak topology*.

A sequence $a_j \in S(\mu, g)$ is weakly convergent to $a \in S(\mu, g)$ if

• a_i is bounded in the strong topology:

$$\sup_{j\in\mathbb{N}}\left\|a_j\right\|_{\mu,k}^g<\infty,\qquad\text{for all }k\in\mathbb{N},$$

• a_i converges point-wise to a.

The Weyl quantization is weakly continuous:

$$\lim_{j\to\infty}\langle a_j^w u,v\rangle=\langle a^w u,v\rangle,\qquad \text{ for all }u\in\mathbb{S}'(\mathbb{R}^d)\text{ and }v\in\mathbb{S}(\mathbb{R}^d),$$

whenver $a_j \to a$ weakly in $S(\mu, g)$.

Theorem. Let $a \in S(\mu, g)$ and assume $\mu h_g^n \in L^{\infty}(\mathbb{R}^{2d})$ for some $n \in \mathbb{N}$. Then a^w is bounded on $L^2(\mathbb{R}^d)$ if and only if $a \in L^{\infty}(\mathbb{R}^{2d})$.

More precisely there exists $l \in \mathbb{N}$ such that

$$||a^{\mathsf{w}}||_{\mathcal{B}(L^2)} \lesssim ||a||_{L^{\infty}} + ||a||_{\mu,l}^{g},$$

$$||a||_{L^{\infty}} \lesssim ||a^{\mathsf{w}}||_{\mathcal{B}(L^2)} + ||a||_{\mu,l}^{g},$$

for all $a \in S(\mu, g)$.

Theorem. Let $a \in S(\mu, g)$ and assume

$$\mu(X)h_g(X)^n \to 0$$
 as $|X| \to \infty$.

Then a^w is compact on $L^2(\mathbb{R}^d)$ if and only if

$$a(X) \to 0$$
 as $|X| \to \infty$.

Theorem. Given two symbols $a \in S(\mu, g)$ and $b \in S(\lambda, g)$, we have that $a^w b^w$ is a pseudo-differential operator with Weyl symbol

$$a\#b \in S(\mu\lambda,g).$$

For each $n \in \mathbb{Z}_+$

$$a\#b - \sum_{j=0}^{n-1} \frac{1}{j!} \{a, b\}_j \in S(\mu \lambda h_g^n, g),$$

with

$$\{a,b\}_j(X) = (2i)^{-j} \left[\left(\sigma(\partial_X, \partial_Y) \right)^j a(X) b(Y) \right]_{Y=X}.$$

 $a_j \# b \to a \# b$ weakly in $S(\mu \lambda, g)$ whenever $a_j \to a$ weakly in $S(\mu, g)$.

Hörmander's partition of unity.

There exists a sequence of points $Z_j \in \mathbb{R}^{2d}$ and an integer N_g such that the balls

$$B_j = \left\{ X \in \mathbb{R}^{2d} : g_{Z_j}(X - Z_j) < r_g^2/4 \right\}$$

cover \mathbb{R}^{2d} and the intersection of more than N_g balls is always empty.

One can choose non-negative $\chi_j \in S(1,g) \cap \mathcal{C}^{\infty}_{\mathsf{C}}(B_j)$ such that

$$\sum_{j=1}^{\infty} \chi_j = 1$$

and

$$\sup_{j\in\mathbb{Z}_+} \|\chi_j\|_{1,k}^g < \infty, \qquad \text{for all } k\in\mathbb{N}.$$

Local estimates.

Fix $n \in \mathbb{Z}_+$ and set

$$a_j = \chi_j a$$
 and $b_j = \sum_{k=0}^{n-1} \frac{1}{k!} \left\{ \chi_j, a \right\}_k$.

Lemma. There exists $l \in \mathbb{N}$ such that

$$\|a_j^w\|_{\mathcal{B}(L^2)} \lesssim \|a\|_{L^\infty} + \mu(Z_j)h_g(Z_j)^n \|a\|_{\mu,l}^g$$

and

$$||b_j||_{L^{\infty}} \lesssim ||a^w||_{\mathcal{B}(L^2)} + \mu(Z_j)h_g(Z_j)^n ||a||_{\mu,l}^g,$$

for all $j \in \mathbb{Z}_+$ and all $a \in S(\mu, g)$.

Almost orthogonal estimates.

