
Identity Based Key Agreement Protocols

N.P. Smart

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB.

Joint work with Liqun Chen and Michael Cheng

24th July 2006

N.P. Smart
Identity Based Key Agreement Protocols Slide 1



Outline

Types of Pairings

Subgroup Membership Testing

Hard Problems

Key Agreement Protocols
Smart’s Protocol
SYL Protocol
CK and Wang Protocols
SCK Protocol

Conclusion

N.P. Smart
Identity Based Key Agreement Protocols Slide 2



Outline

Types of Pairings

Subgroup Membership Testing

Hard Problems

Key Agreement Protocols
Smart’s Protocol
SYL Protocol
CK and Wang Protocols
SCK Protocol

Conclusion

N.P. Smart
Identity Based Key Agreement Protocols Slide 3



Types of Pairings

A set of pairing parameters for cryptographic use is a set of three
groups G1, G2 and GT .

The DLP in each of these groups should be hard.

The exponent of each group should be divisible by a large prime q

There should be a bilinear map

ê : G1 ×G2 → GT

In addition various protocols require certain other properties...

N.P. Smart
Identity Based Key Agreement Protocols Slide 4



Types of Pairings

Let G = E [q], the points of order q on an elliptic curve over Fp.

The group E [q] is contained in E(Fpk )

I For efficiency we assume that k is even.

G is a product of two cyclic groups G1, G2 of order q.

Let P1 ∈ E(Fp) be a generator of G1

Let P2 ∈ E(Fpk ) be a generator of G2.
I P2 is in the image of the quadratic twist of E over Fpk/2 .

N.P. Smart
Identity Based Key Agreement Protocols Slide 5



Types of Pairings

There is a pairing ê from G × G to the subgroup GT of order q of
the finite field Fpk .

This pairing is trivial if and only if the two input values are linearly
dependent in the vector space E [q].

The trace map

Tr :

{
E(Fpk ) −→ E(Fp),

P 7−→
∑

σ∈Gal(Fpk /Fp) Pσ,

defines a group homomorphism on E [q] which has kernel G2.

N.P. Smart
Identity Based Key Agreement Protocols Slide 6



Types of Pairings

An important point to note is that Tr and the pairing do not
necessarily commute:

ê(Tr(A),B) = ê(Tr(B),A)

if and only if A and B lie in the same order q subgroup of G.

In addition it is easy to produce a hash function which hashes
onto G1, G2 or G

It is not easy to produce a function which hashes onto any other
subgroup of order q of G, bar G1 and G2.

We shall define four types of cryptographic pairing parameters.
I In all cases GT = GT .

N.P. Smart
Identity Based Key Agreement Protocols Slide 7



Type 1 Pairings

If we are using a supersingular elliptic curve:

Set G1 = G2 = G1.

We let P1 = P2 = P1 denote the generators of G1 and G2.

Pairing is defined via a distortion map

There is an efficient algorithm to cryptographically hash arbitrary
bit strings into G1 and G2

There is a trivial group isomorphism ψ : G2 → G1 mapping P2 to
P1.

N.P. Smart
Identity Based Key Agreement Protocols Slide 8



Type 2 Pairings

If we are using an ordinary elliptic curve:

Set G1 = G1 and G2 to be a subgroup of G which is not equal to
either G1 or G2.

Let P1 = P1 and for convenience we set P2 = 1
kP1 + P2.

There is an efficient algorithm to cryptographically hash arbitrary
bit strings into G1, but there is no way to hash bit strings into G2

(nor to generate random elements of G2 bar multiplying P2 by an
integer).

There is an efficiently computable group isomorphism
ψ : G2 → G1 mapping P2 to P1, which is simply the trace map
restricted to G2.

N.P. Smart
Identity Based Key Agreement Protocols Slide 9



Type 3 Pairings

If we are using an ordinary elliptic curve:

Set G1 = G1 and G2 = G2.

Let P1 = P1 and P2 = P2 be generators of G1 and G2.

There is an efficient algorithm to cryptographically hash arbitrary
bit strings into G1, and a slightly less efficient algorithm to hash bit
strings into G2.

There is no known efficiently computable group isomorphism
ψ : G2 → G1 mapping P2 to P1.

N.P. Smart
Identity Based Key Agreement Protocols Slide 10



Type 4 Pairings

If we are using an ordinary elliptic curve:

Set G1 = G1, select G2 to be the whole group G which is a group
of order q2.

As in the Type 2 situation we set P1 = P1 and P2 = 1
kP1 + P2.

Hashing into G1 or G2 can be performed, although maybe not
very efficiently into G2. However, one cannot hash efficiently into
the subgroup of G2 generated by P2.

There is an efficiently computable homomorphism ψ from G2 to
G1 such that ψ(P2) = P1.

