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Introduction

Weierstraß equation

IFq = finite field of q elements.

An elliptic curve IE is given by a Weierstraß equa-
tion over IFq or Q

y2 = x3 + Ax + B

(if gcd(q,6) = 1).

Basic Facts

• Hasse–Weil bound: |#IE(IFq) − q − 1| ≤ 2q1/2

• IE(IFq) is an Abelian group, with a special “point
at infinity” O as the neutral element and which
is

– either cyclic

– or isomorphic to a product of two cyclic
groups ZZ/M × ZZ/L with L|M .
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Weil Pairing

Bilinear Map:

e : G × G → IF∗
qk

where G is a subgroup IE(IFq)

e(P, Q) ∈ IF∗
qk

and

e(P + R, Q) = e(P, Q)e(R, Q),

e(P, Q + R) = e(P, Q)e(P, R)

Necessary Condition #G | qk − 1

Special Case: G = IE(IFq)

The smallest k with

#IE(IFq) | qk − 1

is called the embedding degree of IE(IFq).
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Applications of Weil Pairing

• MOV Attack on EC-Dlog A. Menezes, T.

Okamoto and S. Vanstone, 1993:

Instead of solving EC-Dlog over IE(IFq) one can

solve Dlog over IFqk.

• Tripartie DH Protocol A. Joux, 2001:

To create a common secret key, A, B and C

choose secret numbers a, b, c and publish pairs

(aP, aQ), (bP, bQ), (cP, cQ).

Now each of them is able to compute the com-

mon key

K = e(P, Q)abc.

• Identity Based Cryptography D. Boneh and

M. Franklin, 2003:
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Problem

For the above applications to be practical and ef-

ficient the embedding degree must be small.

Quick Answer: Take any supersingular curve IE(IFq).

It has

#IE(IFq) = q + 1 | q2 − 1,

thus the embedding degree k = 2.

However,

Supersingular curves are not to be trusted!

Question (reformulated): How can we construct

an ordinary elliptic curve with a small embedding

degree?
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More Questions

• What is the embedding degree of a random

curve? One can randomise:

– Curve (fix IFq and take random A and B in

the Wierstrass equation).

– Field (fix IE over Q and take its reduction

modulo a random prime p).

– Both

• How can we construct elliptic curves with a

small embedding degree?

• In what fields do elliptic curves with a small

embedding degree exist?
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Random Curves and
MOV Attack

Alfred Menezes, Tatsuaki Okamoto and Scott Van-

stone, 1993:

MOV constructs an embedding of a fixed cyclic

subgroup of order L of IE(IFq) into the multiplica-

tive group IF∗
qk provided L|qk − 1.

Number Field Sieve: discrete logarithm in IF∗
qk

can be found in time Lqk

(
1/3, (64/9)1/3

)
where,

as usual,

Lm(α, β) = exp
(
(β + o(1))(log m)α(log logm)1−α

)
.
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If the embedding degree k of IE(IFq) is

k = o

(
(log q)2

(log log q)2

)

then the discrete logarithm on IE(IFq) can be

solved in subexponential time:

Lqk

(
1/3, (64/9)1/3

)

=exp

(((
64

9

)1/3
+ o(1)

)
(log qk)1/3(log log qk)2/3

)

=exp

(((
64

9

)1/3
+ o(1)

)
(k log q)1/3 (log(k log q))2/3

)

=exp (o(log q)) = qo(1)



R. Balasubramanian and N. Koblitz, 1998:

For almost all primes p and almost all elliptic curves

over IFp of prime cardinality the embedding de-

gree is large.

E.g. for a “random” prime p ∈ [x/2, x] and a ran-

dom curve modulo p of prime cardinality,

Pr{embedding degree ≤ (log p)2} ≤ x−1+o(1).

What is p is given?

What if the cardinality is not prime?

Florian Luca and I.S., 2004:

For all primes p and almost all elliptic curves over

IFp of any cardinality the embedding degree is large:

Let K = (log p)O(1). For a randomly chosen curve

Pr{embedding degree ≤ K} ≤ p−1/(4κ+6)+o(1),

where

κ =
logK

log2 p
.

For K = (log p)2 the RHS is p−1/14+o(1).



The proof is based on

• studying N ∈ [p +1−2p1/2, p+1+2p1/2] with
N |pk − 1, for some k ≤ K;

• Lenstra’s bound on the number of curves with
IE(IFp) = N .

For H ≥ h ≥ 1 and K ≥ 1, we let N(p, K, H, h) be
the number of integers N ∈ [H − h, H + h] with
N | (pk − 1) for some k ≤ K.

For logH � logh � log p and logK = O(log2 p),

N(p, K, H, h) ≤ h1−1/(2κ+3)+o(1),

where

κ =
logK

log2 p
.

Also, similar results about the probability that

• P(#IE(IFp))|pk − 1 for k ≤ K;

• #IE(IFp)|∏K
k=1(p

k − 1).
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Another Bad Idea

Take an ordinary elliptic curve IE over IFq and the

consider it over IFqn.