A system of almost orthogonal operators on a Hilbert space H is a sequence A_i of bounded linear operators such that

$$\sup_{j \in \mathbb{Z}_{+}} \sum_{k=1}^{\infty} \left(\left\| A_{j}^{*} A_{k} \right\|_{\mathcal{B}(H)}^{1/2} + \left\| A_{j} A_{k}^{*} \right\|_{\mathcal{B}(H)}^{1/2} \right) < \infty.$$

Lemma. There exists $l \in \mathbb{N}$ such that

$$\sup_{j \in \mathbb{Z}_{+}} \sum_{k=1}^{\infty} \left(\left\| \overline{a}_{j}^{w} a_{k}^{w} \right\|_{\mathcal{B}(L^{2})}^{1/2} + \left\| a_{j}^{w} \overline{a}_{k}^{w} \right\|_{\mathcal{B}(L^{2})}^{1/2} \right) \lesssim \|a\|_{L^{\infty}} + \left\| \mu h_{g}^{n} \right\|_{L^{\infty}} \|a\|_{\mu, l}^{g},$$

and

$$\sup_{j \in \mathbb{Z}_{+}} \sum_{k=1}^{\infty} \left(\left\| \overline{b}_{j}^{w} b_{k}^{w} \right\|_{\mathcal{B}(L^{2})}^{1/2} + \left\| b_{j}^{w} \overline{b}_{k}^{w} \right\|_{\mathcal{B}(L^{2})}^{1/2} \right) \lesssim \|a^{w}\|_{\mathcal{B}(L^{2})} + \left\| \mu h_{g}^{n} \right\|_{L^{\infty}} \|a\|_{\mu,l}^{g},$$
 for all $a \in S(\mu, g)$.

Assume that $a \in S(\mu, g) \cap L^{\infty}(\mathbb{R}^{2d})$ and $\mu h_g^n \in L^{\infty}(\mathbb{R}^{2d})$.

From previous lemmas $a_j^w = \chi_j^w a^w$ is a system of almost orthogonal operators on $L^2(\mathbb{R}^d)$.

From Cotlar's lemma we have that $a^w = \sum_{j=1}^{\infty} a_j^w$ is bounded:

$$||a^{\mathsf{w}}||_{\mathcal{B}(L^2)} \lesssim ||a||_{L^{\infty}} + ||a||_{\mu,l}^g$$
.

Assume that $a \in S(\mu, g)$, $a^w \in \mathcal{B}(L^2)$ and $\mu h_g^n \in L^{\infty}(\mathbb{R}^{2d})$.

Let J be the set of the indexes j such that B_j contains a given point X. J has at most N_g elements.

 $\sum_{j\in J}\chi_j=1$, on the open set $\bigcap_{j\in J}B_j$; so all derivatives of $\sum_{j\in J}\chi_j$ vanish at X.

Then $a(X) = \sum_{j \in J} b_j(X)$ and we obtain

$$|a(X)| \le \left\| \sum_{j \in J} b_j \right\|_{L^{\infty}} \le N_g \sup_{j \in J} \left\| b_j \right\|_{L^{\infty}} \lesssim \|a^w\|_{\mathcal{B}(L^2)} + \|a\|_{\mu,l}^g.$$

Assume that

$$\lim_{|X|\to\infty} a(X) = 0 \quad \text{and} \quad \lim_{|X|\to\infty} \mu(X)h_g(X)^n = 0.$$

Then for all $\epsilon > 0$ there exists $m_{\epsilon} \in \mathbb{Z}_{+}$ such that

$$|a(X)| \leqslant \epsilon$$
 and $\mu(X)h_g(X)^n \leqslant \epsilon$, for all $X \in \bigcup_{j>m_{\epsilon}} B_j$.

Then the quantization of $(1 - \sum_{j \leq m_{\epsilon}} \chi_j) a / \epsilon \in S(\mu/\epsilon, g)$ is bounded:

$$\frac{1}{\epsilon} \left\| a^{w} - \sum_{j \leqslant m_{\epsilon}} a_{j}^{w} \right\|_{\mathcal{B}(L^{2})} \lesssim \|a/\epsilon\|_{L^{\infty}} + \left\| (\mu/\epsilon) h_{g}^{n} \right\|_{L^{\infty}} \|a/\epsilon\|_{\mu/\epsilon, l}^{g} \leqslant 1 + \|a\|_{\mu, l}^{g},$$

for all $\epsilon > 0$.

