Constructing elliptic curves for cryptography

Reinier Bröker Fields Institute & University of Calgary

> ECC September 2006

Point counting. Given an elliptic curve E/\mathbf{F}_q , find $N=\#E(\mathbf{F}_q)$.

Curve construction. Given an integer $N \geq 1$, find a finite field \mathbf{F}_q and an elliptic curve E/\mathbf{F}_q with

$$\#E(\mathbf{F}_q) = N.$$

For both problems, input and output are of size

$$\log(q) \approx \log(N).$$

Curve construction

Necessary condition: there is a prime power q in the Hasse interval

$$\mathcal{H}_N = [N - 2\sqrt{N} + 1, N + 2\sqrt{N} + 1].$$

We can (and will) restrict to primes q = p. The condition above is then also sufficient.

It is *not* known whether

$$igcup_p \mathcal{H}_p \supseteq \mathbf{Z}_{>0}.$$

In practice: many primes $p \in \mathcal{H}_N$.

Naïve algorithm

- find a prime $p \in \mathcal{H}_N$
- try random curves over \mathbf{F}_p until you find a curve with N points

• expected run time: $O(N^{1/2+\varepsilon})$.

Not feasible for $N \gg 10^{15}$.

For crypto we want $N \approx 10^{60}$ prime.

The curve for this workshop

Standard encoding of messages.

A	01	G	07	${ m M}$	13	S	19	Y	25
В	02	\mathbf{H}	08	N	14	\mathbf{T}	20	\mathbf{Z}	26
\mathbf{C}	03	I	09	O	15	U	21		
D	04	J	10	Р	16	V	22		
\mathbf{E}	05	K	11	Q	17	W	23		
\mathbf{F}	06	${ m L}$	12	${ m R}$	18	X	24	6)	00

The text

THE TENTH WORKSHOP ON ELLIPTIC CURVE CRYPTOGRAPHY becomes

 $2008050020051420080023151811190815160015140005121 \\ 2091620090300032118220500031825162015071801160825.$

CM-approach

For any $p \in \mathcal{H}_N$, the desired curve E/\mathbf{F}_p has Frobenius

$$F_p: E \to E \qquad (x,y) \mapsto (x^p, y^p).$$

Write N = p + 1 - t, then F_p satisfies

$$F_p^2 - tF_p + p = 0 \in \text{End}(E)$$

of discriminant $\Delta = t^2 - 4p < 0$.

For $t \neq 0$, we have $\operatorname{End}(E) \subset \mathbf{Q}(\sqrt{\Delta})$.

We want an elliptic curve with endomorphism ring containing the imaginary quadratic order \mathcal{O}_{Δ} .

Complex elliptic curves

- view \mathcal{O}_{Δ} as a lattice in \mathbf{C}
- the elliptic curve $\mathbb{C}/\mathcal{O}_{\Delta}$ has endomorphism ring \mathcal{O}_{Δ}
- let $j: \mathbf{H} \to \mathbf{C}$ be the modular function with q-expansion j(z) = 1/q + 744 + 196884q + ... in $q = \exp(2\pi i z)$
- a curve \widetilde{E}/\mathbb{C} with j-invariant $j(\mathcal{O}_{\Delta})$ has

$$\operatorname{End}(\widetilde{E}) \cong \mathcal{O}_{\Delta}.$$

CM-theory

- $j(\widetilde{E})$ lies in the ring class field for \mathcal{O}_{Δ}
- $j(\widetilde{E})$ is a root of the Hilbert class polynomial

$$P_{\Delta}^{j} = \prod_{\mathfrak{a} \in \text{Pic}(\mathcal{O}_{\Delta})} (X - j(\mathfrak{a})) \in \mathbf{Z}[X]$$

- $\deg(P_{\Delta}^{j}) = \#\operatorname{Pic}(\mathcal{O}_{\Delta})$
- P^j_{Δ} splits completely modulo p
- the roots of $P_{\Delta}^{j} \in \mathbf{F}_{p}[X]$ are j-invariants of curves having $p+1 \pm t$ points over \mathbf{F}_{p}

Δ is too large

For $N \approx 10^{97}$ we have $\Delta \approx -10^{97}$. We cannot compute P_{Δ}^{j} for discriminants of this size.

