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Batch Verification of Digital 
Signatures

A digital signature authenticates the source of 
a message and that the message has not been 
altered

Message is signed with signer’s private key
Signer’s public key is used to verify signature

If most signatures are valid, can save time by 
verifying a “batch” of signatures together

What is the fastest way to verify the batch?
If the batch fails, how to quickly identify the bad 
signatures?
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Outline

Background
Faster identification of invalid 
signatures 
New techniques for pairing-based 
signatures
Cost comparisons
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Background
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Batch Verification
G is a prime order group
xi∈Zp, yi∈G , g is a generator of G
Given (x1, y1) , (x2, y2) , … , (xN, yN)

Need to verify that gxi = yi for all i=1 to N
Small exponents test (Bellare et al. 1998)

Pick small random m-bit integers r1, r2, …, rN

Compute x = Σri xi , y = Πyi
ri

If gx = y then accept; otherwise reject
The probability that test accepts a bad batch 
is at most 2-m
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Identifying bad signatures

Verify each signature individually
Divide and conquer 

Pastuzak et al. (PKC 2000)
Recursively divide into sub-batches

Applications to RSA signatures
Lee, Cho, Choi, Cho 2006
Problem found with this approach to batch 
RSA (Stanek 2006)
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Batch verify all 8 signatures

Signature 3 is invalid
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Divide and Conquer:Divide and Conquer:
Simple Binary SearchSimple Binary Search
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1-8
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Simple Binary SearchSimple Binary Search
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Verify 3 Verify 4

Signature 3 is invalid
5 verifications (beyond initial)
Maximum # verifications for N signatures (1 invalid): 2 lg(N) 

Simple Binary SearchSimple Binary Search
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Faster identification of invalid 
signatures
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Improvement to Simple Binary 
Search

Batch verification typically asks “Is X=Y?”
Instead, compute A=XY-1

A=1 ⇔ batch is valid
For batch of signatures (Xi, Yi), i=1 to N 
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A ≠ 1 and AS1 = 1 AS2 ≠ 1, S2 bad (skip verify)
A ≠ 1 and AS1 ≠ 1 now do “Quick Test” on S2

A = AS1 AS2 = 1, S2 is good
A ≠ AS1 AS2 ≠ 1, S2 is bad
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1 2 3 4 5 6 7 8

Batch verify all 8 signatures
A1-8 = 1? No
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Signature 3 is invalid
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1 2 3 4 5 6 7 8

Batch Verify 1-4
Is A1-4=1? No

Is A1-4=A1-8? (Quick test)
Yes, #5-8 pass

1-2 3-4 5-6 7-8

1-4 5-8

1-8

Quick Binary SearchQuick Binary Search

Signature 3 is invalid
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1 2 3 4 5 6 7 8

Skip test on 3-4

1-2 3-4 5-6 7-8

1-4 5-8
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Quick Binary SearchQuick Binary Search

Signature 3 is invalid
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1 2 3 4 5 6 7 8

Is A3=1?
No, 3 is bad.

A4=A3-4? (Quick test)
Yes, 4 is good.

1-2 3-4 5-6 7-8

1-4 5-8

1-8

Quick Binary SearchQuick Binary Search

3 verifications (beyond initial)
# verifications for N signatures (1 invalid): lg(N)
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Cost (# verifications - worst case)

1 invalid signature
Simple Binary: 2 ⎡lg N⎤
Quick Binary: ⎡lg N ⎤

w bad signatures 
Simple Binary: 

2(2 ⎡lg w⎤ -1+w( ⎡lg N ⎤ – ⎡lg w⎤))
Quick Binary:

2 ⎡lg w⎤ -1+w( ⎡lg N ⎤ – ⎡lg w⎤)
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New techniques for pairing-
based signatures
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Pairing-based Signatures
Pairings have been used in identity-based and 
short signatures
Identity-based: public key can be easily derived 
from identity so certificates are not needed
Very efficient in wireless networks

Drawback – verification of many schemes 
requires 2 expensive bilinear pairings per 
signature

Sender ID Message Signature Sender’s Public Key   Certificate   (cert chain)

Not needed!
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Bilinear pairings on elliptic curves

E is an elliptic curve defined over Fq, q prime
r is a prime divisor of #E(Fq)
Q and R are points of order r
<Q, R> maps Q and R into order r subgroup 
of Fqd

<Q, R0+R1> = <Q, R0><Q, R1>
<Q0+Q1, R> = <Q0, R><Q1, R>
<kQ, R> = <Q, kR> = <Q, R>k
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Cha-Cheon signature (2003)
System set-up

s = master key (secret integer)

R = order r point on E(Fqd) - E(Fq) (public)

P = sR (public)
Signer’s key pair

Public: Q is an order r point on E(Fq)
Private: D = sQ

Signing a message m:

U = tQ (t randomly generated by signer)

V = (t + hash(m,U))D
Verification: 

