Constructing elliptic curves for cryptography

Reinier Bröker
Fields Institute \& University of Calgary

ECC
September 2006

Point counting. Given an elliptic curve E / \mathbf{F}_{q}, find $N=\# E\left(\mathbf{F}_{q}\right)$.

Curve construction. Given an integer $N \geq 1$, find a finite field \mathbf{F}_{q} and an elliptic curve E / \mathbf{F}_{q} with

$$
\# E\left(\mathbf{F}_{q}\right)=N
$$

For both problems, input and output are of size

$$
\log (q) \approx \log (N)
$$

Curve construction

Necessary condition: there is a prime power q in the Hasse interval

$$
\mathcal{H}_{N}=[N-2 \sqrt{N}+1, N+2 \sqrt{N}+1] .
$$

We can (and will) restrict to primes $q=p$. The condition above is then also sufficient.

It is not known whether

$$
\bigcup_{p} \mathcal{H}_{p} \supseteq \mathbf{Z}_{>0}
$$

In practice: many primes $p \in \mathcal{H}_{N}$.

Naïve algorithm

- find a prime $p \in \mathcal{H}_{N}$
- try random curves over \mathbf{F}_{p} until you find a curve with N points
- expected run time: $O\left(N^{1 / 2+\varepsilon}\right)$.

Not feasible for $N \gg 10^{15}$.
For crypto we want $N \approx 10^{60}$ prime.

The curve for this workshop

Standard encoding of messages.

A	01	G	07	M	13	S	19	Y	25
B	02	H	08	N	14	T	20	Z	26
C	03	I	09	O	15	U	21		
D	04	J	10	P	16	V	22		
E	05	K	11	Q	17	W	23		
F	06	L	12	R	18	X	24	،	00

The text
THE TENTH WORKSHOP ON ELLIPTIC CURVE CRYPTOGRAPHY becomes

2008050020051420080023151811190815160015140005121 2091620090300032118220500031825162015071801160825.

CM-approach

For any $p \in \mathcal{H}_{N}$, the desired curve E / \mathbf{F}_{p} has Frobenius

$$
F_{p}: E \rightarrow E \quad(x, y) \mapsto\left(x^{p}, y^{p}\right)
$$

Write $N=p+1-t$, then F_{p} satisfies

$$
F_{p}^{2}-t F_{p}+p=0 \in \operatorname{End}(E)
$$

of discriminant $\Delta=t^{2}-4 p<0$.
For $t \neq 0$, we have $\operatorname{End}(E) \subset \mathbf{Q}(\sqrt{\Delta})$.
We want an elliptic curve with endomorphism ring containing the imaginary quadratic order \mathcal{O}_{Δ}.

Complex elliptic curves

- view \mathcal{O}_{Δ} as a lattice in \mathbf{C}
- the elliptic curve $\mathbf{C} / \mathcal{O}_{\Delta}$ has endomorphism ring \mathcal{O}_{Δ}
- let $j: \mathbf{H} \rightarrow \mathbf{C}$ be the modular function with q-expansion $j(z)=$ $1 / q+744+196884 q+\ldots$ in $q=\exp (2 \pi i z)$
- a curve $\widetilde{E} / \mathbf{C}$ with j-invariant $j\left(\mathcal{O}_{\Delta}\right)$ has

$$
\operatorname{End}(\widetilde{E}) \cong \mathcal{O}_{\Delta}
$$

CM-theory

- $j(\widetilde{E})$ lies in the ring class field for \mathcal{O}_{Δ}
- $j(\widetilde{E})$ is a root of the Hilbert class polynomial

$$
P_{\Delta}^{j}=\prod_{\mathfrak{a} \in \operatorname{Pic}\left(\mathcal{O}_{\Delta}\right)}(X-j(\mathfrak{a})) \in \mathbf{Z}[X]
$$

- $\operatorname{deg}\left(P_{\Delta}^{j}\right)=\# \operatorname{Pic}\left(\mathcal{O}_{\Delta}\right)$
- P_{Δ}^{j} splits completely modulo p
- the roots of $P_{\Delta}^{j} \in \mathbf{F}_{p}[X]$ are j-invariants of curves having $p+1 \pm t$ points over \mathbf{F}_{p}

Δ is too large

For $N \approx 10^{97}$ we have $\Delta \approx-10^{97}$. We cannot compute P_{Δ}^{j} for discriminants of this size.

Recall: we require that \mathcal{O}_{Δ} contains an element π of norm p with $N=p+1-\operatorname{Tr}(\pi)$.

Write $D=\operatorname{disc}(\mathbf{Q}(\sqrt{\Delta}))$. Then p splits in \mathcal{O}_{D} in the same way as it does in \mathcal{O}_{Δ}.

