Optimal Control of Josephson qubits What can quantum control do for quantum computing?

F.K. Wilhelm^{1 2} M.J. Storcz² J. Ferber² A. Spörl³ T. Schulte-Herbrüggen³ S.J. Glaser³ P. Rebentrost^{1 2}

¹Institute for Quantum Computing (IQC) and Physics Department University of Waterloo, Canada

²Physics Department, Arnold Sommerfeld Center, and CeNS Ludwig-Maximilians-Universität München, Germany ³Chemistry Department Munich University of Technology, Germany

Conference on Quantum Information and Quantum Control II, 2006

Outline

Finding and optimizing gates

- The challenge of finding the right pulse
- Control theory and GRAPE

2 Application to Josephson qubits

- Avoiding leakage in a single phase qubit
- Towards better pulses
- Optimizing two-qubit gates

The challenge of finding the right pulse Control theory and GRAPE

Basic problem setting

Our physical system gives us a Hamiltonian

I

$$H(t) = H_{\rm d} + \sum_j u_j(t)H_j \tag{1}$$

with static drift H_d , controls u_j and control Hamiltonians H_j .

• Our goal: Build a propagator

$$U_{\text{gate}} = U(t, 0) = \mathcal{T} \exp\left(-\frac{i}{\hbar} \int_0^t dt' H(t')\right)$$
(2)

using physical $u_j(t)$.

The challenge of finding the right pulse Control theory and GRAPE

Rotating wave and area theorem.

Spin in static z plus rotating xy field

$$H(t) = -\gamma \vec{B}(t) \cdot \vec{\sigma} = \frac{1}{2} \begin{pmatrix} E & \lambda(t)e^{i\omega t} \\ \lambda(t)e^{-i\omega t} & -E \end{pmatrix}$$
(3)

in co-rotating frame

I

$$H'(t) = \frac{1}{2} \begin{pmatrix} E - \omega & \lambda(t) \\ \lambda(t) & -(E - \omega) \end{pmatrix}$$
(4)

On resonance: $E - \omega = 0 [H'(t), H'(t')] = 0$, thus

$$\mathcal{T} \exp\left(-\frac{i}{\hbar} \int_{0}^{t} dt' H(t')\right) = \exp\left(-\frac{i}{\hbar} \int_{0}^{t} dt' H(t')\right) = \\ = \cos\phi(t) - i\sigma_{x} \sin\phi(t) \qquad \phi(t) = \frac{1}{\hbar} \int_{0}^{t} dt' \lambda(t') \qquad (5)$$

Area theorem

The challenge of finding the right pulse Control theory and GRAPE

Beyond the area theorem

The area theorem does in general hold for $[H'(t), H'(t')] \neq 0$

- out of resonance
- for non-rotating wave Hamiltonians and strong driving (non-RWA) i.e. high pulses
- for multi-qubit systems

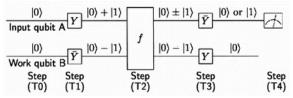
Power of quantum computing comes from the global non-validity of the area theorem!

The challenge of finding the right pulse Control theory and GRAPE

Complementing quantum circuits

Quantum circuit solution:

Discretize into RWA steps with full control.



Complemented by control theory

- even the single qubit gates may not be accessible by RWA
- decomposition into elementary gates may not be efficient

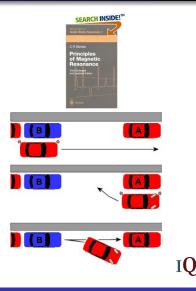
The challenge of finding the right pulse Control theory and GRAPE

Complex control sequences

There are ingenious NMR solutions based on 50 years of quantum control

... do we have to do it again?

Analogous situation: Steering / parallel parking



The challenge of finding the right pulse Control theory and GRAPE

Using control theory

- Established discipline in applied math / engineering
- Applied to quantum systems for state transfers e.g. in quantum chemistry
- Developed for NMR by N. Khaneja (Harvard), S.J. Glaser, T. Schulte-Herbrüggen . . . (TUM)

You do not need to know molecular biology in order to fry an egg. (Donald E. Knuth)

The challenge of finding the right pulse Control theory and GRAPE

Basic idea.

