Finding Invalid Signatures in Pairing-based Batches ${ }^{\dagger}$

Laurie Law
 National Security Agency
 ECC 2006

(Based on joint work with Brian Matt, SPARTA, Inc.) ${ }^{\dagger}$

\dagger The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the National Security Agency, the Army Research Laboratory, or the U. S. Government.
\ddagger Dr. Matt’s work through collaborative participation in the Communications and Networks Consortium sponsored by the U. S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD-19-01-2-0011.

Batch Verification of Digital Signatures

- A digital signature authenticates the source of a message and that the message has not been altered
- Message is signed with signer's private key
- Signer's public key is used to verify signature
- If most signatures are valid, can save time by verifying a "batch" of signatures together
- What is the fastest way to verify the batch?
- If the batch fails, how to quickly identify the bad signatures?

Applications

Check processing

Validating PKI
Certificate chains

$$
\mathrm{S}_{\mathrm{CA} 2}\left(\operatorname{Cert}_{\mathrm{A}}\right)
$$

Routing security

(A) $\underset{\text { Rep }\left|S_{D}\right| S_{C} \mid S_{B}}{\text { Route req }}$ (B)

Authenticating neighboring nodes

Outline

- Background
- Faster identification of invalid signatures
- New techniques for pairing-based signatures
- Cost comparisons

Background

Batch Verification

- G is a prime order group
- $x_{i} \in Z_{p}, y_{i} \in G, g$ is a generator of G
- Given $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)$
- Need to verify that $g^{x_{i}}=y_{i}$ for all $i=1$ to N
- Small exponents test (Bellare et al. 1998)
- Pick small random m-bit integers $r_{1}, r_{2}, \ldots, r_{N}$
- Compute $x=\sum r_{i} x_{i}, y=\Pi y_{i}^{r_{i}}$
- If $g^{x}=y$ then accept; otherwise reject
- The probability that test accepts a bad batch is at most 2^{-m}

I dentifying bad signatures

- Verify each signature individually
- Divide and conquer
- Pastuzak et al. (PKC 2000)
- Recursively divide into sub-batches
- Applications to RSA signatures
- Lee, Cho, Choi, Cho 2006
- Problem found with this approach to batch RSA (Stanek 2006)

Divide and Conquer: Simple Binary Search

Signature 3 is invalid

Simple Binary Search

Signature 3 is invalid

Simple Binary Search

Signature 3 is invalid

Simple Binary Search

Signature 3 is invalid
5 verifications (beyond initial)
Maximum \# verifications for N signatures (1 invalid): $2 \lg (\mathrm{~N})$

Faster identification of invalid signatures

Improvement to Simple Binary
 Search

- Batch verification typically asks "Is $X=Y$?"
- Instead, compute $A=X Y^{-1}$
- $A=1 \Leftrightarrow$ batch is valid
- For batch of signatures $\left(X_{i}, Y_{i}\right), i=1$ to N

$$
\begin{aligned}
& A=\prod_{i=1}^{N} A_{i}=A_{S_{1}} * A_{S_{2}} \\
& A_{S_{1}}=\left(\prod_{i \in S_{1}} A_{i}\right), A_{S_{2}}=\left(\prod_{i \in S_{2}} A_{i}\right)
\end{aligned}
$$

- $A \neq 1$ and $A_{\mathrm{S}_{1}}=1 \rightarrow A_{\mathrm{S}_{2}} \neq 1, S_{2}$ bad (skip verify)
- $A \neq 1$ and $A_{\mathrm{S}_{1}} \neq 1 \rightarrow$ now do "Quick Test" on S_{2}
- $A=A_{\mathrm{S}_{1}} \rightarrow A_{\mathrm{S}_{2}}=1, S_{2}$ is good
- $A \neq A_{\mathrm{S}_{1}} \rightarrow A_{\mathrm{S}_{2}} \neq 1, S_{2}$ is bad

Quick Binary Search

Signature 3 is invalid

Quick Binary Search

Signature 3 is invalid

Quick Binary Search

Signature 3 is invalid

Quick Binary Search

3 verifications (beyond initial)
\# verifications for N signatures (1 invalid): $\lg (N)$