Recall: we require that \mathcal{O}_{Δ} contains an element π of norm p with $N = p + 1 - \text{Tr}(\pi)$.

Write $D = \operatorname{disc}(\mathbf{Q}(\sqrt{\Delta}))$. Then p splits in \mathcal{O}_D in the same way as it does in \mathcal{O}_{Δ} .

We may therefore work with D instead of Δ .

Selecting
$$\Delta = \Delta(p)$$

We want to minimize the field discriminant D of $\mathbf{Q}(\sqrt{\Delta})$ with

$$\Delta = \Delta(p) = (p+1-N)^2 - 4p$$

$$= \underbrace{(N+1-p)^2 - 4N}_{r} < 0.$$

We try to find a solution to

$$x^2 - Df^2 = 4N$$

for a *small* fundamental discriminant D < 0 for which N + 1 - x is prime.

If there is a solution, Cornacchia's algorithm will find it efficiently given a value of $\sqrt{D} \bmod N$.

THE TENTH WORKSHOP ON ELLIPTIC CURVE CRYPTOGRAPHY

The 98-digit number N = 2008050020051420080023151811190815160015140005121 2091620090300032118220500031825162015071801160825 factors as $5^2 \cdot 37 \cdot 43801 \cdot 4060873068732870045307 \cdot 57740372226683111$

 $5^2 \cdot 37 \cdot 43891 \cdot 4069873068732879945307 \cdot 57749372226683111 \setminus 850635085409 \cdot 2104404326791903799448806821567569117773.$

For this number, p = N + 1 - x is prime and

$$x^2 + 69883f^2 = 4N$$

for

x = 6500790348838149718101229536168465632114530731985f = 23337722256431421393424354567844988122834747045.

Computing the Hilbert class polynomial

Two approaches:

- complex analytic (classical)
 - evaluate $j: \mathbf{H} \to \mathbf{C}$ in points $\tau \in \mathbf{H}$ corresponding to the ideal classes of \mathcal{O}_D
 - expand $\prod_{\tau} (X j(\tau)) \in \mathbf{Z}[X]$.

- p-adic (Couveignes-Henocq, Bröker)
 - find a curve E over a finite field \mathbf{F}_p with CM by \mathcal{O}_D
 - lift E to its canonical lift \widetilde{E} over \mathbf{Q}_p
 - compute conjugates of $j(E) \in \mathbf{Q}_p$ under $\mathrm{Pic}(\mathcal{O}_D)$
 - expand $\prod_{\mathfrak{a}\in \mathrm{Pic}(\mathcal{O}_D)} (X-j(\widetilde{E})^{\mathfrak{a}}) \in \mathbf{Z}[X].$

THE TENTH WORKSHOP ON ELLIPTIC CURVE CRYPTOGRAPHY

We have $Pic(\mathcal{O}_{-69883}) \cong \mathbf{Z}/30\mathbf{Z}$ and P^{j}_{-69883} has degree 30.

Putting p = 20080500200514200800231518111908151600151400051205590829741461882400119270495656696382957270428841

and a = 4160067948947022493017061849805493054348735874377

 $051460570206996500827805133274044168689303740462 \in \mathbf{F}_p,$

the curve defined by

$$Y^2 = X^3 + aX - a$$

has exactly N=2008050020051420080023151811190815160015140005121 2091620090300032118220500031825162015071801160825 points over \mathbf{F}_p .

How small can we expect D to be?

Lemma. Let N > 2 be prime and D < 0 with $N \not \mid D$. Then 4N can be written as

$$4N = x^2 - Df^2$$

if and only if N splits completely in the ring class field of $\mathbf{Z}[\sqrt{D}]$.

Given D, we can use Cornacchia's algorithm to find a possible solution to $x^2 - Df^2 = 4N$.

We also want that N+1-x is prime.

