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Motivation

Recall that for α ∈ (0, 1) and c > 0, we have the
subexponentiality function

Ln[α, c] := ec·log(n)α
·log(log(n))1−α

.

There are L[1/3, O(1)]-algorithms for integer factorization as
well as for the discrete logarithm problem in finite fields.

However, for the discrete logarithm problem in degree 0
class groups (Jacobian groups) of curves of high genus,
there are only L[1/2, O(1)]-algorithms.
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Motivation

Heuristic Result Let d ≥ 4 be fixed, and let us consider
curves over finite fields Fq represented by plane models of
degree d. Then the DLP in the degree 0 class groups of
these curves can be solved in an expected time of

Õ(q2−
2

d−2 ) .

An index calculus algorithm for non-singular plane curves ofhigh genus – p.3/26



The result

Heuristic Result Let us consider a family of non-singular
plane curves over finite fields Fq with g ∈ Ω(log(q)2), where g
is the genus. Then one can solve the DLP in the degree 0
class groups of these curves in an expected time of

O(Lqg [1/3,
(64

9

)1/3
+ ǫ])
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The result

Heuristic Result Let us consider a family of non-singular
plane curves over finite fields Fq with g ∈ Ω(log(q)2), where g
is the genus. Then one can solve the DLP in the degree 0
class groups of these curves in an expected time of

O(Lqg [1/3,
(64

9

)1/3
+ ǫ]) (

(64

9

)1/3
≤ 1.923) .

(Compare with the running time of Lqg [1/3,
(

64
9

)1/3
+ o(1)] for

the number field sieves for factoring and DLP in prime
fields.)
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Idea of index calculus

Let C/Fq be a curve of genus g, and let a, b ∈ Cl0(C/Fq) with
b ∈ 〈a〉.

The goal is to find an x ∈ N such that x · a = b.

We fix a smoothness bound s, and let the factor base F be
the set of all prime divisors of degree ≤ s.

The goal is the generate relations between factor base
elements and the inputs a, b for the DLP and to solve the
DLP via linear algebra.
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The group order

Idea by F. Heß:

By p-adic point counting algorithms, one can determine the
L-polynomial of C/Fq in polynomial time in log(q). We do
this computation at the beginning. Then we can perform all
linear algebra computations modulo the group order
# Cl0(C/Fq). We thereby use sparse linear algebra.
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Generating relations fast

Let C/Fq be a non-singular plane curve, given by

F (X,Z,Z) = 0 .

Let d := deg(F ). Note that

g =
(d− 1)(d− 2)

2

Let D∞ := divC(Z) be the intersection of C with the line
Z = 0; this is an effective divisor of degree d.
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Generating relations fast

Idea of the previous algorithm for plane curves of small
degree over large finite fields:

Let D be the intersection of C with any line. Then

D ∼ D∞

that is,
[D] − [D∞] = 0 .

We now want that D splits over the factor base.
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Generating relations fast

What about high genus?
Idea: Intersect the curve with lines, quadrics, cubics,
quartics etc.
Let t ∈ N and let us consider the linear system

dt := {divC(G) | G ∈ Fq[X,Y, Z]t} .

This is a subsystem of the complete linear system

|tD∞| = {D ≥ 0 | D ∼ tD∞}

= {tD∞ + (f) | (f) ≥ −tD∞}

In particular it is a projective space. What can be said about
its dimension?
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Generating relations fast

Lemma For t < d, dim(dt) =
(t+2

2

)

− 1.
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Generating relations fast

Lemma For t < d, dim(dt) =
(t+2

2

)

− 1.

Proof.
Let ι : C →֒ P

2
Fq

= Proj(Fq[X,Y, Z]) be the immersion. Let

I = (F ) ⊆ Fq[X,Y, Z] be the defining ideal of C ⊂ P
2
Fq

. We
have an exact sequence

0 −→ It −→ Fq[X,Y, Z]t = Γ(P2
Fq
,O(t))

ι∗
−→ Γ(C,OC(t)) ,

and for t < d, It = 0, i.e.

ι∗ : Fq[X,Y, Z]t →֒ Γ(C,OC(t)) .

|tD∞| ≃ P(Γ(C,OC(t)) dt ≃ P(ι∗Fq[X,Y, Z]t) .
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Some notation

For α ∈ (0, 1) and c > 0, we have the subexponentiality
function L[α, c] with

Ln[α, c] = ec·(log n)α
·log(log(n))1−α

Let ℓ[α, c] be the function in two variables (q, g)

ℓq,g[α, c] = c · gα ·
( log(g log(q))

log(q)

)1−α
.

Note that
Lqg [α, c] = qℓ[α,c] .
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Smoothness

Theorem (Heß) Let 0 < β < α < 1 and c, d > 0 be fixed,
δ > 1−α

α−β .