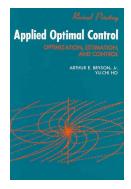
Take any *dynamical system* with variables x_i and controls u_j with EOM

$$\dot{x} = f(x, u, t) \tag{6}$$

Optimize a *performance index* at final time t_f , $F(x(t_f), u(t_f))$ using

$$J = F(x(t_{f}), u(t_{f})) + (7) \int_{t_{i}}^{t_{f}} dt \lambda^{T}(t) (\dot{x} - f(x, u, t))$$

with initial conditions $x(t_i)$.



The challenge of finding the right pulse Control theory and GRAPE

Solution of the control problem

Variation with constraints leads to initial value problem

$$\dot{x} = f(x, u, t) \quad x(t_i) = x_i \tag{8}$$

final value problem for influence function $\boldsymbol{\lambda}$

$$\dot{\lambda} = -\left(\frac{\partial f}{\partial x}\right)^T \lambda \quad \lambda(t_f) = \left(\frac{\partial F}{\partial x}\right)^T \tag{9}$$

and equation for the controls

$$\left(\frac{\partial f}{\partial u}\right)^T \lambda = 0 \tag{10}$$

Solvable, typically hard (split conditions!)

The challenge of finding the right pulse Control theory and GRAPE

From Rockets to Propagators

• Control problem for a quantum gate:

$$x \mapsto U(t) \quad U(t_i) = \hat{1}$$
 (11)

$$f \mapsto -i(H_d + \sum_i u_i(t)H_i)U$$
(12)

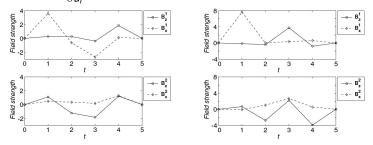
$$\phi = \left\| U_{\text{gate}} - U(t_f) \right\|^2 = 2N - 2\text{ReTr}(U_{\text{gate}}^{\dagger}U(t_f))$$
(13)

- So we need to maximize $Tr(U_{gate}^{\dagger}U(t_f))$.
- Problem: Fixes global phase, too
- Solution: Maximize $\Phi = |\text{Tr}(U_{\text{gate}}^{\dagger}U(t_f))|^2$ instead.

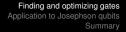
The challenge of finding the right pulse Control theory and GRAPE

Numerical solution

Numerical solution: Minimize *J* directly. Problem: Computationally hard optimization, numerical gradients $\frac{\partial \phi}{\partial u_i}$ time-consuming (\approx hours on supercomputer).



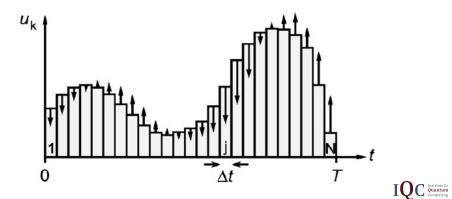
From A.O. Niskanen, J.J. Vartiainen and M.M. Salomaa, PRL **90**, 197901 (2003).



The challenge of finding the right pulse Control theory and GRAPE

Challenge

In the discretized grid, how does Φ change when the control is changed in one point?



The challenge of finding the right pulse Control theory and GRAPE

Gradient Ascent Pulse Engineering (GRAPE) I

Rewrite performance index

$$\Phi = |\operatorname{Tr}(U_{\text{gate}}^{\dagger}U(t_{f}))|^{2} = |\operatorname{Tr}(U^{\dagger}(t_{j}, t_{N})U_{\text{gate}})^{\dagger}U(t_{j}, t_{1})|^{2}$$
$$= |\operatorname{Tr}(U_{j+1}^{\dagger} \dots U_{N}^{\dagger}U_{\text{gate}})^{\dagger}U_{j} \dots U_{1}|^{2}$$

Trotterized time-step propagators

$$U_{i} = \exp\left(-i\Delta t\left(H_{d} + \sum u_{k}(t_{i})H_{k}\right)\right)$$
(14)