Note, that the pairing of a non-zero element in G1 and a non-zero
element in G2 may be trivial in this situation.

N.P. Smart
Identity Based Key Agreement Protocols Slide 11



Summary

In all situations we have that

I P1 is the generator of G1.
I P2 is a fixed element of G2 of prime order q.

I Such that where there is a computable homomorphism ψ from
G2 to G1 we have ψ(P2) = P1.

In Type 3 curves, an isomorphism exists however you cannot
compute it.

I We will still refer to ψ in this situation.

N.P. Smart
Identity Based Key Agreement Protocols Slide 12



Curve Choices

Type 1 curves do not scale very well as one increaes the security
parameter, hence from now on we assume we are using ordinary
curves.

The most efficient parameters are those ordinary curves with
complex multiplication by D = −3 and k divisible by six.

I Efficient arithmetic in G2 via the sextic twist.
I Efficient pairing using the Ate-pairing.
I Reduced bandwidth if k selected sensibly.

N.P. Smart
Identity Based Key Agreement Protocols Slide 13



Outline

Types of Pairings

Subgroup Membership Testing

Hard Problems

Key Agreement Protocols
Smart’s Protocol
SYL Protocol
CK and Wang Protocols
SCK Protocol

Conclusion

N.P. Smart
Identity Based Key Agreement Protocols Slide 14



Subgroup Membership Testing

In security proofs of key agreement protocols it is often implicitly
assumed that elements transmitted lie in the correct subgroup of
a larger group.

In practice one needs then to check for subgroup membership

Often forgotten about
I If you do not do it the security proof does not apply.

For each of our ordinary curve pairing parameters, i.e. Type 2, 3,
4, we need to show how to test for subgroup membership.

N.P. Smart
Identity Based Key Agreement Protocols Slide 15



Subgroup Membership Testing

Almost always the message flows will be elements of G1, G2 or GT .

Detecting whether an octet string is an element of a finite field, or
a point on a curve is easy.

I The question is whether the element/point is in the correct
subgroup.

For GT standard techniques apply, such as cofactor multiplication.
For G1, since elements always lie in E(Fp) and have order q.

I Thus standard cofactor multiplication can be applied.

For G2, for Type 2,3,4 parameters, elements lie in E(Fpk )

I This has order divisible by q2, so standard techniques need
to be adapted.

I Depends on the type of pairing parameters

N.P. Smart
Identity Based Key Agreement Protocols Slide 16



Subgroup Membership Testing

Type 3 Here G2 is the image of the quadratic/sextic twist over a
the field Fpk/2/Fpk/6.

I Represent elements of G2 as on the twist.
I Subgroup testing then done by standard techniques.

Type 2 Here G2 is generated by P2 = 1
kP1 + P2.

If we wish to test whether Q ∈ 〈P2〉
I We first check whether it has order q.
I We then know that Q = aP1 + bP2 for unknown a and b.
I We compute aP1 = 1

k Tr(Q) and bP2 = Q − aP1

I We need to test whether a = b/k , which we do via

ê(Tr(Q),P2) = ê(kaP1,P2) = ê(P1,bP2) = ê(P1,Q−1
k

Tr(Q)).

N.P. Smart
Identity Based Key Agreement Protocols Slide 17



Subgroup Membership Testing
Type 4 In this situation we also need to test whether a general
point

Q = aP1 + bP2

is a multiple of another point

P = cP1 + dP2

without knowing a,b, c or d .

We first test whether P,Q ∈ G as above.

Then we test whether a = tc and b = td for some unknown t by
testing whether

ê(Tr(Q),P − 1
k

Tr(P)) = ê(Tr(P),Q − 1
k

Tr(Q)).

N.P. Smart
Identity Based Key Agreement Protocols Slide 18



Outline

Types of Pairings

Subgroup Membership Testing

Hard Problems

Key Agreement Protocols
Smart’s Protocol
SYL Protocol
CK and Wang Protocols
SCK Protocol

Conclusion

N.P. Smart
Identity Based Key Agreement Protocols Slide 19



Hard Problems
We require a set of hard problems on which to base our protocols:

Diffie–Hellman (DH)
For a,b ∈R Z∗

q and some values of i , j , k ∈ {1,2}, given (aPi ,bPj),
computing abPk is hard.

I Use the notation “DHi,j,k problem”.

Bilinear Diffie–Hellman (BDH)
For a,b, c ∈R Z∗

q, given (aPi ,bPj , cPk ), for some values of
i , j , k ∈ {1,2}, computing ê(P1,P2)

abc is hard.