For some curve over a finite field, let ψ(n,m) be the number
of effective divisors of degree n which are m-smooth.

Let us consider curves over finite fields Fq with g ≥ (log(q))δ.

Let
n = ⌊ℓ[α, c]⌋ , m = ⌈ℓ[β, d]⌉ .

Then
ψ(n,m)

qn
≥ Lqg [α− β,−

c

d
(α− β) − o(1)] .
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Generating the relation lattice

Let us consider non-singular plane curves with
g ∈ Ω(log(q)2).

Heuristic Result 1 Let c :=
(

8
9

)1/3, and let ǫ > 0 be fixed.
Let the smoothness bound be s := ℓ[1/3, c]. Let
t := ⌊ℓ[1/3, 4(c+ ǫ)]1/2⌋. Then for qg ≫ 0, the s-smooth
divisors in dt generate the relation lattice of F ∪ {D∞}.
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Generating the relation lattice

Let us consider non-singular plane curves with
g ∈ Ω(log(q)2).

Heuristic Result 1 Let c :=
(

8
9

)1/3, and let ǫ > 0 be fixed.
Let the smoothness bound be s := ℓ[1/3, c]. Let
t := ⌊ℓ[1/3, 4(c+ ǫ)]1/2⌋. Then for qg ≫ 0, the s-smooth
divisors in dt generate the relation lattice of F ∪ {D∞}.

Note The dimension of dt is ∼ t2/2 ∼ ℓ[1/3, 2(c+ ǫ)].
=⇒ The relation collection and the linear algebra can be
performed in a time of

L[1/3, 2(c+ ǫ) + o(1)] = L[1/3,
(64

9

)1/3
+ 2ǫ) + o(1)] .

An index calculus algorithm for non-singular plane curves ofhigh genus – p.13/26



Arguments for Heuristic Result 1

Heuristic Assumption Up to logarithmic factors, the
probability that a uniformly chosen divisor in dt is s-smooth
is equal to the probability that a uniformly chosen divisor of
degree deg(tD∞) = td is s-smooth.

This degree is

td ∼ ℓ[1/3, 4(c+ ǫ)]1/2 · (2g)1/2 =

2(c+ ǫ)1/2 · g1/6 ·
( log(g log(q))

log(q)

)1/3
· (2g)1/2 =

81/2 · (c+ ǫ)1/2 · g2/3 ·
( log(g log(q))

log(q)

)1/3
= ℓ[2/3, 81/2(c+ ǫ)1/2]
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Arguments for Heuristic Result 1

The probability in question is then (heuristically)

P ∈ L[1/3,−
81/2(c+ ǫ)1/2

c
·
1

3
− o(1)] .

=⇒ We have

∼ P · qdim(dt) ∈ L[1/3,−
81/2(c+ ǫ)1/2

c
·
1

3
− o(1) + 2(c+ ǫ)]

relations over the factor base (and D∞).
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Arguments for Heuristic Result 1

The probability in question is then (heuristically)

P ∈ L[1/3,−
81/2(c+ ǫ)1/2

c
·
1

3
− o(1)] .

=⇒ We have

∼ P · qdim(dt) ∈ L[1/3,−
81/2(c+ ǫ)1/2

c
·
1

3
− o(1) + 2(c+ ǫ)]

relations over the factor base (and D∞).

Claim. For c =
(

8
9

)1/3 this is ≥ L[1/3, c].
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Arguments for Heuristic Result 1

That is,

−
81/2(c+ ǫ)1/2

c
·
1

3
− o(1) + 2(c+ ǫ) ≥ c .

( 81/2

3c1/2
≤ c⇐⇒

8

9
≤ c3 ⇐⇒ c ≥

(8

9

)1/3)
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Input elements and factor base

Let a, b ∈ Cl0(C/Fq) be the input elements. We want to find
two relations of the form

∑

j

rj [Fj ] + r[D∞] = αa+ βb
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Input elements and factor base

Let a, b ∈ Cl0(C/Fq) be the input elements. We want to find
two relations of the form

∑

j

rj [Fj ] + r[D∞] = αa+ βb

1. Step: Let D0 be some divisor of degree g which splits
over the factor base. Choose uniformly randomly α, β and
compute an effective divisor D with

[D] − [D0] = αa+ βb .

Repeat until D is L[2/3, c− ǫ]-smooth.

Time needed: L[1/3, 1
c−ǫ ·

1
3 + o(1)].

This is negligible.
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The smoothing procedure

Input: A divisor D of degree ℓ[α, c− ǫ] (α ∈ [1/3, 2/3]).

Output: A relation [D] +
∑

i[Di] + r[D∞] = 0 with Di ≥ 0,
deg(Di) ≤ ℓ[α/2 + 1/6, c− ǫ].