Accept if received points are in the correct group and
<U+ hash(m,U)Q, P>=<V, R>
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Batch Verification for Cha-Cheon
Apply small exponents test
For k = 1 to N, the verifier receives

mk: message
Qk: signer’s public key
Uk, Vk: signature of mk

Verifier validates received points and generates random 
integers r1 = 1, r2, … , rN
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Finding the invalid signatures
Quick Binary Search

Rewrite initial verification:
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A0=1 batch is valid
Finding 1 bad signature requires 2lg N pairings
Can we reduce the number of pairings (for a 

small # of bad signatures)?
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Exponentiation Method
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If i is the only invalid signature, then 

If A1 = A0
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Identifying 2 bad signatures

Compute
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Find i, j ∈ [1, N], i < j such that
ijji AAA −+= 012

Signatures i and j are invalid
No match at least 3 bad signatures
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Identifying w bad signatures
Compute
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Find x1, …,xw ∈ [1, N], x1< … < xw such that
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where pt is the tth elementary symmetric 
polynomial in x1, …,xw

(1)

Signatures x1, …,xw are invalid
No match at least w+1 bad signatures
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Costs for Exponentiation Method 
(To test for w bad signatures)

Compute A1 through Aw
2w pairings
2w (N-1) short elliptic scalar multiplies

Can be implemented with 2w(N-1)EC additions

w multiplies in Fqd 

Find w-tuple (x0, x1, …, xw) to solve (1)
w-1 inverses in Fqd

To test all w-tuples: approx w(N choose w) < Nw

multiplies in Fqd

Square-root discrete log methods are faster for small w
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Using discrete log methods to find 
invalid signatures

To find a single bad signature, find i ∈
[1, N] such that A1 = A0

i

Using Shanks’ “baby-step giant-step”:

2N1/2 multiplies in Fqd
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Baby Step-Giant Step (2 invalid 
signatures)

(2N)3/2 multiplies to find p1 and p2
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Find p1 = i+j and p2 = ij such that
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Baby-Step Giant-Step (generalized)
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This is faster than testing all w-tuples when 
w<3

w # multiplies

1 2N1/2
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6N3
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For w invalid signatures, the number of 
multiplies are:
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Exponentiation with sectors

Divide N signatures into S sectors of N/S signatures
Stage 1: Find the bad sectors using the exponentiation 
method but with multipliers equal to the sector ID

1    1    1    1 2    2    2    2 3     3     3     3 4     4     4     4

Stage 2: Find bad signatures using the original 
exponentiation method (can reuse Ai’s from previous 
tests) but test only signatures from bad sectors

1    2    3    4 5    6    7    8 9    10   11   12 13   14   15   16
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Cost comparisons
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Approximate cost to identify w bad signatures in a 
failed batch of N signatures

Method Pairings Inverses 
in Fqd

EC 
additions

Multiplies in Fqd

Simple Binary
(worst case)

4w lg N 0

0

Exponentiation 2w w-1 2w(N -1) min(Nw, 
fwNw(w+1)/4)

Exponentiation 
with S Sectors*

4w 1.5(w-1) 4w(N -1) <2 fwNw(w+1)/8

0 0

Quick Binary
(worst case)

2w lg N 0 0

* Assumes 1 bad signature per sector and S=N1/2 .
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Costs
Parameter sizes

|r| = 160 bits
|q| ≅ 160 bits (signature length = 2*|q|)
d = 6 (embedding degree)

Estimates for relative costs of operations 
(from Granger, Page and Smart, ANTS 2006) 

1 pairing = 9120 multiplies in Fq

1 multiply in Fq6 = 15 multiplies in Fq

1 inverse in Fq6 = 274 multiplies in Fq

1 EC addition = 11 multiplies in Fq
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Cost to find 1 invalid signature
(# multiplies in Fq)

N Simple 
Binary

Quick 
Binary

Exp N1/2

Sectors

10 145920 72960 18558 36996
100 255360 127680 20718 41076

1000 364800 182400 41178 80796
10000 510720 255360 241218 477036

100000 620160 310080 2227728 4437516



37

Cost to find 2 invalid signatures
(# multiplies in Fq)

N Simple 
Binary

Quick 
Binary

Exp N1/2

Sectors

10 255360 127680 38650 74780*
100 474240 237120 86110 84905

1000 693120 346560 1430710 176510
10000 984960 492480 43076710 1038275

100000 1203840 601920 1348436710 9350585

*Will be faster if both signatures fall in the same sector.
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Cost to find 3 invalid signatures
(# multiplies in Fq)

N Simple 
Binary

Quick 
Binary

Exp N1/2

Sectors

10 328320 164160 63362 116861*
100 656640 328320 7561802 303056

1000 984960 492480 7.5*109 5933951
10000 1422720 711360 7.5*1012 1.8*108

100000 1751040 875520 7.5*1015 5.7*109

*Will be faster if some invalid signatures fall in the same sector.
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Conclusions

New methods for finding invalid 
signatures in failed batches

Improved general method
Other methods for pairing-based schemes 
with small to medium-sized batches
One or more of these methods will beat 
earlier techniques if # invalid signatures is 
small
Combine methods for optimal results
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