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CRYPTO 2003

At CRYPTO 2003, Alice Silverberg

presented her joint work with Karl Rubin on
Torus-based Cryptography.

This talk had a crucial influence on my perception of
DL-based crypto...

e On one hand, Jacobians of curves (of small genus)

gained the favor of many over the years, mostly because
of the smaller key size needed.

e On the other hand, algebraic tori offer the really neat
advantage of compactly representing elements...



Initial Observation

So it seems that these two sub-families of algebraic groups
somehow have complementary cryptographic properties...

From a mathematical point of view, however, they can
both be seen as two realizations of a s/ingle concept:

Generalized Jacobians

As a result, several existing DL-based
cryptosystems possess an underlying structure
that can be naturally reinterpreted in terms of
generalized Jacobians...




Relation between DL-based
Cryptosystems & Generalized Jacobians

(Generalized Jacobians
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The Current Snapshot

All generalized Jacobians that are currently
used in DL-based cryptography precisely fall
under two categories:

e (Usual) Jacobians

e Algebraic Tori



The Natural Question

/s it possible to use a generalized Jacobian
that is neither a usual Jacobian

nor an algebraic torus
for DIL-based cryptography?

An affirmative answer would then widen the
class of algebraic groups that are of interest in
public-key cryptography.



O The Natural Question

(Generalized Jacobians

Algebraic Tori ? (Ordinary) Jacobians
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Constructing a Generalized Jacobian

1. Start with your favorite algebraic curve.
2. Consider its divisors of degree zero.
3. (Cleverly) define an equivalence relation on them.

4. Find a canonical representative for each class.



Usual vs Generalized Jacobians

Usual Jacobians Generalized Jacobians

Linear equivalence m—equivalence



O Why are Jacobians Useful?

Say the points of your favorite curve C do not
form a group...
Then how can we create a group
out of a set of elements?

Consider the free abelian group on the set of points of C!
3(Py) = 5(Py) + O(P;) = 9(P,)+..
+ 0(P)) = 3(Py) — L(P3) + 3(Py+...
3(P)) — 8(P,) — 1(P5) — 6(Py) ...




Divisors

Let C be a smooth curve defined over an (algebraically
closed) field K.

A divisoron C is a formal sum of the form

DZZ”P(P)

PeC
where each n, is an integer and finitely many of them are
nonzero.
The addition of two such divisors is thus given by

D np(P)+ Y mp(P) =) (ny+m,)(P)

PeC PeC PeC



O Divisors

The group formed by these divisors is denoted Div(C),
and its identity element is

0=> 0(P)

pPeC
The degree of the divisor D is the integer

deg(D) =Y n,

pPeC
The divisors of degree zero form a subgroup denoted

by DivV(C).



Principal Divisors

The divisor of a function e K(C)* is

div(f) =), ord,(f)(P)

PeC

where ord,(f) is the order of vanishing at P:

o If ord,(f) <0, t
o If ord,(f) =0, t
o If ord,(f) >0, t

nen f'has a pole of order — ord,(f) at P,
nen f'is defined and nonzero at P,

hen f'has a zero of order ord,(f") at P.

These special divisors are called principal divisors.



Linear Equivalence

Now let D,, D, € Div(C) be given.

If D,— D, is a principal divisor, then we say that D, and
D, are linearly equivalent, and we write

D, ~D,.

Equivalence classes of divisors of degree zero form a
sroup denoted Pic’(C).

Lastly, the Jacobian of C is an abelian variety
isomorphic (as a group) to Pic’(C).



® Main Property of m-equivalent Divisors

Let C be a smooth curve defined over an (algebraically
closed) field K.

If two divisors are m—equivalent
then they are linearly equivalent as well.

.r}D-
Thus, e
Dl “m Dz

if and only if

3 f € K(C)" such that D, — D, = div(f),
plus an extra condition to be determined.



Modulus m

We can impose an extra condition by looking at the
behavior of f at some specific points of C, say P,, P,,..., P..
Thus fix a positive divisor

m = mO(PO) + ml(Pl) T... T mr(Pr)9

thereafter called a modulus, and denote its support by S...



Congruence Modulo m

If a function e K(C)" is such that
ordp (1 —f) = m;for each P, € S,
then we say that
f is congruent fo 1 modulom

and we write

f =1 mod m.



Visual Interpretation

Y



o Defining m-equivalence and Pic’_(C)

Let m be an effective divisor with support S_and let D, and
D, be two divisors prime to S. We say that D, and D, are

m—equivalent, and write D, ~_ D, if

1€ K(C)" such that
div(f)= D, — D, and f=1 mod m.
The m-equivalence classes of divisors of degree zero that are

prime to S form a group denoted Pic®_(C).