Heuristic expected running time: L[1/3, c+ ǫ′]

An index calculus algorithm for non-singular plane curves ofhigh genus – p.18/26



The smoothing procedure

Input: A divisor D of degree ℓ[α, c− ǫ] (α ∈ [1/3, 2/3]).

Output: A relation [D] +
∑

i[Di] + r[D∞] = 0 with Di ≥ 0,
deg(Di) ≤ ℓ[α/2 + 1/6, c− ǫ].

Heuristic expected running time: L[1/3, c+ ǫ′]

E.g.: After an application to a divisor of degree ℓ[2/3, c− ǫ],
we have a relation with deg(Di) ≤ ℓ[1/2, c− ǫ].
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Application of the smoothing procedure

Say we have

[D]−[D0] = αa+βb with D =
∑

i

Di , deg(Di) ≤ ℓ[2/3, c−ǫ] .

Then to each Di we apply the smoothing procedure. We
obtain

Di ∼ −
∑

j

Di,j + riD∞ with Di,j ≥ 0 ,

deg(Di,j) ≤ ℓ[1/3 + 1/6, c− ǫ] = ℓ[1/2, c− ǫ] and ri ∈ N.

Then we apply the smoothing procedure again to each Di,j ,
then again . . . (until we have a representation as a sum of
effective divisors of degree ≤ ℓ[1/3, c]).
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Application of the smoothing procedure

Let e1 := 1, ei+1 := ei

2 + 1
6 (such that ei = 1

3 + 2
3 · 1

2n−1 ). Then
we obtain a tree where the degrees of the divisors in row i
are bounded by ℓ[ei, c].
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Application of the smoothing procedure

We repeat this until i ≈ log2(g). Then ei ≈ 1
3 + 2

3 · 1
g .

Then the degrees are

≤ ℓ[ei, c− ǫ] ∈ ℓ[1/3, (c− ǫ)(1 + o(1))] ≤ ℓ[1/3, c] .

We have to apply the smoothing procedure only L[1/3, o(1)]
times, and the matrix has only L[1/3, o(1)] non-zero entries
per row.
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The smoothing procedure

Let an effective divisor D of degree ℓ[α, c− ǫ] be given. Let
tα := ⌊ℓ[α, 4(c+ ǫ)]1/2⌋ and consider the linear system

|tαD∞ −D| ∩ dtα
.

Any divisor D′ in this linear system satisfies

D′ +D ∼ tαD∞ .

We want to find some D′ which is ℓ[α/2 + 1/6, c− ǫ]-smooth.
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The smoothing procedure

Let an effective divisor D of degree ℓ[α, c− ǫ] be given. Let
tα := ⌊ℓ[α, 4(c+ ǫ)]1/2⌋ and consider the linear system

|tαD∞ −D| ∩ dtα
.

This linear system has dimension

≥

(

tα + 2

2

)

− deg(D) ∼ ℓ[α, 2(c+ ǫ)] − ℓ[α, c− ǫ] = ℓ[α, c+ 3ǫ]

and degree

∼ ℓ[α, 4(c+ ǫ)]1/2 · (2g)1/2 = ℓ[α/2 + 1/2, 81/2(c+ ǫ)1/2] .

An index calculus algorithm for non-singular plane curves ofhigh genus – p.23/26



The smoothing procedure

Let an effective divisor D of degree ℓ[α, c− ǫ] be given. Let
tα := ⌊ℓ[α, 4(c+ ǫ)]1/2⌋ and consider the linear system

|tαD∞ −D| ∩ dtα
.

Heuristic Result 2 There exists a universal constant C
such that for ǫ < C, the linear system |tαD∞ −D| ∩ dtα

contains L[1/3,Ω(1)] s-smooth divisors.
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The algorithm

Given: A non-singular plane curve C/Fq and a, b ∈ Cl0(C/Fq)

of high genus with b ∈ 〈a〉.

1. Compute # Cl0(C/Fq) using a p-adic point counting
algorithm.

2. Let s := ℓ[1/3,
(

8
9

)1/3
], and let the factor base F consist of

all prime divisors of degree ≤ s.

3. Generate relations by considering divisors of the form

divC(G) for polynomials G of degree ≤ (ℓ[1/3, 4
(

8
9

)1/3
+ ǫ])1/2.

4. Relate the input elements to the factor base, using the
“smoothing procedure”.

5. Linear algebra
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Curves of higher degree

Heuristic Result Let 1
2 ≤ β ≤ 3

4 . Let us consider curves
represented by plane models of degree d ≤ gβ (and
g ∈ Ω(log(q)2)).

Then the DLP in the degree 0 class groups of these curves
can be solved in an expected time of L[23 · β + ǫ, O(1)].
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