Decisional BDH (DBDH)
For a,b, c, r ∈R Z∗

q, differentiating

(aPi ,bPj , cPk , ê(P1,P2)
abc) and (aPi ,bPj , cPk , ê(P1,P2)

r ),

for some values of i , j , k ∈ {1,2}, is hard.

N.P. Smart
Identity Based Key Agreement Protocols Slide 20



Hard Problems: Variants

A particular scheme may not require the computable
homomorphism to implement it

But the computable homomorphism may be required in the
security proof.

Thus for Type 3 curves, where no such isomorphism exists, we
are creating a relativised security proof

We denote the corresponding relativised hard problem by a
superscript-ψ,

I As in DHψ
2,2,1, BDHψ

2,1,2, etc.

N.P. Smart
Identity Based Key Agreement Protocols Slide 21



Hard Problems: Variants

Some security proofs make use of some gap assumptions.

They assume that if an algorithm exists to resolve a decisional
problem, the corresponding computational problem is still hard.

We let
I GBDH,

stand for
I the gap BDH assumption

N.P. Smart
Identity Based Key Agreement Protocols Slide 22



Outline

Types of Pairings

Subgroup Membership Testing

Hard Problems

Key Agreement Protocols
Smart’s Protocol
SYL Protocol
CK and Wang Protocols
SCK Protocol

Conclusion

N.P. Smart
Identity Based Key Agreement Protocols Slide 23



ID-Based Key Agreement

Quite early on in the history of pairing based crypto ID-based key
agreement was considered.

In this talk we do not consider whether such a primitive is useful
or not.

Just as in standard key agreement various properties can be
considered:

I Known Session Key Security.
I Forward Secrecy.
I Key-Compromise Impersonation Resilience.
I Unknown Key-Share Resilience.
I Role Symmetry.

N.P. Smart
Identity Based Key Agreement Protocols Slide 24



ID-Based Key Agreement

In this talk we restrict to ID-based keys of the SOK/BF format:
I See our paper for a full survey of all current protocols

SOK/BF key extraction comes in two variants:
I Which we refer to as Extract 1 and Extract 1’.

In both cases we have
I The pairing parameters
I An identity string IDA for a user A
I The master private key s ∈ Z∗

q,
I The master public key,

I This is either R = sP1 ∈ G1 or R′ = sP2 ∈ G2 or both.

N.P. Smart
Identity Based Key Agreement Protocols Slide 25



ID-Based Key Agreement

Extract 1
Here we have a hash-function H1 : {0,1}∗ → G1,

The algorithm computes
I QA = H1(IDA) ∈ G1

I dA = sQA ∈ G1.

Extract 1’
This is the same, except that H1 is now a hash function with
codomain G2, and hence QA and dA lie in G2.

In both cases, the values QA and dA will be used as the public and
private key pair corresponding to A’s identity IDA.

N.P. Smart
Identity Based Key Agreement Protocols Slide 26



Smart’s Protocol
The first ID-based key agreement protocol was given by Smart.

Use Extract 1 method for key extraction.

Alice and Bob randomly choose x and y from Z∗
q and perform the

protocol as follows:

A → B : EA = xP2,

B → A : EB = yP2.

The shared secret key is

ê(xQB + yQA,P2)
s.

I Alice computes this via ê(xQB,R′) · ê(dA,EB).
I Bob computes this via ê(yQA,R′) · ê(dB,EA).

N.P. Smart
Identity Based Key Agreement Protocols Slide 27



Smart’s Protocol
Smart’s protocol is

I Implementable in all pairing parameter types.
I Role symmetric.
I Has all required security properties

I Bar some strict forms of forward secrecy.

I Provably securely under the GBDH assumption
(Kudla/Paterson)

If using the Extract 1’ method:
I Can not be implemented in parameter Type 2.
I Need to replace the message flows by xP1 and yP1.
I Obtain shorter message flows in this case.
I Detecting subgroup membership for Type 3 and 4 pairings is

then easier.

N.P. Smart
Identity Based Key Agreement Protocols Slide 28



Smart’s Protocol

Would like a protocol which is better than Smart’s protocol.

In this talk will then only concentrate on protocols which meet this
property.

In particular for this talk we will concentrate on protocols which
I Have a proof of security
I Secure against known key security and key compromise

impersonation and unknown key shares.
I

See paper for other protocols.

N.P. Smart
Identity Based Key Agreement Protocols Slide 29



SYL Protocol

Using the Extract 1’ method only can define another protocol due
to Shim, Yuan and Li.

A → B : EA = xP2,

B → A : EB = yP2.

The shared secret key is

xyP2‖ê(yP1 + ψ(QB), xP2 + QA)s

I Alice computes this via xEB‖ê(ψ(EB + QB), xR′ + dA).
I Bob computes this via yEA‖ê(yψ(R′) + ψ(dB),EA + QA).