Existence of Generalized Jacobians

Theorem (Rosenlicht)

Let C be a smooth algebraic curve defined over an
algebraically closed field K.

Then for every modulus m, there exists a commutative
algebraic group J_ isomorphic to Pic® _(C).

Definition

The algebraic group J_ is called the generalized Jacobian
of C with respect to the modulus m.



How to Choose a Good Candidate?

The canonical choice is then to consider the
generalized Jacobian of an elliptic curve E with respect
to a modulus formed by only two distinct points of E.

We have in this case that the corresponding

generalized Jacobian is an extension of E by the
multiplicative group G__.



Just Like a Ringwire Puzzle...

That is, we can naively picture this object as an
elliptic curve intertwined, in a natural and nontrivial

fashion, with a finite field.




Generalized Jacobians in Perspective
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Setup

Let F, be the finite field with g elements and let K be
a fixed algebraic closure of F .

Let £ be a smooth elliptic curve defined over F_ and
B € E(F ) be a given basepoint of prime order /.

Let also

m = (M) T (N)/
where M and N are distinct points of E(F ;) such that
M, N&(B).



Basic Requirements

Necessary conditions for a group G to be
suitable for cryptographic applications:

v The elements of G can be easily represented in a
compact form,

v The group operation can be performed efficiently,

v The DLP in G is believed to be intractable, and

v The group order can be efficiently computed.



Compact Representation
of the Elements

Since J_ is here an extension of E by G_, we have the
exact sequence

0->G,—>J,>E£—>0

Hence, there is a bijection of sets between J_and G _x E.

The existence of this bijection suffices to compactly
represent the elements.

However, an exp/icitbijection
y:Pic’ () > G _xE

would allow us to “transport” the known group law on
Pic’ (E)to G x E.



How to label each
m-equivalence class?

Given a degree zero divisor D of disjoint support with m,

we need to find k € G_ and § € FE such that

[D]., corresponds to (&, S). 7\

The easy part is the determination of S. [ ~/..a N \

Indeed, it follows from the \ "/
\ /| ': \ _.—j

Abel-Jacobi Theorem. | |
V



A Corollary of the Abel-Jacobi Theorem

Let £ be a smooth elliptic curve defined over a field K
and let

D\ =2 pep 1p(P), Dy = 2 pep mp(P) € DIV(E)
be given. Then,
D, ~D,
if and only if

deg(D,) = deg(D,) and > p_pnp P =3 p_pmpP.



O Natural candidate for S

It D=>,_.n,(P), then we canset S=>,_.n,P.
So D~ (S) — (O), which means that 3 f € K(E)" such that
div(/) =D — (S) + (O).
It now remains to determine k.
As we will see, the value of k£ will involve £ (M) and £ ().
If S+ M, N, then we are safe since ord, () = ord,(f) = 0.
If S = M or N, then remark that we also have
D~ (S+T)— (I forany T € E.
So we simply choose T such that 7+ O, M, N, M — N, N — M.



O The Intuition Behind the Value of &

Say S # M, N and let D, = (S) —(O) + div(f',) and D, = (S) —(O) +
div(f,) be given. Then, D, — D, = div(f,/f,). Hence, D, ~. D,

iff 37 < K(C)" such that div(f,/f,) = div(f) and = 1 mod m.
iff 3c= K such that f/f,=cf, ord;(1 —f)>1, ord\(1 —f) > 1.

iff 3c< K such that f/f,=cfand M) =AN)=1.

iff 9c€ K such that ]Fl(M):J[l(N):C
L) _ L) (M) f,(N)
N N
H(N)  f,(N) ran

We therefore suspect that &, = and k, = f2(M).
Ji(N) S (N)




Explicit Bijection between
Pic® (E)and G x E

Theorem
Let 7 € E be given such that T# O, M, N, M — N, N — M.
Let also y: Pic’ (F) — G _xE
D], = (% 25)
be such that the m-equivalence class of D=7} ,_. n,(P)

corresponds to S=>,_. n, P and k=f(M)/f (N),
where /'€ K(E)" is any function satisfying
| D—-(S)+(©) ifS+MN
div(f) = .
D — (S+T)+ (T) otherwise.
Then, yis a well-defined bijection of sets.



Inferring the Group Law

This explicit bijection of sets thus induces a
group law on G _x E :

Pic® (E) - G _xE
[Dl] = (kla Pl)

m

(D)), — (ky Py)

1D,].. + [D,]., — ?