Florian Luca and I.S., 2006:

Subspace Theorem

⇓

Theorem 1 For any δ > 0, there exists a constant

c > 0, such that for any sufficiently large X the

bound

k(qn) ≥ c(logn)1/6

holds for all positive integers n ≤ X except at most

Xδ of them.
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Scarcity of Pairing Friendly
Fields

Requirements

Let

Φk(X) =
k∏

j=0
gcd(j,k)=1

(X − exp(2π
√−1j/k)) ∈ ZZ[X]

be the kth cyclotomic polynomial.

Φk(X) | Xk − 1

` | qk − 1 and ` - qm − 1, 1 ≤ m < k, =⇒ ` | Φk(q)



IE with #IE(IFq) = q + 1 − t of embedding degree k

` is a largest prime divisor of #IE(IFq)

` | q + 1 − t | qk − 1 and ` - qm − 1, 1 ≤ m < k

⇓

`|Φk(q) and q ≡ t − 1 (mod `)

⇓

` | Φk(t − 1)

Typically, such constructions work into two steps:

Step 1 Choose a prime `, integers k ≥ 2 and t,

and a prime power q such that

|t| ≤ 2q1/2, t 6= 0,1,2,

` | q + 1 − t, ` | Φk(q),
(1)

(based on black magic or luck).

Step 2 Construct an elliptic curve IE over IFq with

#IE(IFq) = q + 1− t (based on Hilbert polyno-

mials).
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We want:

• k should be reasonable small (e.g., k = 2,3,4,6);

• the ratio log `/ log q should be as large as pos-

sible, preferably close to 1.

There is no efficient algorithm for Step 2, except

for the case when the t2 − 4q has a very small

square-free part; that is, when

t2 − 4q = −r2s. (2)

where s is a small square-free positive integer. In

this case either −s or −4s is the fundamental dis-

criminant of the CM field of IE.

So we also need

t2 − 4q = −r2s with small square-free s



15

Counting Function:

Let Qk(x, y, z) be the number of prime powers q ≤ x

for which there exist prime ` ≥ y and t satisfying

|t| ≤ 2q1/2, t 6= 0,1,2,

` | q + 1 − t, ` | Φk(q),

t2 − 4q = −r2s.

with a square-free s ≤ z.

Florian Luca and I.S., 2006:

Theorem 2 For any fixed k and real x, y and z

the following bound holds

Qk(x, y, z) ≤ x3/2+o(1)y−1z1/2.

In particular, if z = xo(1), which is the only prac-

tically interesting case anyway, we see that unless

y ≤ x1/2 there are very few finite fields suitable for

pairing based cryptography.



Moral

In other words, unless the common request of the

primality

of the cardinality of the curve is relaxed to the

request for this cardinality to have a

large prime divisor

(e.g., a prime divisor ` with log `/ log q ≥ 1/2), the
suitable fields are very rare.

Notation

A � B (I. M. Vinogradov)

m

A = O(B) (E. Landau)

� is more compact and easier to use (admits more

informative chains like A � B = C).
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Proof

Since ` | q + 1 − t and ` | Φk(q), we also have

` | Φk(t − 1). (3)

and

`m = q + 1 − t

for some m which together with t2 − 4q = −r2s

implies that

(t − 2)2 + r2s = 4`m.

Therefore

` | (t − 2)2 + r2s. (4)

Comparing (3) and (4), we conclude that ` divides

the resultant Rk(r
2s) of the polynomials Φk(X)

and (X − 1)2 + r2s, that is

` | Rk(r
2s) = Res

(
Φk(X), (X − 1)2 + r2s

)
.
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Φk(X) is an irreducible and degΦk = ϕ(k),

⇓
Rk(r

2s) does not vanish

• if k 6= 1,2,3,4,6 (since ϕ(k) ≥ 3 for k 6=
1,2,3,4,6).

• if k = 2, since Φ2(X) = X +1 and it is obvious

that −1 is not a root of (X−1)2+r2s for s ≥ 1.

• if k = 3,4,6, since ϕ(k) = 2 and Rk(r
2s) = 0

implies that Φk(X) = (X − 1)2 + r2s which is

impossible (substitute X = 0).



ω(n) = the number of prime divisors of n.

If r2s is fixed, then by

` | Rk(r
2s) = Res

(
Φk(X), (X − 1)2 + r2s

)
.

we see that ` can take at most

ω(|Rk(r
2s)|) � log |Rk(r

2s)| � log(r2s) ≤ logx
(5)

possible values.

t2 − 4q = −r2s =⇒ r2s ≤ 4x if q ≤ x. Thus the
total number of products r2s can be estimated as∑

s≤z

∑
r≤√4x/s

1 ≤ ∑
s≤z

⌊√
4x/s

⌋
� √

xz. (6)

When r2s and ` are fixed, we see that m in

`m = q + 1 − t

can take at most⌊
x + 1 + 2x1/2

`

⌋
≤
⌊
x + 1 + 2x1/2

y

⌋
� x

y
(7)

possible values.