This implies that a^w is a compact operator on $L^2(\mathbb{R}^d)$, because every a^w_j is regularizing.

Assume that a^w is compact and that $\mu h_g^n(X) \to 0$ as $|X| \to \infty$, and let us show that $a(X) \to 0$ as $|X| \to \infty$.

We have already proven that b_i^w , with

$$b_j = \sum_{k=1}^n \frac{1}{k!} \{ \chi_j, a \}_k,$$

is an almost orthogonal system on $L^2(\mathbb{R}^d)$.

 $\sum_{k=1}^{\infty} \chi_{j_k}^w a^w = (\sum_{k=1}^{\infty} \chi_{j_k}^w) a^w$ is compact for all increasing sequence of integers j_k , because $\sum_{k=1}^{\infty} \chi_{j_k}$ is weakly convergent in S(1,g).

The Weyl quantization of $\sum_{k=1}^{\infty} (\chi_{j_k} \# a - b_{j_k}) \in S(\mu h_g^n, g)$ is compact because $\mu h_g(X)^n \to 0$ as $|X| \to \infty$.

Then $\sum_{k=1}^{\infty} b_{j_k}^w$ is compact for all increasing sequence of integers j_k .

Apply the following lemma due to Hörmander:

Lemma. Let A_j be a system of almost orthogonal operators on a Hilbert space H such that $\sum_{k=1}^{\infty} A_{j_k}$ is compact for all increasing sequence of integers j_k .

Then

$$\lim_{j\to\infty} \|A_j\|_{\mathcal{B}(H)} = 0.$$

We obtain

$$\lim_{j\to\infty} \left\| b_j^{\scriptscriptstyle W} \right\|_{\mathcal{B}(L^2)} = 0.$$

Assume now that there exists an increasing sequence on integers j_k such that

$$\lim_{k\to\infty} \|a\|_{L^{\infty}(B_{j_k})} > 0,$$

that is a sequence of points $X_k \in B_{j_k}$ such that

$$\lim_{k\to\infty}|a(X_k)|>0.$$

For each k let J_k be the set of indexes j such that B_j contains X_k .

Each J_k has at most N_g elements and $\sum_{j\in J_k}\chi_j=1$ on the open set $\bigcap_{j\in J_k}B_j$. So

$$a(X_k) = \sum_{j \in J_k} b_j(X_k).$$

Consider the translations

$$c_k = T_{-X_k} \sum_{j \in J_k} b_j,$$

then

$$c_k(0) = a(X_k)$$

and

$$||c_k||_{\mu,m}^g \leqslant N_g ||a||_{\mu,n+m}^g$$
.

Since $\mathcal{C}^{\infty}(\mathbb{R}^{2d})$ is a Montel space, bounded subsets of $S(\mu,g)$ are compact with respect to the weak topology.

So there exists a sub-sequence c_{k_m} converging weakly to a symbol $c \in S(\mu, g)$. Then

$$c_{k_m}^{\scriptscriptstyle W} \to c^{\scriptscriptstyle W}, \qquad \text{weakly in } \mathfrak{B}(\mathbb{S}').$$

Now

$$\|c_{k_m}^{\mathsf{w}}\|_{\mathcal{B}(L^2)} \leqslant \sum_{j \in J_{k_m}} \|b_j^{\mathsf{w}}\|_{\mathcal{B}(L^2)} \leqslant N_g \sup_{j \in J_{k_m}} \|b_j^{\mathsf{w}}\|_{\mathcal{B}(L^2)}.$$

Since $\left\|b_j^w\right\|_{\mathcal{B}(L^2)} o 0$, we obtain that $\left\|c_{k_m}^w\right\|_{\mathcal{B}(L^2)} o 0$.

This implies $c^w = 0$, that is c = 0.

