

SAC 2003 at Carleton University

• • CRYPTO 2003

At CRYPTO 2003, Alice Silverberg presented her joint work with Karl Rubin on Torus-based Cryptography.

This talk had a crucial influence on my perception of DL-based crypto...

- On one hand, *Jacobians of curves* (of small genus) gained the favor of many over the years, mostly because of the smaller key size needed.
- On the other hand, *algebraic tori* offer the really neat advantage of compactly representing elements...

Initial Observation

So it seems that these two sub-families of algebraic groups somehow have *complementary* cryptographic properties...

From a mathematical point of view, however, they can both be seen as two realizations of a *single* concept:

Generalized Jacobians

As a result, several existing DL-based cryptosystems possess an underlying structure that can be naturally reinterpreted in terms of generalized Jacobians...

Relation between DL-based Cryptosystems & Generalized Jacobians

• • • The Current Snapshot

All generalized Jacobians that are currently used in DL-based cryptography precisely fall under two categories:

- (Usual) Jacobians
- Algebraic Tori

The Natural Question

Is it possible to use a generalized Jacobian that is neither a usual Jacobian nor an algebraic torus for DL-based cryptography?

An affirmative answer would then widen the class of algebraic groups that are of interest in public-key cryptography.

The Natural Question

Constructing a Generalized Jacobian

- 1. Start with your favorite algebraic curve.
- 2. Consider its divisors of degree zero.
- 3. (Cleverly) define an equivalence relation on them.
- 4. Find a canonical representative for each class.

Usual vs Generalized Jacobians

Usual Jacobians

Linear equivalence

Generalized Jacobians

m-equivalence

• • Why are Jacobians Useful?

Say the points of your favorite curve *C* do *not* form a group...

Then how can we create a group out of a set of elements?

Consider the free abelian group on the set of points of C!

$$3(P_1) - 5(P_2) + 0(P_3) - 9(P_4) + \dots$$

$$+ 0(P_1) - 3(P_2) - 1(P_3) + 3(P_4) + \dots$$

$$3(P_1) - 8(P_2) - 1(P_3) - 6(P_4) + \dots$$

• • Divisors

Let *C* be a smooth curve defined over an (algebraically closed) field *K*.

A *divisor* on C is a formal sum of the form

$$D = \sum_{P \in C} n_P(P)$$

where each n_P is an integer and finitely many of them are nonzero.

The addition of two such divisors is thus given by

$$\sum_{P \in C} n_P(P) + \sum_{P \in C} m_P(P) = \sum_{P \in C} (n_P + m_P)(P)$$

• • Divisors

The group formed by these divisors is denoted Div(C), and its identity element is

$$\mathbf{0} = \sum_{P \in C} \mathbf{0}(P)$$

The *degree* of the divisor *D* is the integer

$$\deg(D) = \sum_{P \in C} n_P$$

The divisors of degree zero form a subgroup denoted by $\mathrm{Div}^0(C)$.

Principal Divisors

The divisor of a function $f \in K(C)^*$ is

$$\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_{P}(f)(P)$$

where $\operatorname{ord}_{P}(f)$ is the *order of vanishing* at P:

- If $\operatorname{ord}_{P}(f) < 0$, then f has a pole of order $-\operatorname{ord}_{P}(f)$ at P,
- If $\operatorname{ord}_{P}(f) = 0$, then f is defined and nonzero at P,
- If $\operatorname{ord}_{P}(f) > 0$, then f has a zero of order $\operatorname{ord}_{P}(f)$ at P.

These special divisors are called *principal divisors*.

• • Linear Equivalence

Now let $D_1, D_2 \in \text{Div}(C)$ be given.

If $D_1 - D_2$ is a principal divisor, then we say that D_1 and D_2 are *linearly equivalent*, and we write

$$D_1 \sim D_2$$
.

Equivalence classes of divisors of degree zero form a group denoted $Pic^0(C)$.

Lastly, the Jacobian of C is an abelian variety isomorphic (as a group) to $Pic^0(C)$.

Main Property of m-equivalent Divisors

Let *C* be a smooth curve defined over an (algebraically closed) field *K*.

