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Computational Complexity of 
Decision Problems

Merlin. 
The all-powerful prover which cannot necessarily be 
trusted. The goal of Merlin is to prove to Arthur that the 
answer to his decision problem is YES. If this can be 
achieved the proof is complete. If the answer is NO, 
Merlin can still try to convince Arthur that the answer is 
yes. The proof is sound if Arthur cannot be convinced.

Arthur. 
A mere mortal who can run polynomial time algorithms 
only. Wants to solve the decision problem by possible 
interaction(s) with Merlin. 



Computational Complexity

If Y, ∃ y P(Ax(y)=1) ≥ 2/3
If N, ∀ y P(Ax(y)=0) ≥ 2/3

ptime probabilistic 
algorithm with
input y

Proof y by 
Merlin

MA

If Y, ∃ y, Ax(y)=1
If N, ∀ y Ax(y)=0

ptime algorithm 
with input y

Proof y by 
Merlin

NP

If Y, P(Ax=1) ≥ 2/3
If N,  P(Ax=0) ≥ 2/3  

ptime probabilistic 
algorithm

noneBPP

If Y(es), Ax=1 
If N(o), Ax=0 

p(olynomial)time
algorithm
in size of input x

noneP

Arthur outputs AxArthur runsInteraction 
between Arthur
and Merlin



Computational Complexity

If Y, P(Ax=1) ≥ 2/3
If N,  P(Ax=0) ≥ 2/3  

ptime quantum 
algorithm

NoneBQP

If Y, P(Ax=1|b=1) ≥ 2/3
If N, P(Ax=0|b=1) ≥ 2/3

ptime probabilistic 
algorithm,post-
selection on a bit 
b=1

NonePostBPP

If Y, ∃ ξ P(Ax(ξ)=1) ≥ 2/3
If N, ∀ ξ P(Ax(ξ)=0) ≥ 2/3

ptime quantum 
algorithm

Quantum proof 
ξ by Merlin

QMA

If Y, P(Ax(r,yr)=1) ≥ 2/3
If N, P(Ax(r,yr)=0) ≥ 2/3  

ptime probabilistic 
algorithm

Arthur gives 
Merlin random r. 
Merlin returns 
random proof yr

AM

Arthur outputs AxArthur runsInteraction 
between Arthur
and Merlin



Classical Spin Glass is NP-
complete

A decision problem L is NP-complete when
• The problem L is in NP.
• Any problem in NP can be mapped onto L so that solving L 
efficiently implies solving any problem in NP efficiently. 

An example, Barahona ’82:

λ(H) is the ground-state energy.

Is there a similar result for quantum spin glasses?



Local Hamiltonian Problems (LH-
MIN)

Given is a k-local Hamiltonian H. Either the ground-state energy
λ(H) ≤ α or λ(H) ≥ β for two given constants α <  β (with |β-α| ≥ 1/poly(n))
k-local means that the Hamiltonian is a sum of interactions and 
each interaction is between at most k qubits.

Kitaev: 5-local LH-MIN is QMA-complete.

Further results:
Kempe, Kitaev, Regev: 2-local Hamiltonian is QMA-complete.
Aharonov et al.: 2-local Hamiltonian using 6-dimensional particles 
on a 2D lattice is QMA-complete.
Oliveira, Terhal: 2-local Hamiltonian on qubits on a 2D lattice is 
QMA-complete.
Quantum counterpart of the classical result. Uses perturbation theory.



Our starting point and our goal
A 5-local Hamiltonian with the following structure.
Each qubits is involved in a constant number of 5-local interactions.
Each 5-local interaction involves only qubits in each other’s neighborhood
when we represents the qubits on a 2D plane. 

Goal: find a 2-local Hamiltonian with approximately the same lowest 
ground-state energy as the 5-local Hamiltonian and the 
following structure
1. Each qubit is involved in at most 4 interactions and each interaction 
is a simple tensorproduct of two Pauli operators.
2. The 2-local (2-qubit) interactions occur between nearest neighbor 
qubits in a plane (there are no crossing interaction edges) or on a 2D lattice.

This can all be accomplished using perturbation theory based on mediator
qubits. 
v Any k-local Hamiltonian can be treated this way.
v Perturbation method can also reproduce ground-states (and gaps) 

approximately. 



Novel use of perturbation theory

In physics we usually have Hamiltonian in which the strength of different 
interactions or fields vary widely. We use perturbation theory to 
understand the effective behavior of such Hamiltonian.  Example: 
two spin ½ particles interacting weakly with a photon mode; this 
can generate an effective interaction between the spin ½ particles.

Here, the opposite approach. We have a target interaction which may 
involve several qubits and we want to generate it effectively by choosing 
a Hamiltonian with a large term and a small perturbation.