N.P. Smart
Identity Based Key Agreement Protocols Slide 30



SYL Protocol

SYL protocol is
I Implementable only in pairing parameter Type 1 and 4.

I Requires hashing into G2 and an isomorphism.

I Not role symmetric in the Type 4 setting.
I Has all required security properties

I Including all strict forms of forward secrecy.

I Provably securely under the BDH assumption
(Chen/Cheng/Smart)

I Has poor bandwidth efficiency in the Type 4 setting.

N.P. Smart
Identity Based Key Agreement Protocols Slide 31



CK and Wang Protocols

These are from the same family, first proposed by Chen and
Kudla.

Key extraction is by the Extract 1’ method.

They require the isomorphism to implement the protocol

These two properties mean they only hold in the Type 1 and 4
setting.

Message flows are given by

A → B : EA = xψ(QA),

B → A : EB = yQB.

N.P. Smart
Identity Based Key Agreement Protocols Slide 32



CK and Wang Protocols
For the CK protocol the shared secret key is

ê(ψ(QA),QB)s(x+y)

I Alice computes this via ê(ψ(dA), xQB + EB)

I Bob computes this via ê(EA + yψ(QA),dB)

For the Wang protocol the shared secret key is

ê(ψ(QA),QB)s(x+sA)(y+sB)

where sA = h(xψ(QA), yQB) and sB = h(yQB, xψ(QA)) and h is a
one-way function.

I Alice computes this via ê((x + sA)ψ(dA), sBQB + EB)

I Bob computes this via ê(sAψ(QA) + EA, (y + sB)dB)

N.P. Smart
Identity Based Key Agreement Protocols Slide 33



CK and Wang Protocols

The CK and Wang protocols are
I Not role symmetric in the Type 4 setting.
I Has all required security properties

I Bar the strictest form of forward secrecy.
I Wang protocol is better than CK in this respect.

I CK is secure under the GBDH problem.
I Wang is secure under the DBDH problem.
I Has poor bandwidth efficiency in the Type 4 setting for one

party.
I Subgroup membership testing in the Type 4 setting is harder

for one party.

N.P. Smart
Identity Based Key Agreement Protocols Slide 34



SCK Protocol

We really want a protocol which

I Meets all of our security goals
I Including strong forms of forward secrecy.

I Has a proof of security relative to a standard, i.e. non-gap
problem.

I Is role symmetric.
I Is efficient.

Turns out a minor modification of Smart’s original protocol meets
these requirements.

I Modification proposed by Chen and Kudla.

N.P. Smart
Identity Based Key Agreement Protocols Slide 35



SCK Protocol
Smart/Chen/Kudla Protocol

Use Extract 1 method for key extraction.

Alice and Bob randomly choose x and y from Z∗
q and perform the

protocol as follows:

A → B : EA = xP2,

B → A : EB = yP2.

The shared secret key is

xyP2‖ê(xQB + yQA,P2)
s.

I Alice computes this via xEB‖ê(xQB,R′) · ê(dA,EB).
I Bob computes this via yEA‖ê(yQA,R′) · ê(dB,EA).

We have only added in the Diffie-Hellman secret to the KDF.

N.P. Smart
Identity Based Key Agreement Protocols Slide 36



SCK Protocol
The SCK protocol is

I Implementable in all pairing parameter types.
I Role symmetric.
I Has all required security properties

I Including strict forms of forward secrecy.

I Provably securely under the BDH assumption
(Chen/Cheng/Smart)

If using the Extract 1’ method:
I Can not be implemented in parameter Type 2.
I Need to replace the message flows by xP1 and yP1.
I Obtain shorter message flows in this case.
I Detecting subgroup membership for Type 3 and 4 pairings is

then easier.

N.P. Smart
Identity Based Key Agreement Protocols Slide 37



Outline

Types of Pairings

Subgroup Membership Testing

Hard Problems

Key Agreement Protocols
Smart’s Protocol
SYL Protocol
CK and Wang Protocols
SCK Protocol

Conclusion

N.P. Smart
Identity Based Key Agreement Protocols Slide 38



Conclusion

We have looked at a set of ID-based key agreement protocols.

Whether one can implement a given protocol depends on what
type of pairing parameters we are using.

The only protocol which currently meets all security requirements
and has a proof of security relative to a standard hard problem is
the SCK protocol.

See the full paper for proofs and a more extensive discussion of
the protocols in this talk and others in the literature.

N.P. Smart
Identity Based Key Agreement Protocols Slide 39


	Types of Pairings
	Subgroup Membership Testing
	Hard Problems
	Key Agreement Protocols
	Smart's Protocol
	SYL Protocol
	CK and Wang Protocols
	SCK Protocol

	Conclusion