We may therefore work with D instead of Δ.

Selecting $\Delta=\Delta(p)$

We want to minimize the field discriminant D of $\mathbf{Q}(\sqrt{\Delta})$ with

$$
\begin{aligned}
\Delta=\Delta(p) & =(p+1-N)^{2}-4 p \\
& =\underbrace{(N+1-p)^{2}}_{x}-4 N<0 .
\end{aligned}
$$

We try to find a solution to

$$
x^{2}-D f^{2}=4 N
$$

for a small fundamental discriminant $D<0$ for which $N+1-x$ is prime.

If there is a solution, Cornacchia's algorithm will find it efficiently given a value of $\sqrt{D} \bmod N$.

THE TENTH WORKSHOP ON ELLIPTIC CURVE CRYPTOGRAPHY

The 98-digit number $N=$
2008050020051420080023151811190815160015140005121 2091620090300032118220500031825162015071801160825
factors as
$5^{2} \cdot 37 \cdot 43891 \cdot 4069873068732879945307 \cdot 57749372226683111 \backslash \backslash$ $850635085409 \cdot 2104404326791903799448806821567569117773$.

For this number, $p=N+1-x$ is prime and

$$
x^{2}+69883 f^{2}=4 N
$$

for
$x=6500790348838149718101229536168465632114530731985$
$f=23337722256431421393424354567844988122834747045$.

Computing the Hilbert class polynomial

Two approaches:

- complex analytic (classical)
- evaluate $j: \mathbf{H} \rightarrow \mathbf{C}$ in points $\tau \in \mathbf{H}$ corresponding to the ideal classes of \mathcal{O}_{D}
- expand $\prod_{\tau}(X-j(\tau)) \in \mathbf{Z}[X]$.
- p-adic (Couveignes-Henocq, Bröker)
- find a curve E over a finite field \mathbf{F}_{p} with CM by \mathcal{O}_{D}
- lift E to its canonical lift \widetilde{E} over \mathbf{Q}_{p}
- compute conjugates of $j(\widetilde{E}) \in \mathbf{Q}_{p}$ under $\operatorname{Pic}\left(\mathcal{O}_{D}\right)$
- expand $\prod_{\mathfrak{a} \in \operatorname{Pic}\left(\mathcal{O}_{D}\right)}\left(X-j(\widetilde{E})^{\mathfrak{a}}\right) \in \mathbf{Z}[X]$.

THE TENTH WORKSHOP ON ELLIPTIC CURVE CRYPTOGRAPHY
We have $\operatorname{Pic}\left(\mathcal{O}_{-69883}\right) \cong \mathbf{Z} / 30 \mathbf{Z}$ and P_{-69883}^{j} has degree 30 .
Putting $p=$
2008050020051420080023151811190815160015140005120
5590829741461882400119270495656696382957270428841
and $a=$
4160067948947022493017061849805493054348735874377
$051460570206996500827805133274044168689303740462 \in \mathbf{F}_{p}$,
the curve defined by

$$
Y^{2}=X^{3}+a X-a
$$

has exactly $N=$
2008050020051420080023151811190815160015140005121
2091620090300032118220500031825162015071801160825
points over \mathbf{F}_{p}.

How small can we expect D to be?

Lemma. Let $N>2$ be prime and $D<0$ with $N \nmid D$. Then $4 N$ can be written as

$$
4 N=x^{2}-D f^{2}
$$

if and only if N splits completely in the ring class field of $\mathbf{Z}[\sqrt{D}]$.

Given D, we can use Cornacchia's algorithm to find a possible solution to $x^{2}-D f^{2}=4 N$.

We also want that $N+1-x$ is prime.

Heuristics for size of D

- Fraction of primes splitting completely in the ring class field of $\mathbf{Z}[\sqrt{D}]$ is $\frac{1}{2\left|\operatorname{Pic}\left(\mathcal{O}_{D}\right)\right|} \approx \frac{1}{2 \sqrt{|D|}}$. (Chebotarev, Siegel)
- If N splits, the 'probability' that $N+1-x$ or $N+1+x$ is prime is $\frac{2}{\log (N)}$. (Prime number theorem)
- Solving $\sum_{|D|<B} \frac{1}{2 \sqrt{|D|}}=O(\log (N))$ for B yields

$$
B=O\left((\log N)^{2}\right)
$$

Heuristic runtime: $O\left((\log N)^{4+\varepsilon}\right)$.
For general N we get $O\left(2^{\omega(N)}(\log N)^{4+\varepsilon}\right)$, with $\omega(N)$ the number of distinct prime divisors of N.