Then

$$\lim_{k\to\infty} a(X_k) = \lim_{m\to\infty} a(X_{k_m}) = \lim_{m\to\infty} c_{k_m}(0) = 0,$$

in contradiction with the assumption

$$\lim_{k\to\infty} |a(X_k)| > 0.$$

Proof of the local estimate

$$\|a_j^w\|_{\mathcal{B}(L^2)} \lesssim \|a\|_{L^\infty} + \mu(Z_j)h_g(Z_j)^n \|a\|_{\mu,l}^g, \quad \text{for all } j \in \mathbb{Z}_+.$$

We show that there exists $l \in \mathbb{N}$ such that

$$||a^{w}||_{\mathcal{B}(L^{2})} \lesssim ||a||_{L^{\infty}} + \mu(Z)h_{g}(Z)^{n} ||a||_{\mu,l}^{g},$$

for all $a \in S(\mu, g) \cap \mathcal{C}^{\infty}_{\mathsf{C}}(B_Z)$, where

$$B_Z = \left\{ Y \in \mathbb{R}^{2d} : g_Z(Y - Z) < r_g^2/4 \right\}.$$

Diagonalize the the quadratic form g_Z by a linear symplectic map Σ_Z :

$$g_Z \circ \Sigma_Z = \sum_{j=1}^d \theta_j^2 (T_j^2 + T_{d+j}^2).$$

Since the Plank function is symplectically invariant, we have

$$h_g(Z)^{1/2} = \sup_{1 \leqslant j \leqslant d} \theta_j.$$

Let

$$a_Z = (T_{-Z}a) \circ \Sigma_Z,$$

then for all $|\alpha| = k$ we have

$$|\partial^{\alpha} a_Z(0)| \lesssim |a|_k^g(Z)\Theta^{\alpha},$$

where

$$\Theta = (\theta, \theta) \in \mathbb{R}^{2d}$$
.

Now a_Z is supported in $\Sigma_Z^{-1}T_ZB_Z$, so from the slowly-varying property we have for all $|\alpha|=k$:

$$|\partial^{\alpha} a_Z(X)| \lesssim |a|_k^g(Z)\Theta^{\alpha}, \quad \text{for all } X \in \mathbb{R}^{2d}.$$

Let

$$p_1 = p_0 - p_0 * \Psi$$

with

$$p_0 = a_Z$$
 and $\Psi(X) = \pi^{-d} e^{-|X|^2}$.

Then we can write

$$p_1 = p_1' + p_1'',$$

where p_1' is supported in $\Sigma_Z^{-1}T_ZB_Z$ and for all $|\alpha|=k$

$$\left|\partial^{\alpha}p_{1}'(X)\right|\lesssim\left|a\right|_{k}^{g}(Z)h_{g}(Z)\Theta^{\alpha},\qquad \text{for all }X\in\mathbb{R}^{2d}.$$

$$\left\|\partial^{\alpha} p_1''\right\|_{L^{\infty}} \lesssim \mu(Z) h_g(Z)^n \left\|a\right\|_{\mu,2n+k}^g.$$

Now we iterate

$$p_j = p_{j-1} - p_{j-1} * \Psi, \qquad \text{for } 1 \leqslant j \leqslant n$$

and write

$$a_Z = \sum_{j=0}^{n-1} p_j * \Psi + p_n = p'_0 * \Psi + \sum_{j=1}^{n-1} (p'_j + p''_j) * \Psi + p_n = q * \Psi + q',$$

where $q=\sum_{j=0}^{n-1}p_j'*\Psi$ is supported in $\Sigma_Z^{-1}T_ZB_Z$ and for all $|\alpha|=k$

$$|\partial^{\alpha}q(X)| \lesssim |a|_{k}^{g}(Z)\Theta^{\alpha}, \quad \text{for all } X \in \mathbb{R}^{2d},$$

$$\left\|\partial^{\alpha}q'\right\|_{L^{\infty}} \lesssim \mu(Z)h_{g}(Z)^{n} \left\|a\right\|_{\mu,2n+k}^{g}.$$

Moreover
$$\left\|p_{j+1}'\right\|_{L^{\infty}} \leqslant 2 \left\|p_{j}'\right\|_{L^{\infty}}$$
 for $1 \leqslant j \leqslant n-1$, so $\|q\|_{L^{\infty}} \leqslant (1+2^{n}) \, \|p_{0}\|_{L^{\infty}} = (1+2^{n}) \, \|a\|_{L^{\infty}}$.