Using

$$\left.\frac{d}{dx}e^{A+Bx}\right|_{x=0}=e^{A}\int_{0}^{1}d\tau e^{-A\tau}Be^{A\tau}$$

The challenge of finding the right pulse Control theory and GRAPE

Gradient Ascent Pulse Engineering (GRAPE) II

we can derive $\frac{\partial \Phi}{\partial u_k}$ analytically.

$$\frac{\partial \Phi}{\partial u_k(t_j)} = \delta t \operatorname{Re} \left[\left(\operatorname{Tr} U_{\text{gate}}^{\dagger} U_N \dots U_{j+1} H_k U_j \dots U_1 \right) \right]$$
$$\left(\operatorname{Tr} U_{\text{gate}}^{\dagger} U_N \dots U_{j+1} U_j \dots U_1 \right) \right]$$

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, JMR **172**, 296 (2005).

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

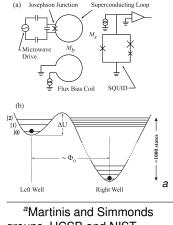
The physical problem.

Successful superconducting qubit with close leakage level

$$\delta \omega = \omega_{12} - \omega_{23} \simeq 0.1 \omega_{12} \tag{16}$$

Drive resonantly on ω_{12} . RWA-Hamiltonian

$$H' = \begin{pmatrix} -\delta\omega & \sqrt{2}\lambda(t) & 0\\ \sqrt{2}\lambda(t) & 0 & \lambda(t)\\ 0 & \lambda(t) & 0\\ (17) \end{pmatrix}$$



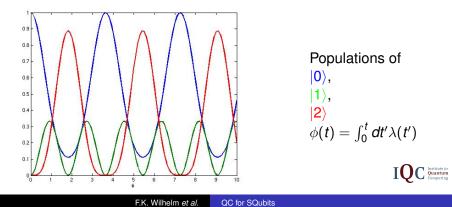
groups, UCSB and NIST

How to avoid leakage to the higher level?

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

Properties of the problem.

- At low λ leakage is small $\propto \lambda/\delta\omega,$ area theorem o.k. slow pulse
- At extremely high $\lambda \gg \delta \omega$ area theorem again.
- Can we at least push the limits at intermediate $\lambda \simeq \delta \omega$?



Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

GRAPE for this problem.

We want an X gate on the two levels, i.e.

$$U_{\text{gate}} = e^{i\phi_1} \begin{pmatrix} e^{i\phi_2} & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$
(18)

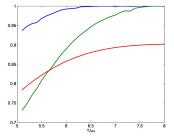
so we have two free phases.

Performance index

$$\Phi_d = \frac{1}{5} (|M_{22}|^2 + |M_{00} + M_{11}|^2) \qquad M = U_{\text{gate}}^{\dagger} U(t_f).$$
(19)

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

Overall performance



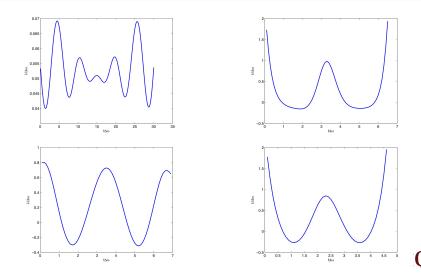
0.35 0.85 0.75 0.75 10 15 20 7.425 30 35 40

Rectangular Rabi pulse GRAPE, fixed internal phase GRAPE, free internal phase

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

> Institute for Quantum Computing

Optimum pulse shapes

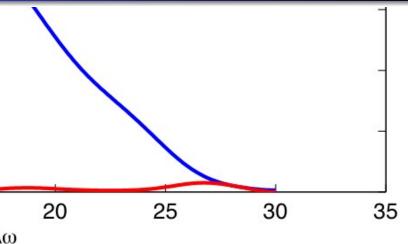


F.K. Wilhelm et al. QC for SQubits

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

n

Populations in long pulses



Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

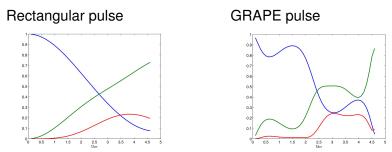
Populations in intermediate pulses

GRAPE pulse Rectangular pulse 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.1 4 5 6 tAco tAm

