Optimal Control of Josephson qubits
What can quantum control do for quantum computing?
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Outline

o Finding and optimizing gates
@ The challenge of finding the right pulse
@ Control theory and GRAPE

9 Application to Josephson qubits
@ Avoiding leakage in a single phase qubit
@ Towards better pulses
@ Optimizing two-qubit gates
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Basic problem setting

@ Our physical system gives us a Hamiltonian
H(t) = Ho+ > ui(t)H; (1)
J

with static drift Hy, controls u; and control Hamiltonians H;.
@ Our goal: Build a propagator

i t
Ugate = U(1,0) = T exp (_7,1 / dt’H(t')) (2)
0
using physical u;(t).
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Rotating wave and area theorem.

Spin in static z plus rotating xy field

iwt
HO =180 7= 5 ( g £° ) @

T exp (—;L/O dt’H(t’)) = exp (—;/Otdt’H(t’)> =
—cos () — iogsing(t)  o(f) = % /0 L)

Area theorem
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Beyond the area theorem

The area theorem does in general hold for [H'(t), H'(f')] # 0
@ out of resonance

@ for non-rotating wave Hamiltonians and strong driving
(non-RWA) i.e. high pulses

@ for multi-qubit systems

Power of quantum computing comes from the global
non-validity of the area theorem!
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Finding and optimizing gates

The challenge of finding the right pulse
Control theory and GRAPE

Complementing quantum circuits

Quantum circuit solution:
Discretize into RWA steps with full control.

0 = e+ [0} = 1) e 10) or 1) —
Input qubit AL s =l A
0} =10 —11) [0} — |1} 7l |0}
Work qubit BL—! |8
Step Step Step Step Step
(T0) (T1) (T2) (T3) (T4)

Complemented by control theory
@ even the single qubit gates may not be accessible by RWA
@ decomposition into elementary gates may not be efficient

1QcC:
F.K. Wilhelm et al. QC for SQubits




Finding and optimizing gates

The challenge of finding the right pulse
Control theory and GRAPE

Complex control sequences

SEARCH INSIDE!™

There are ingenious NMR
solutions based on 50 years of
quantum control

... do we have to do it again?

Analogous situation:
Steering / parallel parking
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Using control theory

@ Established discipline in applied math / engineering

@ Applied to quantum systems for state transfers e.g. in
quantum chemistry

@ Developed for NMR by N. Khaneja (Harvard), S.J. Glaser,
T. Schulte-Herbriggen ... (TUM)

You do not need to know molecular biology in order to
fry an egg.
(Donald E. Knuth)
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Finding and optimizing gates

The challenge of finding the right pulse
Control theory and GRAPE

Basic idea.

Take any dynamical system with
variables x; and controls u; with
EOM

. Appli i

X = f(x, u, ) (6) pplied Optimal Control
Optimize a performance index at AR E Sl
final time f, F(x(), u(f)) using

J = Fx(t), u(tr)) + (7)

AT () — f(x.u.1)
li

with initial conditions x(t;).
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Solution of the control problem

Variation with constraints leads to initial value problem
x=f(x,u,t) x(t)=x (8)

final value problem for influence function A

: ar\ T aF\T
A== (5) > = (%) ©
and equation for the controls
o\ "
- — 1
(23— 10

Solvable, typically hard (split conditions!)
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

From Rockets to Propagators

@ Control problem for a quantum gate:

~

x — Ut) Ut)=1 (11)
f o —/(Hd+Z ui(t)H, (12)
¢ = Hugm—U( ,)H = 2N — 2ReTr(U}, U(t)) (13)

@ So we need to maximize Tr(U,. U(t)).
@ Problem: Fixes global phase, too
e Solution: Maximize ® = |Tr(Ul,. U(t))|? instead.
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Finding and optimizing gates

The challenge of finding the right pulse
Control theory and GRAPE

Numerical solution

Numerical solution: Minimize J direcily.
Problem: Computationally hard optimization, numerical
gradients a¢’ time-consuming (=~ hours on supercomputer).
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From A.O. Niskanen, J.J. Vartiainen and M.M. Salomaa, PRL
90, 197901 (2003).
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Challenge

In the discretized grid, how does ® change when the control is
changed in one point?

Uy g "tj_
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Gradient Ascent Pulse Engineering (GRAPE) |

Rewrite performance index
® = i 2 _ t 1 2
= ITe(UfacU(t)P = [THUT (5, ) Upe) Ut 1)

t 2
..U,T\,Ugate) Ui... Uy

.I.
Tr (U/-H .

Trotterized time-step propagators

Ui =exp (—iAt (Hd+2uk(ti)Hk>> (14)

Using

d
o eA-i— Bx

1
— e / dre A" Beh"
dX -0 0

X
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Finding and optimizing gates The challenge of finding the right pulse

Control theory and GRAPE

Gradient Ascent Pulse Engineering (GRAPE) Il

we can derive 2 U ® analytically.

oo
Au(t;)

— JtRe [(TrUngUN Ut HeUj U1)
(Trugfmu,\,. Ui U U1)}

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbriiggen,
S.J. Glaser, IMR 172, 296 (2005).
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

The physical problem.

(a) Junction p Loop
. S
Successful superconducting {}\)@ e |<
. . M
qubit with close leakage level [N
Drive
0w = w1 —woz >~ 0.1wq2 = lx
(1 6) < Flux Bias Coil  SQUID
(b)

Drive resonantly on wyo.

