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Background

l Crypto04 Rump session: collisions found in 
the most commonly used hash functions 
MD4, MD5, …

l SHA-0, SHA-1 also under attack
l NIST organizes a series of workshops (2005, 

2006) and a competition (2007-08) to select 
new hash functions



Hash functions

l A hash function maps bit strings of some 
finite length to bit strings of some fixed finite 
length

l easy to compute 
l unkeyed (unkeyed hash functions do not 

require a secret key to compute the output)
l Collision resistant



Collision-resistance

l A hash function h is collision resistant if it is 
computationally infeasible to find two distinct 
inputs, x, y, which hash to the same output 
h(x) = h(y).

l A hash function h is preimage resistant if, 
given any output of h, it is computationally 
infeasible to find an input, x, which hashes to 
that output. 



Provable hash function

l Goal: to construct efficiently computable 
collision-resistant hash functions. 

l It is a provable hash function if to compute a 
collision is to solve some other well-known 
hard problem, such as factoring or discrete 
log.



Related work: (provable hashes)

l VSH [Contini, Lenstra, Steinfeld, 2005]
l ECDLP-based [?]
l Zemor-Tillich `94,  Hashing with SL2(Z)
l Joye-Quisquater, `97, 
l Quisquater 2004, Liardet 2004
l Goldreich, 2000, One-way functions from 

LPS graphs



Construction of the hash function:

l k-regular graph G
l Each vertex in the graph has a label
Input: a bit string
l Bit string is divided into blocks 
l Each block used to determine which edge to 

follow for the next step in the graph 
l No backtracking allowed!
Output: label of the final vertex of the walk         



Simple idea

l Random walks on expander graphs are a 
good source of pseudo-randomness

l Are there graphs such that finding collisions 
is hard? (i.e. finding distinct paths between 
vertices is hard)

l Bad idea: hypercube (routing is easy, can be 
read off from the labels)



What kind of graph to use?

l Random walks on expander graphs mix 
rapidly: log(n) steps to a random vertex

l Ramanujan graphs are optimal expanders
l To find a collision: find two distinct walks of 

the same length which end at same vertex, 
which you can easily do if you can find cycles



Expander graphs

l G = (V,E) a graph with vertex set V and edge set E. 
l A graph is k-regular if each vertex has k edges 

coming out of it. 
l An expander graph with N vertices has expansion 

constant c > 0 if for any subset U  of V of size 
|U| ≤ N/2,

the boundary (neighbors of U not in U)
|�(U)| ≥ c|U|.



Expansion constant

l The adjacency matrix of an undirected graph is 
symmetric, and therefore all its eigenvalues are real. 

l For a connected k-regular graph, G, the largest 
eigenvalue is k, and all others are strictly smaller

k > µ1 ≥ µ2 ≥ · · · ≥ µN-1.
l Then the expansion constant c can be expressed in 

terms of the eigenvalues as follows: 
c ≥ 2(k − µ1)/(3k − 2µ1)

l Therefore, the smaller the eigenvalue µ1, the better 
the expansion constant. 



Ramanujan graphs

l Theorem (Alon-Boppana) Xm an infinite 
family of connected, k-regular graphs, (with 
the number of vertices in the graphs tending 
to infinity), that 

lim inf µ1(Xm) ≥ 2√(k−1). 
l Def. Ramanujan graph, a k-regular 

connected graph satisfying µ1 ≤ 2√(k−1). 



Example: graph of supersingular
elliptic curves modulo p (Pizer)

l Vertices: supersingular elliptic curves mod p
l Curves are defined over GF(p2)
l Labeled by j-invariants
l Vertices can also be thought of as maximal 

orders in a quaternion algebra
l # vertices ~ p/12
l p ~ 2256



Pizer graph

l Edges: degree � isogenies between them
l k = �+1 – regular
l Graph is Ramanujan (Eichler, Shimura)
l Undirected if we assume p == 1 mod 12



Isogenies

l The degree of a separable isogeny is the 
size of its kernel

l To construct an � -isogeny from an elliptic 
curve E to another, take a subgroup-scheme 
C of size �, and take the quotient E/C.

l Formula for the isogeny and equation for E/C 
were given by Velu.



One step of the walk: (�=2)

l E1 : y2 = x3 +a4x+a6

l j(E1)=1728*4a4
3/(a4

3+27a6
2)

l 2-torsion point Q = (r, 0) 
l E2 = E1 /Q (quotient of groups)
l E2 : y2 = x3 − (4a4 + 15r2)x + (8a6 − 14r3).
l E1  à E2

l (x, y) à (x +(3r2 + a4)/(x-r), y − (3r2 + a4)y/(x-r)2) 



Collision resistance

Finding collisions reduces to finding isogenies 
between elliptic curves:

l Finding a collisionà finding 2 distinct paths 
between any 2 vertices (or a cycle)

l Finding a pre-imageà finding any path 
between 2 given vertices

l O(√p) birthday attack to find a collision



Hard Problems ?

l Problem 1. Produce a pair of supersingular
elliptic curves, E1 and E2, and two distinct 
isogenies of degree �n between them.

l Problem 2. Given E, a supersingular elliptic 
curve, find an endomorphism f : E à E of degree 
�2n , not the multiplication by �n map.

l Problem 3. Given two supersingular elliptic 
curves, find an isogeny of degree �n between 
them.



Timings

l p 192-bit prime  and  � = 2
l Time per input bit is 3.9 × 10−5 secs. 
l Hashing bandwidth: 25.6 Kbps. 
l p 256-bit prime 
l Time per input bit is 7.6 × 10−5 secs or 
l Hashing bandwidth: 13.1 Kbps. 
l 64-bit AMD Opteron 252 2.6Ghz machine.



Other graphs

l Vary the isogeny degree
l Lubotzky-Phillips-Sarnak Cayley graph

– random walk is efficient to implement
– Ramanujan graph 
– Different problem for finding collisions