Heuristics for size of D

- Fraction of primes splitting completely in the ring class field of $\mathbf{Z}[\sqrt{D}]$ is $\frac{1}{2|\operatorname{Pic}(\mathcal{O}_D)|} \approx \frac{1}{2\sqrt{|D|}}$. (Chebotarev, Siegel)
- If N splits, the 'probability' that N+1-x or N+1+x is prime is $\frac{2}{\log(N)}$. (Prime number theorem)
- Solving $\sum_{|D| < B} \frac{1}{2\sqrt{|D|}} = O(\log(N))$ for B yields $B = O((\log N)^2).$

Heuristic runtime: $O((\log N)^{4+\varepsilon})$.

For general N we get $O(2^{\omega(N)}(\log N)^{4+\varepsilon})$, with $\omega(N)$ the number of distinct prime divisors of N.

Practical problem

The coefficients of P_D^j are huge. Example:

$$P^j_{-23} = X^3 + 3491750X^2 - 5151296875X + 12771880859375 \in \mathbf{Z}[X].$$

We can use smaller modular functions f of level $N \geq 1$ to gain a constant factor in size of the coefficients of P_D^j .

The value $f(\frac{-1+\sqrt{D}}{2})$ lies in the ray class field of conductor N. Sometimes also in the Hilbert class field.

For every D there is a smaller function f we can use. The factor we gain depends on f.

Smaller polynomials

$$\begin{split} P^{j}_{-71} = & X^{7} + 313645809715X^{6} - 3091990138604570X^{5} \\ & + 98394038810047812049302X^{4} \\ & - 823534263439730779968091389X^{3} \\ & + 5138800366453976780323726329446X^{2} \\ & - 425319473946139603274605151187659X \\ & + 737707086760731113357714241006081263 \in \mathbf{Z}[X] \end{split}$$

$$\begin{split} P_{-71}^{\gamma_2} = & X^7 + 6745X^6 - 327467X^5 + 51857115X^4 + 2319299751X^3 \\ & + 41264582513X^2 - 307873876442X + 903568991567 \in \mathbf{Z}[X] \end{split}$$

$$P_{-71}^{f} = X^7 - X^6 - X^5 + X^4 - X^3 - X^2 + 2X + 1 \in \mathbf{Z}[X]$$

Computing P_D^f

- complex analytic approach: well understood (Shimura reciprocity, Stevenhagen, Gee, Schertz)
 - Fast implementations by e.g. Morain, Enge.
- p-adics: can work with f as well (Bröker)
 - algorithm combines Shimura reciprocity with modular curves
 - main tool: modular polynomials, i.e., a model for the curve

$$(\operatorname{Stab}_{\operatorname{SL}_2(\mathbf{Z})}(f) \cap \Gamma_0(l)) \backslash \mathbf{H}.$$

• in practice roughly as fast as complex analytic algorithm.

The reduction factor

For $|D| \to \infty$, the logarithmic height of P_D^f is a factor

$$r(f) = \frac{\deg_j(\Psi(j, X))}{\deg_X(\Psi(j, X))}$$

of the logarithmic height of P_D^j . Here: $\Psi(j,X)$ is minimal polynomial of f over $\mathbf{C}(j)$.

Examples.

•
$$f = \mathfrak{f} \Longrightarrow \Psi(j, X) = (X^{24} - 16)^3 - jX^{24} \text{ and } r(f) = 1/72$$

•
$$f(z) = \frac{\eta(z/5)\eta(z/7)}{\eta(z)\eta(z/35)} \Longrightarrow r(f) = 1/24$$

Question. What is the best we can do?

Reduction factor and modular curves

Let $\Gamma(f) = \operatorname{Stab}(f) \subset \operatorname{PSl}_2(\mathbf{Z})$ be the stabilizer of f in $\operatorname{PSl}_2(\mathbf{Z})$.

We have

$$\Gamma(N) \subseteq \Gamma(f) \subseteq \mathrm{PSl}_2(\mathbf{Z}),$$

with $N \in \mathbf{Z}_{\geq 1}$ the level of f.

The quotient $\Gamma(f)\backslash \overline{\mathbf{H}}$ is a compact Riemann surface.

The corresponding modular curve X(f) is a quotient of X(N).

The curve X(N) parametrizes triples (E, P, Q) with $P, Q \in E[N]$ a basis for E[N] with $e_N(P, Q) = \zeta_N = \exp(2\pi i/N)$.

