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The challenge of finding the right pulse
Control theory and GRAPE

Basic problem setting

Our physical system gives us a Hamiltonian

H(t) = Hd +
∑

j

uj(t)Hj (1)

with static drift Hd, controls uj and control Hamiltonians Hj .
Our goal: Build a propagator

Ugate = U(t , 0) = T exp
(
− i

~

∫ t

0
dt ′H(t ′)

)
(2)

using physical uj(t).
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Rotating wave and area theorem.

Spin in static z plus rotating xy field

H(t) = −γ~B(t) · ~σ =
1
2

(
E λ(t)eiωt

λ(t)e−iωt −E

)
(3)

in co-rotating frame

H ′(t) =
1
2

(
E − ω λ(t)
λ(t) −(E − ω)

)
(4)

On resonance: E − ω = 0 [H ′(t), H ′(t ′)] = 0, thus

T exp
(
− i

~

∫ t

0
dt ′H(t ′)

)
= exp

(
− i

~

∫ t

0
dt ′H(t ′)

)
=

= cos φ(t)− iσx sin φ(t) φ(t) =
1
~

∫ t

0
dt ′λ(t ′) (5)

Area theorem
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Beyond the area theorem

The area theorem does in general hold for [H ′(t), H ′(t ′)] 6= 0
out of resonance
for non-rotating wave Hamiltonians and strong driving
(non-RWA) i.e. high pulses
for multi-qubit systems

Power of quantum computing comes from the global
non-validity of the area theorem!
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Complementing quantum circuits

Quantum circuit solution:
Discretize into RWA steps with full control.

Complemented by control theory
even the single qubit gates may not be accessible by RWA
decomposition into elementary gates may not be efficient
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Complex control sequences

There are ingenious NMR
solutions based on 50 years of
quantum control
... do we have to do it again?

Analogous situation:
Steering / parallel parking
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Using control theory

Established discipline in applied math / engineering
Applied to quantum systems for state transfers e.g. in
quantum chemistry
Developed for NMR by N. Khaneja (Harvard), S.J. Glaser,
T. Schulte-Herbrüggen . . . (TUM)

You do not need to know molecular biology in order to
fry an egg.
(Donald E. Knuth)
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Basic idea.

Take any dynamical system with
variables xi and controls uj with
EOM

ẋ = f (x , u, t) (6)

Optimize a performance index at
final time tf , F (x(tf ), u(tf )) using

J = F (x(tf ), u(tf )) + (7)∫ tf

ti
dtλT (t)(ẋ − f (x , u, t))

with initial conditions x(ti).
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Solution of the control problem

Variation with constraints leads to initial value problem

ẋ = f (x , u, t) x(ti) = xi (8)

final value problem for influence function λ

λ̇ = −
(

∂f
∂x

)T

λ λ(tf ) =

(
∂F
∂x

)T

(9)

and equation for the controls(
∂f
∂u

)T

λ = 0 (10)

Solvable, typically hard (split conditions!)
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From Rockets to Propagators

Control problem for a quantum gate:

x 7→ U(t) U(ti) = 1̂ (11)

f 7→ −i(Hd +
∑

i

ui(t)Hi)U (12)

φ =
∥∥Ugate − U(tf )

∥∥2
= 2N − 2ReTr(U†

gateU(tf )) (13)

So we need to maximize Tr(U†
gateU(tf )).

Problem: Fixes global phase, too
Solution: Maximize Φ = |Tr(U†

gateU(tf ))|2 instead.
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Numerical solution

Numerical solution: Minimize J directly.
Problem: Computationally hard optimization, numerical
gradients ∂φ

∂ui
time-consuming (≈ hours on supercomputer).

From A.O. Niskanen, J.J. Vartiainen and M.M. Salomaa, PRL
90, 197901 (2003).
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Challenge

In the discretized grid, how does Φ change when the control is
changed in one point?
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Gradient Ascent Pulse Engineering (GRAPE) I

Rewrite performance index

Φ = |Tr(U†
gateU(tf ))|2 =

∣∣∣Tr(U†(tj , tN)Ugate)
†U(tj , t1)

∣∣∣2
=

∣∣∣∣Tr
(

U†
j+1 . . . U†

NUgate

)†
Uj . . . U1

∣∣∣∣2
Trotterized time-step propagators

Ui = exp
(
−i∆t

(
Hd +

∑
uk (ti)Hk

))
(14)

Using
d
dx

eA+Bx
∣∣∣∣
x=0

= eA
∫ 1

0
dτe−AτBeAτ (15)
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Gradient Ascent Pulse Engineering (GRAPE) II

we can derive ∂Φ
∂uk

analytically.

∂Φ

∂uk (tj)
= δtRe

[(
TrU†

gateUN . . . Uj+1HkUj . . . U1

)
(

TrU†
gateUN . . . Uj+1Uj . . . U1

)]
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
S.J. Glaser, JMR 172, 296 (2005).
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The physical problem.