 $a_Z^W - (q')^W$ has anti-Wick symbol q, and therefore

$$\|a_Z^W - (q')^W\|_{\mathcal{B}(L^2)} \le \|q\|_{L^\infty} \le (1+2^n) \|a\|_{L^\infty}.$$

On the other hand $(q')^w$ is bounded, since by the Theorem of Calderon-Vaillancourt there exists k such that:

$$\left\| (q')^w \right\|_{\mathcal{B}(L^2)} \lesssim \sup_{|\alpha| \leqslant k} \left\| \partial^\alpha q' \right\|_{L^\infty} \lesssim \mu(Z) h_g(Z)^n \left\| a \right\|_{\mu, 2n + k}^g.$$

By Segal's Theorem there exists a unitary operator U_Z such that

$$U_Z^{-1} a_Z^w U_Z = (T_{-Z} a)^w,$$

and therefore

$$||a^{w}||_{\mathcal{B}(L^{2})} = ||a_{Z}^{w}||_{\mathcal{B}(L^{2})} \lesssim ||a||_{L^{\infty}} + \mu(Z)h_{g}(Z)^{n} ||a||_{\mu,2n+k}^{g}.$$

Proof of second local estimate:

$$\|b_j\|_{L^{\infty}} \lesssim \|a^w\|_{\mathcal{B}(L^2)} + \mu(Z_j)h_g(Z_j)^n \|a\|_{\mu,l}^g, \quad \text{for all } j \in \mathbb{Z}_+,$$

where

$$b_j = \sum_{k=0}^{n-1} \frac{1}{k!} \{ \chi_j, a \}_k.$$

The Weyl quantization of

$$b_j - \chi_j \# a \in S(\mu h_g^n, g) \subset S(1, g)$$

is bounded on $L^2(\mathbb{R}^d)$:

$$\left\|b_{j}-\chi_{j}\#a\right\|_{1,k}^{g} \leqslant \mu(Z_{j})h_{g}(Z_{j})^{n}\left\|b_{j}-\chi_{j}\#a\right\|_{\mu h_{g}^{n},k}^{g} \lesssim \mu(Z_{j})h_{g}(Z_{j})^{n}\left\|a\right\|_{\mu,l}^{g},$$

for some $l \geqslant k$.

Moreover

$$\|\chi_j^w a^w\|_{\mathcal{B}(L^2)} \le \|\chi_j^w\|_{\mathcal{B}(L^2)} \|a^w\|_{\mathcal{B}(L^2)} \le \|a^w\|_{\mathcal{B}(L^2)}.$$

Then also b_j^w is bounded on $L^2(\mathbb{R}^d)$:

$$\|b_j^{\mathsf{w}}\|_{\mathcal{B}(L^2)} \lesssim \|a^{\mathsf{w}}\|_{\mathcal{B}(L^2)} + \|\mu h_g^n\|_{L^{\infty}} \|a\|_{\mu,l}^g.$$

Then we have to estimate $\|b_j\|_{L^\infty}$ in terms of $\|b_j^w\|_{\mathcal{B}(L^2)}$. Since b_j is supported in $B_j=B_{Z_j}$, and $\|b_j\|_{\mu,l}^g\lesssim \|a\|_{\mu,l}^g$ we need to prove the following estimate

$$||b||_{L^{\infty}} \lesssim ||b^{w}||_{\mathcal{B}(L^{2})} + \mu(Z)h_{g}(Z)^{n} ||b||_{\mu,l}^{g}.$$

for all $b \in S(\mu, g) \cap \mathcal{C}^{\infty}_{\mathsf{C}}(B_Z)$.

Recall that Ψ is the Wigner transform of the Gaussian

$$\Phi(x) = \pi^{-d/4} e^{-|x|^2/2},$$

so the Wick symbol $p = b * \Psi$ of the operator b^w can be written as

$$p(X) = \langle b^{\mathsf{w}} \mathcal{U}_X \Phi, \overline{\mathcal{U}_X \Phi} \rangle,$$

where \mathcal{U}_X is the unitary operator of *time-frequency shift*:

$$\mathcal{U}_X \Phi(y) = e^{iy \cdot QX} \Phi(y - PX).$$

In particular $p \in L^{\infty}(\mathbb{R}^{2d})$ whenever b^w is bounded on $L^2(\mathbb{R}^d)$:

$$||p||_{L^{\infty}} \leqslant ||b^{\mathsf{w}}||_{\mathcal{B}(L^2)}.$$

Set $p_0 = b$. Then we have

$$||p_0 * \Psi||_{L^{\infty}} \leq ||p_0^w||_{\mathcal{B}(L^2)} = ||b^w||_{\mathcal{B}(L^2)}.$$

On the other hand

 $\|(p_0 * \Psi)^w\|_{\mathcal{B}(L^2)} \leqslant \|p_0^w\|_{\mathcal{B}(L^2)} \|\Psi^w\|_{\mathcal{B}(L^2)} \leqslant \|b^w\|_{\mathcal{B}(L^2)} \|\Psi^w\|_{\mathcal{B}(L^2)},$ and consequently also $p_1^w = p_0^w - (p_0 * \Psi)^w$ is bounded.