Group Law for B-unrelated Moduli

Theorem

Let (k,, P,) and (k,, P,) be elements of J_ such that
P,, P,, + (P,+P,) ¢ {M,N}. Then,

(ky, Py) + (ky, Py) = (kyky ¢, (P, Py) , P+ Py),
wherec_: Ex E— G_ is the 2-cocycle given by
£P1’P2 (M) - £P1+P2,(9 (V)
£P1+P2,(9 (M) - ePl,Pz (V)

cm(Plﬂ PZ) —




Group Law

EI’;—I—P?,E?



Corollaries

e (1,0) is the identity element of J
¢ cm(Pla PZ) - cm(P29 Pl)

L Lro(N) ,_P]
k Lpo(M)

e —(k,P) =[

o F_.x (B) is a subgroup of J,,
¢ (kla O) T (k29 P) - (kl'k29 P)



Relating three different DLPs

Lemma

For k € F,, P € (B) and a positive integer n,
let ny=nmod!, n, = |n/l|, l(k, P)=(1,0) and

n(k, P) = (v, . noP).

Then,
n (k, P)= (vn0 - A", nP).



The Natural Solution to this DLP
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Reductions among DLPs

Proposition

Let £ be a smooth elliptic curve over F , Be E(F ) be a

point of prime order [, m=(M)+(N) be a B-unrelated
modulus, where M and N are distinct points of E(F )

such that I, x (B) is a cyclic subgroup of J.

Then, the DLP in this subgroup is at least as hard as the
DLP in (B) c E(F ) and at least as hard as the DLP in [F_,.



Converting an Instance of the DLP
in (B) into one in [ x(B)

JEHEIT‘-

(45,Q)

A;

ng=n mod [

_



Converting an Instance of the DLP
in IF> into Two Instances in F;x(B)

n.-'4 *
IFQT

n=c 1d mc::_d{qT—] )



Reductions among DLPs

So from a practical point of view, these results
imply that even though this generalized
Jacobian is a newcomer in cryptography, we
already know that solving this DLP cannot be
easier than extracting discrete logarithms in
two of the most studied groups used in DL-

based cryptography today...



O A Cryptosystem with Two Safes...

Alice

Put message m in safe S
and lock it

Put S, within the safe §, - -
Lock S, and send it to Bob —

Bob
Open safe S, to

recover the closed safe S,

Unlock S, and retrieve m

Is it possible to crack the two locks simultaneously?

That is, to extract the discrete logarithms in the
elliptic curve and in the finite field in paralle/?



A Solution a la Pohlig-Hellman

Since the order of our group is (¢" — 1)/, then we can
try to retrieve

n,=nmod / and n,=nmod (¢" — 1)

in parallel, and then combine them using the Chinese
remainder theorem.

This method thus requires that / does notdivide g" — 1.



Computing n,

Let (j,0) = n(k, P) be the instance of the DLP to be solved.
First compute [(j,0), which will equal, say, (j’, O).

We now have:

G, O)= 1(,0)=1-n(k,P)=n- I(k,P)=n(L, O)= (\"2, O).

Since j’ and A are known, it thus suffices to solve the
following DLP in the finite field:

=2



Pairing-based Cryptography

Now, the case where [/ divides ¢" — 1 corresponds to the
curves used in pairing-based crypto, where r is the
embedding degree.

In that case, if we try to mimic Pohlig-Hellman and
explicitly write down each intermediate step, the
sequence of operations st/// contains the sequential
computation of a DL in the elliptic curve followed by one
in the finite field.

It is still an open problem to decide if the natural
sequential solution is optimal in this case.



The Bottlenecks...

#(Fq ><<B>) =d-1”, wherea>2and!/d.

n, =nmod d <R
<

n, =nmod/”
.

_ 2 a—1
n,=n,+nl+nl"+...+n_ I




In a Nutshell...

We have seen in this talk how the generalized
Jacobian of an elliptic curve with respect to a modulus
m = (M) + (N) fulfills the main conditions for a group
to be suitable for DL-based cryptography.

This provides the first example of a
generalized Jacobian which is neither a
(usual) Jacobian nor an algebraic torus
that is suitable for cryptographic
applications.
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e Arithmetic of Generalized Jacobians, In Algorithmic
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4076, Springer, 2006, pp. 421-435.

e On the Security of Generalized Jacobian Cryptosystems, /i 3,
CACR Technical Report, June 2006. 15p. :

e Generalized Jacobians in Cryptography,
Ph.D. Thesis, McGill University,
Montreal, Canada, 2005, 203 p.




This presentation will be available shortly at

http://www.cacr.math.uwaterloo.ca/ ~ idechene

where my thesis and related articles also be found.