Aha! We do a $(2n + 1)\pi$ pulse on the qubit transition and a $2n\pi$ pulse on the leakage transition

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

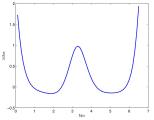
Populations in short pulses



GRAPE explores the physical limitations

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

Rise times and penalties



Problems:

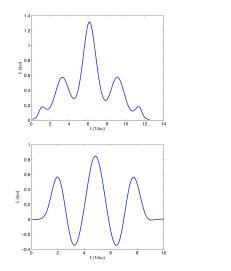
- Does not start at zero
- Short rise time

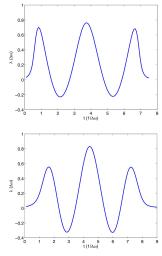
Possible solutions:

- Additional Lagrange Multiplier: Not practical of inequalities
- Penalty in performance index: $F(x_f, u_f, t_f) + A \int_{t_i}^{t_f} dt \quad p^2(x(t), u(t), t).$ Here: $p = u [2 - \tanh(t/t_0) - \tanh((T - t)/t_0)]$

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

Easier pulse shapes

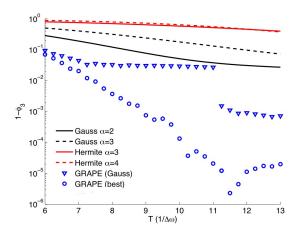




Quantum Computing

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

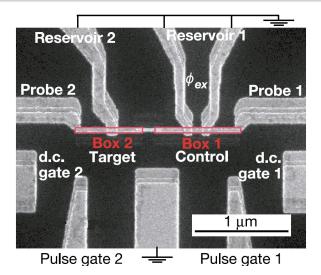
Performance



IQC Quantum Computing

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

NEC coupled Cooper pair boxes.



Finding and optimizing gates Application to Josephson qubits Summary Optimizing two-qubit gates

Coupled boxes Hamitonian.

• Charge basis $|N_1, N_2\rangle$

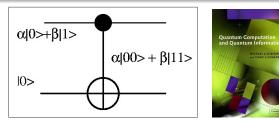
$$\begin{array}{ll} \mathcal{H} & = & \sum_{N_1 N_2} \mathcal{E}_{\mathrm{Ch}, n_1 n_2} \left| N_1, N_2 \right\rangle \langle N_1, N_2 | \\ & & - \frac{\mathcal{E}_J}{2} (\mathcal{Q}^{(1)}_+ + \mathcal{Q}^{(1)}_-) \otimes \hat{1} - \frac{\mathcal{E}_J}{2} \hat{1} \otimes (\mathcal{Q}^{(2)}_+ + \mathcal{Q}^{(2)}_-) \end{array}$$

Two-state approximation

$$H = \frac{1}{4} \left[E_m(1 - 2n_{g2}(t)) + 2E_{c1}(1 - 2n_{g1}(t)) \right] \sigma_z^{(1)} - \frac{E_{J1}}{2} \sigma_x^{(1)} \\ \frac{1}{4} \left[E_m(1 - 2n_{g1}(t)) + 2E_{c2}(1 - 2n_{g2}(t)) \right] \sigma_z^{(2)} - \frac{E_{J2}}{2} \sigma_x^{(2)} \\ + \frac{E_m}{4} \sigma_z^{(1)} \otimes \sigma_z^{(2)} \right]$$

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

Discretized CNOT quantum circuit.

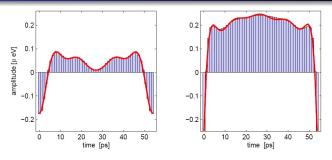


For Ising interaction strength K

Needs more controls than available — also long pulse sequence.