RWA-Hamiltonian N !
—dw V2X(1) 0 S A
H =1 vaxt) o A(t) | < | .
0 )\(t) O Left Well Right Well
(17) @Martinis and Simmonds
groups, UCSB and NIST
How to avoid leakage to the higher level? IQC
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Properties of the problem.

@ Atlow X leakage is small o \/dw, area theorem o.k. - slow
pulse

@ At extremely high A > dw area theorem again.

@ Can we at least push the limits at intermediate A\ ~ dw ?

] Populations of

061 | ‘0>,

2

o o(t) = [ dtA(t)
e o R e e 1QC &
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

GRAPE for this problem.

We want an X gate on the two levels, i.e.

so we have two free phases.

Performance index
1
g = g(IMe2l + Moo + Mis?) M= UL Ut (19)
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Overall performance
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GRAPE, free internal phase
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Optimum pulse shapes
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Populations in long pulses

20 25 30 35
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Populations in intermediate pulses

Rectangular pulse GRAPE pulse

Aha! We do a (2n+ 1)7 pulse on the qubit transition and a 2nw
pulse on the leakage transition
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Populations in short pulses

Rectangular pulse GRAPE pulse

09 09
08 08|
07 07,
08 06l
05 05
04 04l
03 03
02 02
01 01
0 05 1 15 2 25 3 35 4 45 5 % o5 1 15 2 25 8 95 4 45 s
o

GRAPE explores the physical limitations

F.K. Wilhelm et al. QC for SQubits



Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Rise times and penalties

Problems:
@ Does not start at zero
@ Short rise time

Possible solutions:
@ Additional Lagrange Multiplier: Not practical of inequalities

@ Penalty in performance index:
Fxi, ur, t) + A fi dt - p2(x(1), u(1), 1).
Here: p = u[2 —tanh(t/ty) —tanh((T — t)/f)]
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Application to Josephson qubits

Easier pulse shapes

Avoiding leakage in a single phase qubit
Towards better pulses
Optimizing two-qubit gates

4 6
t(1/a0)
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Performance
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

NEC coupled Cooper pair boxes.

Pulse gate 2 = Pulse Qate 1 IQC




Avoiding leakage in a single phase qubit

Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Coupled boxes Hamitonian.

@ Charge basis |Ny, No)
H = > Echan, [Ny, No) (Ny, No|

Ny No
2@+ d)ei- Fie@? +a®)
@ Two-state approximation
H — % (Em(1 — 2nga(t)) + 2E1(1 — 2ng1(8))] o8 — %a@
3 [En(1 — 2003 (1)) + 2Ec2(1 — 2mge(0))] 02— =22
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses

Optimizing two-qubit gates

Discretized CNOT quantum circuit.

a0>+B[1> e Sl
and Quantum Infor

00>+ B|11>
10>

L

For Ising interaction strength K

R e e

T R S A
Needs more controls than available — also long pulse
sequence.
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Avoiding leakage in a single phase qubit

Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

The GRAPE pulse
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99.9999% precision (benchmark 70 %), short time

Palindrome pulse n;j(t) = ni(T — t), as H is real and
UCNOT = UEI\}OT !

e T ~n/E ;= 55ps: Local 7 pulses with phase gate: Strong
lin, ntum control
'see C. Griesinger, C. Gemperle, O. W. Sgrensen, and R. R. Ernst, MOIQC
Phys. 62, 295 (1987).
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

Dynamics under this pulse

Reduced Bloch spheres p; = Trp_,;

00) +[11) — (|0) + 1)) © |0)
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

NECs evolution: Multiple loops

1QC s
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

How to make such a pulse?

Time scale beyond current pulse generators.

Broadband pulse| | Fourier Filter |_g| Setup transfer | _s| Sample
(electro—optical) (Cauer) function

T |
~ % :%é: Input pulse

I(t) = f(t) — f(t—T) of
arbitrary shape, rational
< approximation in Laplace
v“’”" space

wv\_[‘

T
Ce Zle g‘ Z[
L

z,; :3‘

=
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses

Optimizing two-qubit gates
Pulse optimization

Sample design

Pulse optimization

-

Quantum computing
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Avoiding leakage in a single phase qubit
Towards better pulses
Optimizing two-qubit gates

Application to Josephson qubits

Fault tolerance
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Application to Josephson qubits

Low leakage
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Avoiding leakage in a single phase qubit
Towards better pulses
Optimizing two-qubit gates
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High nonlinearity: With leakage F = 99%
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Avoiding leakage in a single phase qubit
Application to Josephson qubits Towards better pulses
Optimizing two-qubit gates

One-step Toffoli
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Strong coupling leads to further acceleration IQC(
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Summary

Summary

@ Optimal control theory is a power tool for constructing
pulses from Hamiltonians

@ Leakage can be avoided in phase qubits
@ Ultrafast CNOT in coupled Cooper pair boxes.

@ Outlook

e Help for experimental implementation
e Optimization in the presence of decoherence

See also Poster by P. Rebentrost
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For Further Reading |

¥ A.E. Bryson jr, Y-C. Ho,
Applied Optimal Control.
McGraw Hill, 1964

[d N.Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbriiggen,
and S.J. Glaser,
Optimal Control of Coupled Josephson Qubits
J. Magn. Reson. 172, 296 (2005).

@ A.K. Spérl, T. Schulte-Herbriiggen, S.J. Glaser, V.
Bergholm, M.J. Storcz, J. Ferber, and F.K. Wilhelm,
quant-ph/0504202.
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