Successful superconducting
qubit with close leakage level

δω = ω12 − ω23 ' 0.1ω12
(16)

Drive resonantly on ω12.
RWA-Hamiltonian

H ′ =

 −δω
√

2λ(t) 0√
2λ(t) 0 λ(t)

0 λ(t) 0


(17)

a

aMartinis and Simmonds
groups, UCSB and NIST

How to avoid leakage to the higher level?
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Properties of the problem.

At low λ leakage is small ∝ λ/δω, area theorem o.k. - slow
pulse
At extremely high λ � δω area theorem again.
Can we at least push the limits at intermediate λ ' δω ?

Populations of
|0〉,
|1〉,
|2〉
φ(t) =

∫ t
0 dt ′λ(t ′)
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GRAPE for this problem.

We want an X gate on the two levels, i.e.

Ugate = eiφ1

 eiφ2 0 0
0 0 1
0 1 0

 (18)

so we have two free phases.

Performance index

Φd =
1
5
(|M22|2 + |M00 + M11|2) M = U†

gateU(tf ). (19)
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Overall performance

Rectangular Rabi pulse
GRAPE, fixed internal phase
GRAPE, free internal phase
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Optimum pulse shapes
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Populations in long pulses

Rectangular pulse GRAPE pulse

Representative initial state |0〉.
|0〉, |1〉, |2〉
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Populations in intermediate pulses

Rectangular pulse GRAPE pulse

Aha! We do a (2n + 1)π pulse on the qubit transition and a 2nπ
pulse on the leakage transition
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Populations in short pulses

Rectangular pulse GRAPE pulse

GRAPE explores the physical limitations
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Rise times and penalties

Problems:
Does not start at zero
Short rise time

Possible solutions:
Additional Lagrange Multiplier: Not practical of inequalities
Penalty in performance index:
F (xf , uf , tf ) + A

∫ tf
ti

dt p2(x(t), u(t), t).
Here: p = u [2− tanh(t/t0)− tanh((T − t)/t0)]

F.K. Wilhelm et al. QC for SQubits



Finding and optimizing gates
Application to Josephson qubits

Summary

Avoiding leakage in a single phase qubit
Towards better pulses
Optimizing two-qubit gates

Easier pulse shapes
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Performance
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NEC coupled Cooper pair boxes.
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Coupled boxes Hamitonian.

Charge basis |N1, N2〉

H =
∑
N1N2

ECh,n1n2 |N1, N2〉 〈N1, N2|

−EJ

2
(Q(1)

+ + Q(1)
− )⊗ 1̂− EJ

2
1̂⊗ (Q(2)

+ + Q(2)
− )

Two-state approximation

H =
1
4

[
Em(1− 2ng2(t)) + 2Ec1(1− 2ng1(t))

]
σ

(1)
z − EJ1

2
σ

(1)
x

1
4

[
Em(1− 2ng1(t)) + 2Ec2(1− 2ng2(t))

]
σ

(2)
z − EJ2

2
σ

(2)
x

+
Em

4
σ

(1)
z ⊗ σ

(2)
z
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Discretized CNOT quantum circuit.

For Ising interaction strength K

Needs more controls than available — also long pulse
sequence.
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The GRAPE pulse

99.9999% precision (benchmark 70 %), short time
Palindrome pulse ni(t) = ni(T − t), as H is real and
UCNOT = U−1

CNOT
1

T ' π/EJ = 55ps: Local π pulses with phase gate: Strong
couling quantum control

1see C. Griesinger, C. Gemperle, O. W. Sørensen, and R. R. Ernst, Molec.
Phys. 62, 295 (1987).

F.K. Wilhelm et al. QC for SQubits



Finding and optimizing gates
Application to Josephson qubits

Summary

Avoiding leakage in a single phase qubit
Towards better pulses
Optimizing two-qubit gates

Dynamics under this pulse

Reduced Bloch spheres ρi = Trρ¬i

|11〉 → |10〉

|00〉+ |11〉 → (|0〉+ |1〉)⊗ |0〉
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NECs evolution: Multiple loops
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How to make such a pulse?

Time scale beyond current pulse generators.

Input pulse
I(t) = f (t)− f (t − T ) of
arbitrary shape, rational
approximation in Laplace
space
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Pulse optimization
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Fault tolerance

N.b.: Minimum makes errors ∝ (δu)2
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Low leakage

High nonlinearity: With leakage F = 99%
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One-step Toffoli

Strong coupling leads to further acceleration
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Optimal control theory is a power tool for constructing
pulses from Hamiltonians
Leakage can be avoided in phase qubits
Ultrafast CNOT in coupled Cooper pair boxes.

Outlook
Help for experimental implementation
Optimization in the presence of decoherence

See also Poster by P. Rebentrost
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Sponsors
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