Cost (\# verifications - worst case)

- 1 invalid signature
- Simple Binary: $2\lceil\lg N\rceil$
- Quick Binary: $\lceil\lg N\rceil$
- w bad signatures
- Simple Binary:

$$
2(2\lceil\lg w\rceil-1+w(\lceil\lg N\rceil-\lceil\lg w\rceil))
$$

- Quick Binary:

$$
2\lceil\lg w\rceil-1+w(\lceil\lg N\rceil-\lceil\lg w\rceil)
$$

New techniques for pairingbased signatures

Pairing-based Signatures

- Pairings have been used in identity-based and short signatures
- Identity-based: public key can be easily derived from identity so certificates are not needed
- Very efficient in wireless networks

Sender ID	Message	Signature	Sender's Public Key	Certificate	(cert chain)
\uparrow					
Not needed!					

- Drawback - verification of many schemes requires 2 expensive bilinear pairings per signature

Bilinear pairings on elliptic curves

- E is an elliptic curve defined over F_{q}, q prime
- r is a prime divisor of $\# E\left(F_{q}\right)$
- Q and R are points of order r
- $<Q, R>$ maps Q and R into order r subgroup of $F_{q^{d}}$

$$
\begin{aligned}
& <Q, R_{0}+R_{1}>=<Q, R_{0}><Q, R_{1}> \\
& <Q_{0}+Q_{1}, R>=<Q_{0}, R><Q_{1}, R> \\
& <k Q, R>=<Q, k R>=<Q, R>^{k}
\end{aligned}
$$

Cha-Cheon signature (2003)

System set-up
$s=$ master key (secret integer)
$R=$ order r point on $E\left(F_{q} d\right)-E\left(F_{q}\right)$ (public)
$P=s R$ (public)

- Signer's key pair

Public: Q is an order r point on $E\left(F_{q}\right)$
Private: $D=s Q$

- Signing a message m :

$$
\begin{aligned}
& U=t Q \quad(t \text { randomly generated by signer }) \\
& V=(t+\operatorname{hash}(m, U)) D
\end{aligned}
$$

- Verification:

Accept if received points are in the correct group and $\langle U+\operatorname{hash}(m, U) Q, P\rangle=\langle V, R\rangle$

Batch Verification for Cha-Cheon

- Apply small exponents test
- For $k=1$ to N, the verifier receives
- m_{k} : message
- Q_{k} : signer's public key
- U_{k}, V_{k} : signature of m_{k}
- Verifier validates received points and generates random integers $r_{1}=1, r_{2}, \ldots, r_{N}$

$$
\begin{aligned}
& B_{k}=r_{k}\left(U_{k}+\operatorname{hash}\left(m, U_{k}\right) Q_{k}\right) \\
& D_{k}=r_{k} V_{k}
\end{aligned}
$$

- Batch is valid $\Leftrightarrow\left\langle\sum_{k=1}^{N} B_{k}, P\right\rangle=\left\langle\sum_{k=1}^{N} D_{k}, R\right\rangle$

Finding the invalid signatures

- Quick Binary Search
- Rewrite initial verification:

$$
A_{0}=\left\langle\sum_{k=1}^{N} B_{k}, P\right\rangle\left\langle\sum_{k=1}^{N} D_{k},-R\right\rangle
$$

- $A_{0}=1 \rightarrow$ batch is valid
- Finding 1 bad signature requires $2 \lg N$ pairings
- Can we reduce the number of pairings (for a small \# of bad signatures)?