Moreover, $p_0 = b$ is supported in B_Z , so we can write

$$p_1 = p_1' + p_1''$$

with p_1' supported in B_Z and $p_1'' \in S(\mu h_g^n, g) \subset S(1, g)$.

Then we can iterate:

$$p_j = p_{j-1} - p_{j-1} * \Psi,$$
 with $1 \le j \le n$.

All p_j^w and $p_j * \Psi$ are bounded:

$$\|p_j * \Psi\|_{L^{\infty}} \le \|p_j^w\|_{\mathcal{B}(L^2)} \lesssim \|b^w\|_{\mathcal{B}(L^2)} + \mu(Z)h_g(Z)^n \|b\|_{\mu,l}^g,$$
 and $p_n \in S(\mu h_q^n, g)$.

This implies that

$$||b||_{L^{\infty}} \leqslant \sum_{j=0}^{n-1} ||p_j * \Psi||_{L^{\infty}} + ||p_n||_{L^{\infty}} \lesssim ||b^{\mathsf{w}}||_{\mathcal{B}(L^2)} + \mu(Z) h_g(Z)^n ||b||_{\mu,l}^g.$$

Almost orthogonal estimates

The following estimates are estracted from the third volume of Hörmander's book.

Let

$$U_{Z} = \left\{ X \in \mathbb{R}^{2d} : g_{Z}(X - Z) \leqslant r_{g}^{2}/2 \right\},$$

$$U_{Z}' = \left\{ X \in \mathbb{R}^{2d} : g_{Z}(X - Z) \leqslant r_{g}^{2}/\sqrt{2} \right\},$$

$$U_{Z}'' = \left\{ X \in \mathbb{R}^{2d} : g_{Z}(X - Z) \leqslant r_{g}^{2} \right\},$$

and

$$d_{ZW} = \min_{\substack{X \in U_Z \\ Y \in U_W}} \left\{ g_Z^{\sigma}(X - Y) \right\}.$$

For all $k \in \mathbb{N}$ and all $\nu > 0$ there exists $l \in \mathbb{N}$ such that

$$|p\#q|_k^g(X) \lesssim \mu(X)^2 h_g(X)^{\nu} (1+d_{ZW})^{-\nu} ||p||_{\mu,l}^g ||q||_{\mu,l}^g$$

for all $X, Z, W \in \mathbb{R}^{2d}$ and all $p, q \in S(\mu, g)$ such that

$$X \notin U_Z' \cap U_W'$$
, supp $p \subset B_Z$, supp $q \subset B_W$.

There exists $\nu > 0$ such that

$$\sup_{j\in\mathbb{Z}_+}\sum_{k\in\mathbb{Z}_+}(1+d_{jk})^{-\nu}<\infty.$$

where

$$d_{jk} = d_{Z_j Z_k},$$

and Z_j is the sequence of points in Hörmander's partition of unity.

Now we estimate

$$\left\|\overline{a}_{j}^{w}a_{k}^{w}\right\|_{\mathfrak{B}(L^{2})}$$
 and $\left\|a_{j}^{w}\overline{a}_{k}^{w}\right\|_{\mathfrak{B}(L^{2})}$.

The estimate is the same, so we discuss the first one only. Set

$$U'_j = U'_{Z_j}, \qquad U''_j = U''_{Z_j}.$$

For all $m \in \mathbb{N}$ and $\nu > 0$ there exists l such that

$$\left| \overline{a}_{j} \# a_{k} \right|_{m}^{g} (X) \lesssim \mu(X)^{2} h_{g}(X)^{2n} (1 + d_{jk})^{-\nu} \left\| a_{j} \right\|_{\mu, l}^{g} \left\| a_{k} \right\|_{\mu, l}^{g} \lesssim$$

$$\lesssim \mu(X)^{2} h_{g}(X)^{2n} (1 + d_{jk})^{-\nu} \left(\left\| a \right\|_{\mu, l}^{g} \right)^{2},$$

for all $j, k \in \mathbb{Z}_+$ and X such that

$$X \notin U'_j \cap U'_k$$
.