Practical problem

The coefficients of P_{D}^{j} are huge. Example:
$P_{-23}^{j}=X^{3}+3491750 X^{2}-5151296875 X+12771880859375 \in \mathbf{Z}[X]$.
We can use smaller modular functions f of level $N \geq 1$ to gain a constant factor in size of the coefficients of P_{D}^{j}.

The value $f\left(\frac{-1+\sqrt{D}}{2}\right)$ lies in the ray class field of conductor N. Sometimes also in the Hilbert class field.

For every D there is a smaller function f we can use. The factor we gain depends on f.

Smaller polynomials

$$
\begin{aligned}
P_{-71}^{j}= & X^{7}+313645809715 X^{6}-3091990138604570 X^{5} \\
& +98394038810047812049302 X^{4} \\
& -823534263439730779968091389 X^{3} \\
& +5138800366453976780323726329446 X^{2} \\
& -425319473946139603274605151187659 X \\
& +737707086760731113357714241006081263 \in \mathbf{Z}[X]
\end{aligned}
$$

$$
\begin{aligned}
P_{-71}^{\gamma_{2}}= & X^{7}+6745 X^{6}-327467 X^{5}+51857115 X^{4}+2319299751 X^{3} \\
& +41264582513 X^{2}-307873876442 X+903568991567 \in \mathbf{Z}[X]
\end{aligned}
$$

$$
P_{-71}^{f}=X^{7}-X^{6}-X^{5}+X^{4}-X^{3}-X^{2}+2 X+1 \in \mathbf{Z}[X]
$$

Computing P_{D}^{f}

- complex analytic approach: well understood (Shimura reciprocity, Stevenhagen, Gee, Schertz)
- Fast implementations by e.g. Morain, Enge.
- p-adics: can work with f as well (Bröker)
- algorithm combines Shimura reciprocity with modular curves
- main tool: modular polynomials, i.e., a model for the curve

$$
\left(\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbf{Z})}(f) \cap \Gamma_{0}(l)\right) \backslash \mathbf{H}
$$

- in practice roughly as fast as complex analytic algorithm.

The reduction factor

For $|D| \rightarrow \infty$, the logarithmic height of P_{D}^{f} is a factor

$$
r(f)=\frac{\operatorname{deg}_{j}(\Psi(j, X))}{\operatorname{deg}_{X}(\Psi(j, X))}
$$

of the logarithmic height of P_{D}^{j}. Here: $\Psi(j, X)$ is minimal polynomial of f over $\mathbf{C}(j)$.

Examples.

- $f=\mathfrak{f} \Longrightarrow \Psi(j, X)=\left(X^{24}-16\right)^{3}-j X^{24}$ and $r(f)=1 / 72$
- $f(z)=\frac{\eta(z / 5) \eta(z / 7)}{\eta(z) \eta(z / 35)} \Longrightarrow r(f)=1 / 24$

Question. What is the best we can do?

Reduction factor and modular curves

Let $\Gamma(f)=\operatorname{Stab}(f) \subset \operatorname{PSl}_{2}(\mathbf{Z})$ be the stabilizer of f in $\operatorname{PSl}_{2}(\mathbf{Z})$.
We have

$$
\Gamma(N) \subseteq \Gamma(f) \subseteq \mathrm{PSl}_{2}(\mathbf{Z})
$$

with $N \in \mathbf{Z}_{\geq 1}$ the level of f.
The quotient $\Gamma(f) \backslash \overline{\mathbf{H}}$ is a compact Riemann surface.
The corresponding modular curve $X(f)$ is a quotient of $X(N)$.
The curve $X(N)$ parametrizes triples (E, P, Q) with $P, Q \in E[N]$ a basis for $E[N]$ with $e_{N}(P, Q)=\zeta_{N}=\exp (2 \pi i / N)$.

Reduction factor and modular curves

Recall: the reduction factor $r(f)$ equals

$$
r(f)=\frac{\operatorname{deg}_{j}(\Psi(j, X))}{\operatorname{deg}_{X}(\Psi(j, X))}=\frac{[\mathbf{C}(j, f): \mathbf{C}(f)]}{[\mathbf{C}(j, f): \mathbf{C}(j)]}
$$

We have $r(f)=\frac{\operatorname{deg}\left(f: X(f) \rightarrow \mathbf{P}_{\mathbf{C}}^{1}\right)}{[\mathbf{C}(j, f): \mathbf{C}(j)]}$, and we want a lower bound.