By

`m = q + 1 − t and (t − 2)2 + r2s = 4`m,

if r, s and m are fixed then q and t are fixed
too. Combining (5), (6) and (7), we conclude
the proof.
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Heuristic Bounds

Galbraith, McKee and Valenca, 2005:

there are about x1/2+o(1) prime powers q ≤ x for

which there is an ordinary elliptic curve IE satisfy-

ing #IE(IFq) | Φk(q).

This applies to all curves without any restriction

on the arithmetic structure of #IE(IFq), or on the

size of the discriminant of the field of complex

multiplication.

It seems that giving a rigorous proof of this result is

out of reach nowadays due to our poor knowledge

of the distribution of roots of polynomial congru-

ences.
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All arguments in our derivation of the upper bound

can be reverted except that we ignored that

1. ` in

` | Rk(r
2s) = Res

(
Φk(X), (X − 1)2 + r2s

)
.

must satisfy

y ≤ ` ≤ x.

2. Φk(X) and (X−1)2+r2s must have a common

root t with |t| ≤ 2x1/2.

Lemma 3 For 0 < α < β < 1, there is a positive

proportion of integers n ≤ U which have a prime

divisor ` with Uα ≤ ` ≤ Uβ.

1. =⇒ affects only the density.

2. =⇒ correction factor x1/2/y.
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Florian Luca and I.S., 2006:

These arguments can be made more precise

Putting everything together we obtain that the

bound

Qk(x, y, z) � x1/2

y
· Bound of Theorem 2

= x2+o(1)y−2z1/2

should hold, provided that y ≥ x1/2.

Is it more precise than Theorem 2?

We believe so. . .
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Regular Constructions

As we have seen trying to find a pairing friendly

curve/field by the blind random search is hopeless.

So several regular constructions have been invented:

Miyaji, Nakabayashi and Takano, 2001:

Barreto and Scott, 2004:

Barreto, Lynn and Scott, 2003,2004:

Barreto and Naehrig, 2006:

Dupont, Enge and Morain, 2005:

Freeman, 2006:

Some generalisations in

Galbraith, McKee and Valenca, 2005:



24

Heuristic on MNT curves

Atsuko Miyaji, Masaki Nakabayashi and Shunzou

Takano, 2001:

MNT algorithm to produce elliptic curves satis-

fying the condition (1) with k = 3,4,6, and the

condition (2) for a given value of s.

Florian Luca and I.S., 2005:

Heuristic estimates on the number of elliptic curves

which can be produced by MNT.

It seems that they produce only finitely many suit-

able curves (still this can be enough for practical

needs of elliptic curve cryptography).
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MNT Construction For k = 6

The MNT algorithm produces positive integers q

and t of the form

q = 4m2 + 1, t = ±2m + 1

for some positive integer m.

Divisibility

We have

q + 1 − t = 4m2 ± 2m + 1.

Since Φ6(X) = X2 − X + 1 we obtain

Φ6(4m2 + 1) = (4m2 + 1)2 − (4m2 + 1) + 1

= (4m2 + 1)2 − 4m2

= (4m2 − 2m + 1)(4m2 + 2m + 1)
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CM Discriminant = s

We have

4q − t2 = 16m2 + 4 − (±2m + 1)2

= 4m2 + 4 − 4m2 ∓ 4m − 1

= 12m2 ∓ 4m + 3

=
(±6m + 1)2 + 8

3
= r2s

So we choose m = ±(u − 1)/6 where u = 6m + 1

is a solution to the following Pell equation

u2 − 3sv2 = −8, u, v ∈ IN. (8)

Cryptographic Suitability

We need to check that

` = q + 1 − t

is prime.
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Our Arguments

We combine the following observations:

• MNT gives a parametric family of curves whose

parameter runs through a solution of a Pell

equation (8) (i.e., u2 − 3sv2 = −8).

• Consecutive solutions (uj, vj) of a Pell equation

grow exponentially, as at least scj and most

probably as ecs1/2j for some constant c > 0.

• The probability of a random integer n to be

prime is 1/ logn.

• MNT curves should satisfy two independent

primality conditions (on the field size and on

the cardinality of the curve).



=⇒ the expected number of MNT curves for

every s is, by the order of magnitude,

∞∑
j=1

1

(log scj)2
� 1

(log s)2

∞∑
j=1

1

j2
� 1

(log s)2
.

or even by

∞∑
j=1

1

(log ecs1/2j)2
� 1

s

∞∑
j=1

1

j2
� 1

s
.

Probably the total number of all MNT curves of

prime cardinalities (over all finite fields) and of

bounded CM discriminant, is bounded by an abso-

lute constant.

Bad News:

Apparently the number of all MNT curves of prime

cardinalities with CM discriminant up to z, is is

bounded, by the order of magnitude,

∑
s≤z

1

s
� log z.

Good News:

Similar heuristic shows that MNT produces suffi-

ciently many curves whose cardinality has a large

prime divisor.