Reduction factor and modular curves

Recall: the reduction factor r(f) equals

$$r(f) = \frac{\deg_j(\Psi(j, X))}{\deg_X(\Psi(j, X))} = \frac{[\mathbf{C}(j, f) : \mathbf{C}(f)]}{[\mathbf{C}(j, f) : \mathbf{C}(j)]}.$$

We have
$$r(f) = \frac{\deg(f : X(f) \to \mathbf{P}^1_{\mathbf{C}})}{[\mathbf{C}(j, f) : \mathbf{C}(j)]}$$
, and we want a lower bound.

Gonality

• $k/\mathbf{Q}(\zeta_N)$ a field, X/k modular curve of level N

• Gonality $\gamma_k(X) = \min\{\deg(\pi) \mid \pi : X \to \mathbf{P}_k^1\}$

• for field L/k, put $\gamma_L(X) = \gamma_L(X \times_k L)$

• $\gamma_L(X) \leq \gamma_k(X)$, equality for $k = \overline{k}$.

Lower bounds for gonality

We have $(\deg f: X(f) \to \mathbf{P}^1_{\mathbf{C}}) \geq \gamma_{\mathbf{C}}(X(f)).$

Theorem. (Abramovich, 1996)

$$\gamma_{\mathbf{C}}(X(f)) \ge \frac{7}{800} [\mathrm{PSl}_2(\mathbf{Z}) : \mathrm{Stab}(f)].$$

Theorem has been improved for curves like $X_0(N)$ and $X_1(N)$.

Selbergs eigenvalue conjecture (1965)
$$\Longrightarrow$$
 $\gamma_{\mathbf{C}}(X(f)) \geq \frac{1}{96}[\mathrm{PSl}_2(\mathbf{Z}):\mathrm{Stab}(f)].$

Lower bounds for reduction factor

Galois theory: $[\mathbf{C}(j, f) : \mathbf{C}(j)] = [\mathrm{PSl}_2(\mathbf{Z}) : \mathrm{Stab}(f)].$

Conclude:

$$r(f) = \frac{\deg(f: X(f) \twoheadrightarrow \mathbf{P}_{\mathbf{C}}^1)}{\deg(j: X(f) \twoheadrightarrow \mathbf{P}_{\mathbf{C}}^1)} \ge \frac{\gamma_{\mathbf{C}}(X(f))}{[\mathrm{PSl}_2(\mathbf{Z}): \mathrm{Stab}(f)]} \ge \frac{7}{800}.$$

Selberg
$$\Longrightarrow r(f) \ge \frac{1}{96}$$
.

(We have $7/800 \approx 0.00875$ and $1/96 \approx 0.01042$.)

Computing class polynomials

Computing P_D^j can be improved by using smaller functions f.

Best function depends on discriminant D.

For
$$f = \mathfrak{f} = \zeta_{48}^{-1} \frac{\eta(\frac{z+1}{2})}{\eta(z)}$$
 we gain a factor 72.

We cannot expect to gain more than factor 96 for any function.

A cryptographic curve

The smallest discriminant is D = -2419.

Put p = 123456789012345678901234567890654833374525085966737125236501 and a = 78876029697996107120563826094864556580999965110862558799913.

The curve defined by

$$Y^2 = X^3 + 4aX - 8a$$

has exactly N points.

A large example

For $N = 10^{1000} + 453 = \text{nextprime}(10^{1000})$ we find

$$D = -2643.$$

A class polynomial for \mathcal{O}_{-2643} has degree 10.

It factors completely mod p = N + 1 - x with x =

 $845805648656593651223765284133326455321521711275464381191582185097\\ 464548940475023114759214359255933957886638255373505105304467164037\\ 412223409859640997425288456249927056490112115629777477917877958284\\ 088781667965440292251712877729866594533690475769359117604658547045\\ 901399399137820889786907255844328083231943562217674139516706917651\\ 715833885756514082522496689090975644895221448877817321348993895877\\ 536973618765771003069120306851480849793026370359289958346073691051\\ 21944422262464187611018973884015438837.$

The elliptic curve defined by

$$Y^2 = X^3 + aX - a$$

has exactly $N = \text{nextprime}(10^{1000})$ points.

a =

08933289342881253704165917344650073051728850001137791108145491358.