If two divisors are m-equivalent, then they are linearly equivalent as well.

Thus,

$$D_1 \sim_{\mathfrak{m}} D_2$$

if and only if

 $\exists f \in K(C)^*$ such that $D_1 - D_2 = \text{div}(f)$, plus an extra condition to be determined.

• • • Modulus m

We can impose an extra condition by looking at the *behavior* of f at some specific points of C, say $P_0, P_1, ..., P_r$.

Thus fix a positive divisor

$$\mathfrak{m} = m_0(P_0) + m_1(P_1) + \ldots + m_r(P_r),$$

thereafter called a *modulus*, and denote its support by $S_{\mathfrak{m}}$.

• • Congruence Modulo m

If a function $f \in K(C)^*$ is such that

$$\operatorname{ord}_{P_i}(1-f) \ge m_i$$
 for each $P_i \in S_{\mathfrak{m}}$,

then we say that

f is congruent to 1 modulo m

and we write

$$f \equiv 1 \mod \mathfrak{m}$$
.

Visual Interpretation

• • • Defining \mathfrak{m} -equivalence and $\operatorname{Pic}^0_{\mathfrak{m}}(C)$

Let \mathfrak{m} be an effective divisor with support $S_{\mathfrak{m}}$ and let D_1 and D_2 be two divisors prime to $S_{\mathfrak{m}}$. We say that D_1 and D_2 are \mathfrak{m} -equivalent, and write $D_1 \sim_{\mathfrak{m}} D_2$ if

$$\exists f \subseteq K(C)^* \text{ such that}$$

$$\operatorname{div}(f) = D_1 - D_2 \text{ and } f \equiv 1 \text{ mod } \mathfrak{m}.$$

The m-equivalence classes of divisors of degree zero that are prime to S_m form a group denoted $\operatorname{Pic}^0_m(C)$.

Existence of Generalized Jacobians

Theorem (Rosenlicht)

Let *C* be a smooth algebraic curve defined over an algebraically closed field *K*.

Then for every modulus \mathfrak{m} , there exists a commutative algebraic group $J_{\mathfrak{m}}$ isomorphic to $\operatorname{Pic}^0_{\mathfrak{m}}(C)$.

Definition

The algebraic group $J_{\mathfrak{m}}$ is called the *generalized Jacobian* of C with respect to the modulus \mathfrak{m} .

• • • How to Choose a Good Candidate?

The canonical choice is then to consider the generalized Jacobian of an elliptic curve E with respect to a modulus formed by only two distinct points of E.

We have in this case that the corresponding generalized Jacobian is an extension of E by the multiplicative group \mathbb{G}_m .

Just Like a Ringwire Puzzle...

That is, we can naively picture this object as an elliptic curve intertwined, in a natural and nontrivial fashion, with a finite field.

Generalized Jacobians in Perspective

• • Setup

Let \mathbb{F}_q be the finite field with q elements and let K be a fixed algebraic closure of \mathbb{F}_q .

Let E be a smooth elliptic curve defined over \mathbb{F}_q and $B \in E(\mathbb{F}_q)$ be a given basepoint of prime order l.

Let also

$$\mathfrak{m} = (M) + (N),$$

where M and N are distinct points of $E(\mathbb{F}_{q^r})$ such that $M, N \notin \langle B \rangle$.

Basic Requirements

Necessary conditions for a group G to be suitable for cryptographic applications:

- \checkmark The elements of G can be easily represented in a compact form,
- ✓ The group operation can be performed efficiently,
- \checkmark The DLP in G is believed to be intractable, and
- ✓ The group order can be efficiently computed.

Compact Representation of the Elements

Since J_m is here an *extension* of E by \mathbb{G}_m , we have the exact sequence

$$0 \to \mathbb{G}_{\mathrm{m}} \to J_{\mathrm{m}} \to E \to 0$$

Hence, there is a bijection of *sets* between J_m and $\mathbb{G}_m \times E$.

The existence of this bijection suffices to compactly represent the elements.