Let $\omega_j \in S(1,g)$ be a non-negative symbol such that

$$\omega_j(X) = \begin{cases} 1, & \text{for } X \in U'_j, \\ 0, & \text{for } X \notin U''_j. \end{cases}$$

For all m we have

$$\left\| (1 - \omega_j \omega_k) \overline{a}_j \# a_k \right\|_{1,m}^g \lesssim (1 + d_{jk})^{-\nu} \left\| \mu h_g^n \right\|_{L^{\infty}}^2 \left(\|a\|_{\mu,l}^g \right)^2$$

for all $j, k \in \mathbb{Z}_+$.

But then, for a large ν , we have

$$\sum_{k \in \mathbb{Z}_+} \left\| \left((1 - \omega_j \omega_k) \overline{a}_j \# a_k \right)^w \right\|_{\mathcal{B}(L^2)} \lesssim \left\| \mu h_g^n \right\|_{L^{\infty}}^2 \left(\|a\|_{\mu, l}^g \right)^2,$$

for all $j \in \mathbb{Z}_+$.

Consider now $\omega_j \omega_k \overline{a}_j \# a_k$, which is supported in $U_j' \cap U_k'$.

We have

$$\left| \omega_{j} \omega_{k} \overline{a}_{j} \# a_{k}(X) \right| \lesssim$$

$$\lesssim \left\| \left(\omega_{j} \omega_{k} \overline{a}_{j} \# a_{k} \right)^{w} \right\|_{\mathcal{B}(L^{2})} + \mu(Z_{j})^{2} h_{g}(Z_{j})^{2n} \left(\left\| a \right\|_{\mu, l}^{g} \right)^{2},$$

for all $X \in U'_j \cap U'_k$.

On the other hand we have

$$\|(\omega_{j}\omega_{k}\overline{a}_{j}\#a_{k})^{w}\|_{\mathcal{B}(L^{2})} \leq$$

$$\leq \|((1-\omega_{j}\omega_{k})\overline{a}_{j}\#a_{k})^{w}\|_{\mathcal{B}(L^{2})} + \|(\overline{a}_{j}\#a_{k})^{w}\|_{\mathcal{B}(L^{2})}$$

$$\leq \|a\|_{L^{\infty}}^{2} + \|\mu h_{g}^{n}\|_{L^{\infty}}^{2} (\|a\|_{\mu,l}^{g})^{2}.$$

Since there are only N_g indices k such that $U_j'\cap U_k'$ contains X, we have

$$\sum_{k \in \mathbb{Z}_{+}} \left| \omega_{j} \omega_{k} \overline{a}_{j} \# a_{k}(X) \right| \lesssim \|a\|_{L^{\infty}}^{2} + \left\| \mu h_{g}^{n} \right\|_{L^{\infty}}^{2} \left(\|a\|_{\mu, l}^{g} \right)^{2}.$$

It follows that

$$\sum_{k \in \mathbb{Z}_{+}} \left\| \omega_{j} \omega_{k} \overline{a}_{j} \# a_{k} \right\|_{L^{\infty}} \lesssim \|a\|_{L^{\infty}}^{2} + \left\| \mu h_{g}^{n} \right\|_{L^{\infty}}^{2} \left(\|a\|_{\mu, l}^{g} \right)^{2}.$$

and therefore

$$\sum_{k\in\mathbb{Z}_{+}}\left\|(\omega_{j}\omega_{k}\overline{a}_{j}\#a_{k})^{w}\right\|_{\mathcal{B}(L^{2})}\lesssim\|a\|_{L^{\infty}}^{2}+\left\|\mu h_{g}^{n}\right\|_{L^{\infty}}^{2}\left(\|a\|_{\mu,l}^{g}\right)^{2}.$$

for all $j \in \mathbb{Z}_+$, because $\omega_j \omega_k \overline{a}_j \# a_k$ is supported in $U_j' \cap U_k'$.

The estimate of $\left\|\overline{b}_{j}^{w}b_{k}^{w}\right\|_{\mathcal{B}(L^{2})}$ and $\left\|b_{j}^{w}\overline{b}_{k}^{w}\right\|_{\mathcal{B}(L^{2})}$ is similar.