Perturbatively
mediated interactions

Consider k-local interaction Htarget=A1 B where A and B are k/2-local 
operators on sets of qubits a and b.

Define a new qubit w, the mediator qubit and a new hamiltonian ��=H+V.
The mediator qubit interacts with the set a and the set b in V and 
mediates the interaction between a and b.

H=∆ |1><1|w with large ∆

V=(∆/2)1/2 (-A+B)1 Xw where ||V|| < ∆/2

Here Xw is the Pauli X operator on the mediator qubit. 
In the unperturbed groundstate the mediator qubit is set to |0>. V is a small 
perturbation that gives a correction to this ground-state and its energy.

|0>

|1>



Perturbatively mediated interactions

�=H+V where H=∆ |1><1|w with large ∆

V=(∆/2)1/2 (-A+B)1 Xw where ||V|| < ∆/2

This correction can be estimated by evaluating the self-energy up to 
lowest relevant order in perturbation theory. Second order processes 
involves flipping the mediator qubit by interaction (with V) and flipping it back:
This generates an effective interaction approximately equal to

Heffl (-(∆/2) (-A+B)2/∆)1 |0><0|w=(Htarget+A2/2+B2/2)1 |0><0|w

One can prove a rigorous theorem showing that λ(�) l λ(Heff)
Repeated (serial) application of this trick gives 3-local terms. Kempe et al. has 
a 3 to 2-local gadget (or one can use an alternative mediator qubit gadget)  



Applications of mediator qubits

Cross Gadget: removing a cross 
in the interaction graph. All qubits
a,b,c,d can flip the mediator qubit. 

Fork Gadget: 
Qubit a interacts with b and c with
(Pauli) operator Pa. 

`Degree reduction’: First we put
mediator qubits on the edges ab and 
ac. Then we apply the Fork gadget.



Parallel and serial application 
of these gadgets

We can show that the ground state energy of our 5-local Hamiltonian 
can be approximated by the ground state energy of a 2-local Hamiltonian 
on a 2D lattice by applying the perturbation gadgets in parallel and in series. 

In parallel: O(n) interactions are generated by introducing a new 
Hamiltonian with O(n) mediator qubits and O(n) perturbations Vi. 
To 2nd order in perturbation theory these gadgets act independently. 
But ∆ for each mediator qubit has to be larger than 2 Σi ||Vi||=poly(n),
polynomial in the total number of qubits n.

Final 2-local interaction has large fields that are poly(n) in strength and small 
interactions that are constant (as a function of n) in strength.

In series: the total number of these parallel applications will be constant, 
since fields scale approximately as nc after c applications.



More general use of perturbation 
theory

Let’s say we have an `interesting’ space or state that is the ground-space 
of a k-local Hamiltonian with some spatial structure (every qubit interacts 
with a set of `neighbors’).

Using perturbation theory one can show that there exists a 2-local 
Hamiltonian on a 2D lattice whose ground-space is approximately the same 
as the ground-space of the k-local Hamiltonian (and the corresponding 
eigenvalues are also approx. the same). The gap above the ground-space is 
also approx. preserved.

Example: toric code space.

Explicitly proved in Oliveira & Terhal.



Stoquastic Hamiltonians
Not all quantum systems are created equal, some quantum systems are 
more quantum than others.

Stoquastic k-local Hamiltonians are 

1. k-local Hamiltonians which are real

2. The off-diagonal elements i≠j <i |H |j> ≤ 0 where |i> is some (standard)
basis. This implies that for all i,j <i| e -βH |j> ≥ 0.

Why is the ground-state energy problem for these Hamiltonians special? 

Ground-state |ϕ>=Σi αi |i> where αi ≥ 0. 

P(i)=αi/Σi αi is a probability distribution. How `quantum’ is the 
lowest-eigenvalue problem for this class? 



Examples of Stoquastic
Hamiltonians 

• Nonrelativistic particles in a potential, H=K+V. Potential term V is diagonal
in the position basis, i.e. for  x≠y <x|V|y>=0.
Kinetic energy K= –Σi ∆i

2/2mi, which is off-diagonal in the position basis 
and non-positive.
• Hamiltonians with generalized conjugate variables such as many 
Josephson-junction Hamiltonians (with charge & flux degrees of freedom)
or spin-less bosons.
• Bosonic Hubbard model (in the number basis)
• Ferromagnetic Heisenberg models (and some antiferromagnetic models)
• Quantum transverse Ising model.

Note that this class includes all classical systems for which the 
ground-state problem can be NP-complete!

Typical examples of non-stoquastic systems are fermionic systems 
or charged particles in a magnetic field.