However, an explicit bijection

$$\psi : \operatorname{Pic}^{0}_{\mathfrak{m}}(E) \to \mathbb{G}_{\mathfrak{m}} \times E$$

would allow us to "transport" the known group law on $\operatorname{Pic}^0_{\mathfrak{m}}(E)$ to $\mathbb{G}_{\mathfrak{m}} \times E$.

How to label each m-equivalence class?

Given a degree zero divisor D of disjoint support with \mathfrak{m} , we need to find $k \in \mathbb{G}_{\mathrm{m}}$ and $S \in E$ such that

 $[D]_{\mathfrak{m}}$ corresponds to (k, S).

The easy part is the determination of *S*.

Indeed, it follows from the Abel-Jacobi Theorem.

• • • A Corollary of the Abel-Jacobi Theorem

Let *E* be a smooth elliptic curve defined over a field *K* and let

$$D_1 = \sum_{P \in E} n_P(P), D_2 = \sum_{P \in E} m_P(P) \in Div(E)$$

be given. Then,

$$D_1 \sim D_2$$

if and only if

$$deg(D_1) = deg(D_2)$$
 and $\sum_{P \in E} n_P P = \sum_{P \in E} m_P P$.

• • Natural candidate for *S*

If
$$D = \sum_{P \in E} n_P(P)$$
, then we can set $S = \sum_{P \in E} n_P P$.
So $D \sim (S) - (\mathcal{O})$, which means that $\exists f \in K(E)^*$ such that $\operatorname{div}(f) = D - (S) + (\mathcal{O})$.

It now remains to determine *k*.

As we will see, the value of k will involve f(M) and f(N).

If $S \neq M$, N, then we are safe since $\operatorname{ord}_{M}(f) = \operatorname{ord}_{N}(f) = 0$.

If S = M or N, then remark that we also have

$$D \sim (S+T) - (T)$$
 for any $T \subseteq E$.

So we simply choose T such that $T \neq \mathcal{O}$, M, N, M - N, N - M.

The Intuition Behind the Value of k

Say $S \neq M$, N and let $D_1 = (S) - (O) + \operatorname{div}(f_1)$ and $D_2 = (S) - (O) + \operatorname{div}(f_2)$ $\operatorname{div}(f_2)$ be given. Then, $D_1 - D_2 = \operatorname{div}(f_1/f_2)$. Hence, $D_1 \sim_m D_2$

iff $\exists f \in K(C)^*$ such that $\operatorname{div}(f_1/f_2) = \operatorname{div}(f)$ and $f \equiv 1 \mod \mathfrak{m}$.

iff $\exists c \in K^*$ such that $f_1/f_2 = cf$, ord_N $(1-f) \ge 1$, ord_N $(1-f) \ge 1$.

iff $\exists c \in K^*$ such that $f_1/f_2 = cf$ and f(M) = f(N) = 1.

iff
$$\exists c \in K^*$$
 such that $\frac{f_1(M)}{f_2(M)} = \frac{f_1(N)}{f_2(N)} = c$.
iff $\frac{f_1(M)}{f_1(N)} = \frac{f_2(M)}{f_2(N)}$.

iff
$$\frac{f_1(M)}{f_1(N)} = \frac{f_2(M)}{f_2(N)}$$
.

We therefore suspect that $k_1 = \frac{f_1(M)}{f_1(N)}$ and $k_2 = \frac{f_2(M)}{f_2(N)}$.

Explicit Bijection between $\operatorname{Pic^0_{\mathfrak{m}}}(E)$ and $\mathbb{G}_{\mathrm{m}} \times E$

Theorem

Let $T \subseteq E$ be given such that $T \neq \mathcal{O}$, M, N, M - N, N - M.

Let also
$$\psi : \operatorname{Pic}^{0}_{\mathfrak{m}}(E) \to \mathbb{G}_{\mathfrak{m}} \times E$$

$$[D]_{\mathfrak{m}} \mapsto (k, S)$$

be such that the \mathfrak{m} -equivalence class of $D = \sum_{P \in E} n_P(P)$

corresponds to
$$S = \sum_{P \in E} n_P P$$
 and $k = f(M)/f(N)$,

where $f \in K(E)^*$ is any function satisfying

$$\operatorname{div}(f) = \begin{cases} D - (S) + (\mathcal{O}) & \text{if } S \neq M, N \\ D - (S+T) + (T) & \text{otherwise.} \end{cases}$$

Then, ψ is a well-defined bijection of sets.