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

The GRAPE pulse



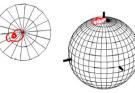
- 99.9999% precision (benchmark 70 %), short time
- Palindrome pulse $n_i(t) = n_i(T t)$, as H is real and $U_{\text{CNOT}} = U_{\text{CNOT}}^{-1}$ ¹
- $T \simeq \pi/E_J = 55ps$: Local π pulses with phase gate: *Strong* couling quantum control

¹see C. Griesinger, C. Gemperle, O. W. Sørensen, and R. R. Ernst, Molec Phys. 62, **295** (1987).

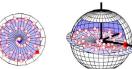
Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

Dynamics under this pulse

Reduced Bloch spheres $\rho_i = \text{Tr}\rho_{\neg i}$



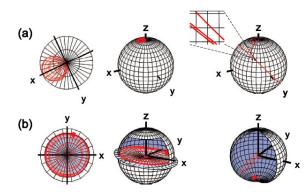
 $|11\rangle \rightarrow |10\rangle$



 $|00
angle+|11
angle
ightarrow(|0
angle+|1
angle)\otimes|0
angle$

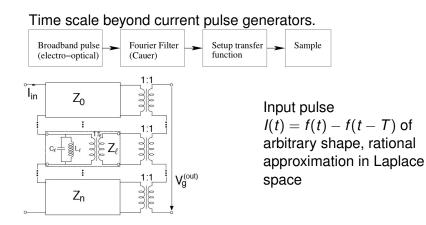
Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

NECs evolution: Multiple loops



Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

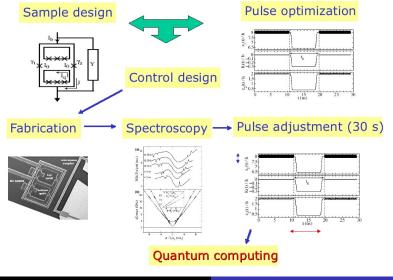
How to make such a pulse?



Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

> itute for antum

Pulse optimization

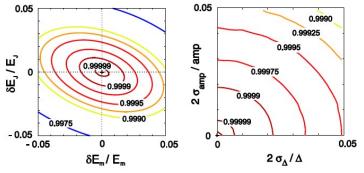


F.K. Wilhelm et al. QC for SQubits

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

> tute for ntum

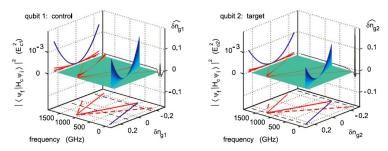
Fault tolerance



N.b.: Minimum makes errors $\propto (\delta u)^2$

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

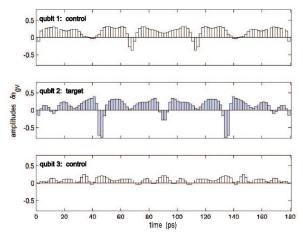
Low leakage



High nonlinearity: With leakage F = 99%

Avoiding leakage in a single phase qubit Towards better pulses Optimizing two-qubit gates

One-step Toffoli

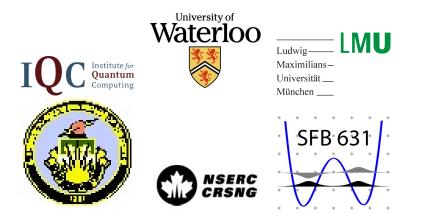


Strong coupling leads to further acceleration

Summary

- Optimal control theory is a power tool for constructing pulses from Hamiltonians
- Leakage can be avoided in phase qubits
- Ultrafast CNOT in coupled Cooper pair boxes.
- Outlook
 - Help for experimental implementation
 - Optimization in the presence of decoherence

See also Poster by P. Rebentrost



IQC Unstitute for Quantum Computing

For Further Reading I

🛸 A.E. Bryson jr, Y-C. Ho, Applied Optimal Control. McGraw Hill, 1964

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S.J. Glaser, Optimal Control of Coupled Josephson Qubits J. Magn. Reson. 172, 296 (2005).

A.K. Spörl, T. Schulte-Herbrüggen, S.J. Glaser, V. Bergholm, M.J. Storcz, J. Ferber, and F.K. Wilhelm, guant-ph/0504202.