A Largest Eigenvalue Problem

Consider G=(I-s H)/2 ≥ 0 for some small enough parameter s. 

Largest eigenvalue µ problem of a nonnegative (sparse) matrix G

µ(G)=(1-s λ(H))/2

Determine this largest eigenvalue µ by estimating Tr(GL) for 
large enough L=poly(n).

Yes: If λ(H) ≤ 0, µ(G) ≥ ½ and Tr(GL) ≥ 2-L

No: If λ(H) ≥ 1/poly(n), µ(G) ≤ (1-1/poly(n))/2, Tr(GL) ≤ 2-L 2n-L/poly(n)

How does one estimate Tr(GL) ?



What physicists know
For stoquastic Hamiltonians in d spatial dimensions one can express 
Tr(GL) as the partition function of a classical system in d+1 dimensions
with periodic boundary conditions. 
Heuristic strategy: estimate this partition function using Monte Carlo 
sampling or estimate the expectation value of an observable M in
the ground-state as Tr(M GL)/Tr(GL). 

How hard is this really? 

Our result: LH-MIN for stoquastic Hamiltonians is a problem in the 
complexity class AM.

Classical but not easy.



Another ‘physics’ approach
G is almost a stochastic matrix except the entries in each row 
do not add up to 1. Rescale G such that all row entries add to 
less than 1, i.e. bj=Σi Gi,j ≤ 1, or

G=PB where P is stochastic and B is diagonal matrix with weight bj.

Stochastic single walker process:
An input i to G is kept `alive’ with probability bi. With probability 
1-bi the walker `dies’. If it is alive, it is mapped on bitstring j with 
probability according the matrix P.

What is the probability to obtain an output k after L steps, conditioned 
on the walker not dying? We assume a random input i.

P(k)=Σi <k| GL |i>/(Σi,k <k| GL |i>)



Analysis of walker process
But GL is close to µL |ϕ><ϕ| for large enough L (assuming a 1/poly(n) 
gap in the eigenvalue spectrum).

This implies that for large enough L, P(k) is close to the ground-state 
probability distribution.
One can estimate the largest eigenvalue as µ=Σk P(k) bk
(and we also obtain the ground-state approximately)

Remember that we conditioned on the walker not dying…
Multiple walkers? How efficient can this process be? Green’s function
Monte Carlo technique.

Our result: LH-MIN for stoquastic Hamiltonians 
with a 1/poly(n) gap is a problem in the complexity class PostBPP.



LH-MIN for stoquastic
Hamiltonians

Is it in MA?

One can prove it is MA-hard.
If it is in MA, a quantum problem 
would be MA-complete!

An overview of complexity 

MA

AM PostBPP

QMA



The Stoquastic Computer
Adiabatic evolution with general (local) Hamiltonians is universal for 
quantum computation.

What is the power of adiabatic quantum computation with stoquastic
(local) Hamiltonians? 
Define a complexity class: BSP

Bounded-error Stoquastic Polynomial time (sits between BPP and BQP).

Similarly we can define SMA: stoquastic Merlin-Arthur (between MA and 
QMA)
What problems sit in BSP? Factoring (no…)? 
What problems are BSP-complete? 
Stoquastic LH-MIN is SMA-complete. Adiabatic evolution with stoquastic
Hamiltonians is universal for the stoquastic computer….

Is it easier to build a stoquastic computer than a quantum computer? To 
what extent is this model physical and not artificial?



A modified 5-local Hamiltonian
We need the following starting point: a k-local Hamiltonian in which 
every qubit interacts with a constant number of other qubits in its 
neighborhood (in a 2 dimensional plane). 

Lay-out of the circuit A. Every qubit is acted on by a constant number of gates and 
time evolves locally.

All qubits except those given by 
Merlin are constrained to be 
in the zero state right before they 
are acted upon by the first gate 



Perturbation Theorem 
Kempe, Kitaev, Regev, SIAM Journal of Computing 35 (5), 2006



Local NGM Hamiltonian is MA-hard

MA. Represent Arthur’s verification circuit quantumly. The circuit takes 
|+> states for randomness, ancillary |00..0> and Merlin’s proof y as inputs. 
The circuit consists of reversible classical computation and at the end 
a single qubit is measured in the Z-basis. 
One can show that Merlin cannot cheat by giving quantum inputs 
instead of bit strings y.

What problem is hard for this formulation of MA, i.e. do Kitaev’s
circuit-to-Hamiltonian mapping. 

Theorem: 2-local NGM Hamiltonian is MA-hard.

Proof idea: 5-local NGM Hamiltonian is MA-hard by inspection. 
Reduction to 2-local via NGM-form preserving perturbation gadgets.  