Inferring the Group Law

This explicit bijection of sets thus induces a group law on $\mathbb{G}_m \times E$:

$$\operatorname{Pic}^{0}_{\mathfrak{m}}(E) \to \mathbb{G}_{\mathfrak{m}} \times E$$

$$[D_{1}]_{\mathfrak{m}} \mapsto (k_{1}, P_{1})$$

$$[D_{2}]_{\mathfrak{m}} \mapsto (k_{2}, P_{2})$$

$$[D_{1}]_{\mathfrak{m}} + [D_{2}]_{\mathfrak{m}} \mapsto ?$$

• • • Group Law for *B*-unrelated Moduli

Theorem

Let (k_1, P_1) and (k_2, P_2) be elements of $J_{\mathfrak{m}}$ such that $P_1, P_2, \pm (P_1 + P_2) \notin \{M, N\}$. Then,

$$(k_1, P_1) + (k_2, P_2) = (k_1 \cdot k_2 \cdot \mathbf{c}_{\mathfrak{m}}(P_1, P_2), P_1 + P_2),$$

where $\mathbf{c}_{\mathfrak{m}} : E \times E \to \mathbb{G}_{\mathfrak{m}}$ is the 2-cocycle given by

$$\mathbf{c}_{\mathfrak{m}}(P_{1}, P_{2}) = \frac{\ell_{P_{1}, P_{2}}(M) \cdot \ell_{P_{1} + P_{2}, \mathcal{O}}(N)}{\ell_{P_{1} + P_{2}, \mathcal{O}}(M) \cdot \ell_{P_{1}, P_{2}}(N)}$$

• • Group Law

Corollaries

- (1, \mathcal{O}) is the identity element of $J_{\mathfrak{m}}$
- $\bullet \ \mathbf{c}_{\mathfrak{m}}(P_1, P_2) = \mathbf{c}_{\mathfrak{m}}(P_2, P_1)$

•
$$-(k,P) = \left(\frac{1}{k} \cdot \frac{\ell_{P,\mathcal{O}}(N)}{\ell_{P,\mathcal{O}}(M)}, -P\right)$$

- $\mathbb{F}_{q^r}^* \times \langle B \rangle$ is a subgroup of $J_{\mathfrak{m}}$
- $(k_1, \mathcal{O}) + (k_2, P) = (k_1 \cdot k_2, P)$

Relating three different DLPs

Lemma

For $k \in \mathbb{F}_{q^r}^*$, $P \in \langle B \rangle$ and a positive integer n, let $n_0 = n \mod l$, $n_1 = \lfloor n/l \rfloor$, $l(k, P) = (\lambda, \mathcal{O})$ and $n_0(k, P) = (v_{n_0}, n_0 P)$.

Then,

$$n(k, P) = (v_{n_0} \cdot \lambda^{n_1}, n_0 P).$$

• • The Natural Solution to this DLP

Reductions among DLPs

Proposition

Let E be a smooth elliptic curve over \mathbb{F}_q , $B \in E(\mathbb{F}_q)$ be a point of prime order l, $\mathfrak{m}=(M)+(N)$ be a B-unrelated modulus, where M and N are distinct points of $E(\mathbb{F}_{q^r})$ such that $\mathbb{F}_{q^r}^* \times \langle B \rangle$ is a cyclic subgroup of $J_{\mathfrak{m}}$.

Then, the DLP in this subgroup is at least as hard as the DLP in $\langle B \rangle \subseteq E(\mathbb{F}_q)$ and at least as hard as the DLP in $\mathbb{F}_{q^r}^*$.