Gonality

- $k / \mathbf{Q}\left(\zeta_{N}\right)$ a field, X / k modular curve of level N
- Gonality $\gamma_{k}(X)=\min \left\{\operatorname{deg}(\pi) \mid \pi: X \rightarrow \mathbf{P}_{k}^{1}\right\}$
- for field L / k, put $\gamma_{L}(X)=\gamma_{L}\left(X \times_{k} L\right)$
- $\gamma_{L}(X) \leq \gamma_{k}(X)$, equality for $k=\bar{k}$.

Lower bounds for gonality

We have ($\left.\operatorname{deg} f: X(f) \rightarrow \mathbf{P}_{\mathbf{C}}^{1}\right) \geq \gamma_{\mathbf{C}}(X(f))$.
Theorem. (Abramovich, 1996)

$$
\gamma_{\mathbf{C}}(X(f)) \geq \frac{7}{800}\left[\mathrm{PSl}_{2}(\mathbf{Z}): \operatorname{Stab}(f)\right]
$$

Theorem has been improved for curves like $X_{0}(N)$ and $X_{1}(N)$.
Selbergs eigenvalue conjecture (1965) \Longrightarrow

$$
\gamma_{\mathbf{C}}(X(f)) \geq \frac{1}{96}\left[\operatorname{PSl}_{2}(\mathbf{Z}): \operatorname{Stab}(f)\right] .
$$

Lower bounds for reduction factor

Galois theory: $[\mathbf{C}(j, f): \mathbf{C}(j)]=\left[\operatorname{PSl}_{2}(\mathbf{Z}): \operatorname{Stab}(f)\right]$.
Conclude:

$$
r(f)=\frac{\operatorname{deg}\left(f: X(f) \rightarrow \mathbf{P}_{\mathbf{C}}^{1}\right)}{\operatorname{deg}\left(j: X(f) \rightarrow \mathbf{P}_{\mathbf{C}}^{1}\right)} \geq \frac{\gamma_{\mathbf{C}}(X(f))}{\left[\operatorname{PSl}_{2}(\mathbf{Z}): \operatorname{Stab}(f)\right]} \geq \frac{7}{800}
$$

Selberg $\Longrightarrow r(f) \geq \frac{1}{96}$.
(We have $7 / 800 \approx 0.00875$ and $1 / 96 \approx 0.01042$.)

Computing class polynomials

Computing P_{D}^{j} can be improved by using smaller functions f.
Best function depends on discriminant D.

For $f=\mathfrak{f}=\zeta_{48}^{-1} \frac{\eta\left(\frac{z+1}{2}\right)}{\eta(z)}$ we gain a factor 72 .

We cannot expect to gain more than factor 96 for any function.

A cryptographic curve

Take the 60 -digit prime $N=$ 123456789012345678901234567890123456789012345678901234568197.

The smallest discriminant is $D=-2419$.

Put $p=$
123456789012345678901234567890654833374525085966737125236501 and $a=$
78876029697996107120563826094864556580999965110862558799913.

The curve defined by

$$
Y^{2}=X^{3}+4 a X-8 a
$$

has exactly N points.

A large example

For $N=10^{1000}+453=$ nextprime $\left(10^{1000}\right)$ we find

$$
D=-2643
$$

A class polynomial for \mathcal{O}_{-2643} has degree 10 .
It factors completely $\bmod p=N+1-x$ with $x=$
845805648656593651223765284133326455321521711275464381191582185097 464548940475023114759214359255933957886638255373505105304467164037 412223409859640997425288456249927056490112115629777477917877958284 088781667965440292251712877729866594533690475769359117604658547045 901399399137820889786907255844328083231943562217674139516706917651 715833885756514082522496689090975644895221448877817321348993895877 536973618765771003069120306851480849793026370359289958346073691051 21944422262464187611018973884015438837.

The elliptic curve defined by

$$
Y^{2}=X^{3}+a X-a
$$

has exactly $N=$ nextprime $\left(10^{1000}\right)$ points.

$a=$

9420276755252566933833099351124178879877353183224295194374495573364668257357464198256 1532978385967108441467756099630439090699022366557998223663915368890013769018164491219 3546065002707808343543649806284472915990423081084754533082533834055862656561526761617 8608216303258939553425021460110980964458699283822816293522936106746236153721341651172 0819576299098156590938724644500034622413542838563230733095660554575247247828252501415 5021786923269821685873130994314509756214224559718811685141038855700698654258329134984 1307996991930834357864048973650614861406595212886194845028945666156681634719079010599 3362955522952533044139552844026797765297304929105950831769789963534701625957277784639 3145770238417304692006230346257996892089066085065880564885854053663099058750881517418 3103088745551733456207732182082586632549028742127402414658047488405591433595318030116 6080264070444543971880726805158813870076789748866907115735777032850686494487115766062 08933289342881253704165917344650073051728850001137791108145491358.