Exponentiation Method

- If initial verification fails, compute

$$
A_{1}=\left\langle\sum_{k=1}^{N} k B_{k}, P\right\rangle\left\langle\sum_{k=1}^{N} k D_{k},-R\right\rangle
$$

- If i is the only invalid signature, then
$A_{1}=\prod_{k=1}^{N}\left\langle B_{k}, P\right\rangle^{k}\left\langle D_{k},-R\right\rangle^{k}=\left(\left\langle B_{i}, P\right\rangle\left\langle D_{i},-R\right\rangle\right)^{i}=A_{0}^{i}$
- If $A_{1}=A_{0}{ }^{i}$ then the $i^{\text {th }}$ signature is invalid
- No match \rightarrow at least 2 bad signatures

Identifying 2 bad signatures

- Compute

$$
A_{2}=\left\langle\sum_{k=1}^{N} k\left(k B_{k}\right), P\right\rangle\left\langle\sum_{k=1}^{N} k\left(k D_{k}\right),-R\right\rangle
$$

${ }^{-}$Find $i, j \in[1, N], i<j$ such that

$$
A_{2}=A_{1}^{i+j} A_{0}^{-i j}
$$

- Signatures i and j are invalid
- No match \rightarrow at least 3 bad signatures

Identifying w bad signatures

- Compute

$$
A_{w}=\left\langle\sum_{k=1}^{N} k\left(k^{w-1} B_{k}\right), P\right\rangle\left\langle\sum_{k=1}^{N} k\left(k^{w-1} D_{k}\right),-R\right\rangle
$$

Find $x_{1}, \ldots, x_{w} \in[1, N], x_{1}<\ldots<x_{w}$ such that

$$
\begin{equation*}
A_{w}=\prod_{t=1}^{w}\left(A_{w-t}^{(-1)^{t-1}}\right)^{p_{t}} \tag{1}
\end{equation*}
$$

where p_{t} is the $t^{\text {th }}$ elementary symmetric polynomial in x_{1}, \ldots, x_{w}

- Signatures x_{1}, \ldots, x_{w} are invalid
- No match \rightarrow at least $w+1$ bad signatures

Costs for Exponentiation Method
 (To test for w bad signatures)

- Compute A_{1} through A_{w}
- $2 w$ pairings
- $2 w(N-1)$ short elliptic scalar multiplies
- Can be implemented with $2 w(N-1)$ EC additions
- w multiplies in $F_{q^{d}}$
- Find w-tuple ($x_{0}, x_{1}, \ldots, x_{w}$) to solve (1)
- w-1 inverses in $F_{q^{d}}$
- To test all w-tuples: approx $w(N$ choose $w)<N^{w}$ multiplies in $F_{q^{d}}$
- Square-root discrete log methods are faster for small w

Using discrete log methods to find invalid signatures

- To find a single bad signature, find $i \in$ [$1, N]$ such that $A_{1}=A_{0}{ }^{i}$
- Using Shanks' "baby-step giant-step":

$$
\begin{aligned}
& i=c+d \sqrt{N} \\
& 1 \leq c, d \leq \sqrt{N} \\
& A_{1} A_{0}^{-c}=A_{0}^{d \sqrt{N}}
\end{aligned}
$$

$2 N^{1 / 2}$ multiplies in $F_{q^{d}}$

Baby Step-Giant Step (2 invalid signatures)

Find $p_{1}=i+j$ and $p_{2}=i j$ such that

$$
\begin{aligned}
& A_{2}=A_{1}^{p_{1}} A_{0}^{-p_{2}} \\
& 1 \leq p_{1} \leq 2 N, 1 \leq p_{2} \leq N^{2} \\
& p_{1}=c_{1}+d_{1} \sqrt{2 N}, p_{2}=c_{2}+d_{2} N \\
& 1 \leq c_{1}, d_{1} \leq \sqrt{2 N}, 1 \leq c_{2}, d_{2} \leq N \\
& A_{2} A_{1}^{-c_{1}} A_{0}^{c_{2}}=A_{1}^{d_{1} \sqrt{2 N}} A_{0}^{-d_{2} N}
\end{aligned}
$$

$(2 N)^{3 / 2}$ multiplies to find p_{1} and p_{2}

Baby-Step Giant-Step (generalized)

For w invalid signatures, the number of multiplies are:

$$
2\left(\prod_{i=1}^{w}\binom{w}{i}\right)^{1 / 2} N^{w(w+1) / 4}
$$

This is faster than testing all w-tuples when $w<3$

w	\# multiplies
1	$2 N^{1 / 2}$
2	$(2 N)^{3 / 2}$
3	$6 N^{3}$

Exponentiation with sectors

- Divide N signatures into S sectors of N / S signatures
- Stage 1: Find the bad sectors using the exponentiation method but with multipliers equal to the sector ID

$$
\begin{array}{|llll|llll|llll|llll|}
\hline 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 \\
\hline
\end{array}
$$