Converting an Instance of the DLP in $\langle B \rangle$ into one in $\mathbb{F}_{q'}^* \times \langle B \rangle$

$$\stackrel{Q}{\longrightarrow} \stackrel{j \in_R \mathbb{F}_{q^r}^*}{\stackrel{(j,Q)}{\longrightarrow}} \stackrel{\mathcal{A}_E}{\stackrel{\mathcal{A}_{J_{\mathfrak{m}}}}{\longrightarrow}} \stackrel{n_0 = n \bmod l}{\stackrel{n_0 = n \bmod l}{\longrightarrow}}$$

Converting an Instance of the DLP in $\mathbb{F}_{q'}^*$ into Two Instances in $\mathbb{F}_{q'}^* \times \langle B \rangle$

Reductions among DLPs

So from a practical point of view, these results imply that even though this generalized Jacobian is a newcomer in cryptography, we already know that solving this DLP cannot be easier than extracting discrete logarithms in two of the most studied groups used in DL-based cryptography today...

• • A Cryptosystem with Two Safes...

Alice

Put message m in safe S_1 and lock it Put S_1 within the safe S_0 Lock S_0 and send it to Bob

Bob

Open safe S_0 to recover the closed safe S_1 Unlock S_1 and retrieve m

Is it possible to crack the two locks simultaneously?

That is, to extract the discrete logarithms in the elliptic curve and in the finite field in *parallel*?

• • • A Solution à la Pohlig-Hellman

Since the order of our group is $(q^r - 1)l$, then we can try to retrieve

$$n_0 = n \mod l$$
 and $n_2 = n \mod (q^r - 1)$

in parallel, and then combine them using the Chinese remainder theorem.

This method thus requires that l does *not* divide $q^r - 1$.

• • • Computing n_2

Let (j,Q) = n(k, P) be the instance of the DLP to be solved.

First compute l(j,Q), which will equal, say, (j', O).

We now have:

$$(j', \mathcal{O}) = l(j,Q) = l \cdot n(k,P) = n \cdot l(k,P) = n(\lambda, \mathcal{O}) = (\lambda^{n_2}, \mathcal{O}).$$

Since j and λ are known, it thus suffices to solve the following DLP in the finite field:

$$j' = \lambda^{n_2}$$
.

Pairing-based Cryptography

Now, the case where l divides $q^r - 1$ corresponds to the curves used in pairing-based crypto, where r is the embedding degree.

In that case, if we try to mimic Pohlig-Hellman and explicitly write down each intermediate step, the sequence of operations *still* contains the sequential computation of a DL in the elliptic curve followed by one in the finite field.

It is still an open problem to decide if the natural sequential solution is optimal in this case.

• • The Bottlenecks...

$$\#\left(\operatorname{F}_{q^r}^* \times \langle B \rangle\right) = d \cdot l^{\alpha}$$
, where $\alpha \geq 2$ and $l \nmid d$.

$$\begin{cases} n_d = n \mod d & \text{DLPin } \mathbf{F}_q^* \\ n_\alpha = n \mod l^\alpha \end{cases}$$

$$n_{\alpha} = n_0 + n_1 l + n_2 l^2 + \ldots + n_{\alpha-1} l^{\alpha-1}$$

$$DLP$$
in
$$E$$
in
$$F_{\alpha'}^*$$

• • In a Nutshell...

We have seen in this talk how the generalized Jacobian of an elliptic curve with respect to a modulus $\mathfrak{m} = (M) + (N)$ fulfills the main conditions for a group to be suitable for DL-based cryptography.

This provides the first example of a generalized Jacobian which is neither a (usual) Jacobian nor an algebraic torus that is suitable for cryptographic applications.

Isabelle Déchène

References for this Talk

 Arithmetic of Generalized Jacobians, In Algorithmic Number Theory Symposium - ANTS VII, LNCS Volume 4076, Springer, 2006, pp. 421-435.

On the Security of Generalized Jacobian Cryptosystems,
 CACR Technical Report, June 2006. 15p.

Generalized Jacobians in Cryptography,
 Ph.D. Thesis, McGill University,
 Montreal, Canada, 2005, 203 p.

Generalized Jacobians: Natural Candidates for DL-based Cry