- Stage 2: Find bad signatures using the original exponentiation method (can reuse A_{i} 's from previous tests) but test only signatures from bad sectors

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Cost comparisons

Approximate cost to identify w bad signatures in a failed batch of N signatures

Method	Pairings	Inverses in $F_{q^{d}}$	EC additions	Multiplies in $F_{q}{ }^{d}$
Simple Binary (worst case)	$4 w \lg N$	0	0	0
Quick Binary (worst case)	$2 w \lg N$	0	0	0
Exponentiation	$2 w$	$w-1$	$2 w(N-1)$	$\min \left(N^{w}\right.$, $\left.f_{w} N^{w(w+1) / 4}\right)$
Exponentiation with S Sectors*	$4 w$	$1.5(w-1)$	$4 w(N-1)$	$<2 f_{w} N^{w(w+1) / 8}$

* Assumes 1 bad signature per sector and $S=N^{1 / 2}$.

Costs

Parameter sizes

- $|r|=160$ bits
- $|q| \cong 160$ bits (signature length $=2^{*}|q|$)
- $d=6$ (embedding degree)
- Estimates for relative costs of operations (from Granger, Page and Smart, ANTS 2006)
- 1 pairing $=9120$ multiplies in F_{q}
- 1 multiply in $F_{q^{6}}=15$ multiplies in F_{q}
- 1 inverse in $F_{q^{6}}=274$ multiplies in F_{q}
- 1 EC addition $=11$ multiplies in F_{q}

Cost to find 1 invalid signature

 (\# multiplies in F_{q})| \mathbf{N} | Simple
 Binary | Quick
 Binary | Exp | $\mathbf{N}^{\mathbf{1 / 2}}$
 Sectors |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ | 145920 | 72960 | 18558 | 36996 |
| $\mathbf{1 0 0}$ | 255360 | 127680 | 20718 | 41076 |
| $\mathbf{1 0 0 0}$ | 364800 | 182400 | 41178 | 80796 |
| $\mathbf{1 0 0 0 0}$ | 510720 | 255360 | 241218 | 477036 |
| $\mathbf{1 0 0 0 0 0}$ | 620160 | 310080 | 2227728 | 4437516 |

Cost to find 2 invalid signatures (\# multiplies in F_{q})

\mathbf{N}	Simple Binary	Quick Binary	Exp	$\mathbf{N}^{\mathbf{1 / 2}}$ Sectors
$\mathbf{1 0}$	255360	127680	38650	74780^{*}
$\mathbf{1 0 0}$	474240	237120	86110	84905
$\mathbf{1 0 0 0}$	693120	346560	1430710	176510
$\mathbf{1 0 0 0 0}$	984960	492480	43076710	1038275
$\mathbf{1 0 0 0 0 0}$	1203840	601920	1348436710	9350585

*Will be faster if both signatures fall in the same sector.

Cost to find 3 invalid signatures (\# multiplies in F_{q})

\mathbf{N}	Simple Binary	Quick Binary	Exp	$\mathbf{N}^{1 / 2}$ Sectors
$\mathbf{1 0}$	328320	164160	63362	116861^{*}
$\mathbf{1 0 0}$	656640	328320	7561802	303056
$\mathbf{1 0 0 0}$	984960	492480	$7.5^{*} 10^{9}$	5933951
$\mathbf{1 0 0 0 0}$	1422720	711360	$7.5^{*} 10^{12}$	$1.8^{*} 10^{8}$
$\mathbf{1 0 0 0 0 0}$	1751040	875520	$7.5^{*} 10^{15}$	$5.7^{*} 10^{9}$

*Will be faster if some invalid signatures fall in the same sector.

Conclusions

- New methods for finding invalid signatures in failed batches
- Improved general method
- Other methods for pairing-based schemes with small to medium-sized batches
- One or more of these methods will beat earlier techniques if \# invalid signatures is small
- Combine methods for optimal results

