Adiabatic Raman Photoassociation of a desired continuum waveform

Evgeny Shapiro¹, Moshe Shapiro^{1,2}

¹University of British Columbia

²Weizmann Institute of Science

Outline

General picture:

coherent control to measure the input quantum state

- Adiabatic Raman Photoassociation
- Wavepacket measurement in PA with single input channel
- Superposition state measurement in multi-channel PA

Association of ultracold molecules

- cool dynamics
- cold molecules
- applications:

few ← many particles, BEC, different chemistry quantum computation, ...

Future:

complex dynamics in complex traps

Creating "normal" molecules is difficult

(Adiabatic) Raman Photoassociation

Raman PA → PA spectroscopy
Band, Julienne, PRA **51** R4317 (1995).

STIRAP

Vitanov *et.al.*, Adv. At. Mol. Opt. Phys. **46** 55 (2001).

STIRAP-like PA Vardi *et.al.*, JCP **107** 6166 (1997).

Is continuum-bound STIRAP possible?

Do the wave functions sufficiently overlap?

Can pulse shaping influence?

dump

pump

Next: STIRAP PA in an optical lattice - ? With BEC - ?

Modeling of Rb₂, KRb

Potentials:

LS-coupled short-range $^1\Sigma_u$ and $^3\Pi_u$; Short-range $^1\Sigma_g$ and $^3\Sigma_u$ smoothly joined with the long-range $^-C_6/R^6$ such that the experimental scattering lengths are recovered.

Bound states:

Finite-difference, A.&D. Abrashkevitch, Comp. Phys. Commun. **82** 193 (1994);

Bound-free FC factors:

Artificial Channel, M. Shapiro, JCP **56** 2582 (1972).

 Rb_2 : $u \not\rightarrow u$ transition rule

Basics of the single-cannel PA

$$\psi = \sum b_i e^{-iE_i t} |i\rangle + \int dE \ b_E e^{-iEt} |E\rangle$$

RWA

Adiabatic elimination of the continuum

$$\dot{b}_1 = i\Omega_{bb}^* b_2$$

$$\dot{b}_2 = i\Omega_{bb} b_1 - \Gamma b_2 + i\Omega_E F_0(t)$$

Envelope of the initial continuum wave packet

$$F_0(t) = \int b_{E,t=0} e^{i\Delta_E t} dE$$

Initial continuum wave packet

$$F_0(t) = \int b_{E,t=0} e^{i\Delta_E t} dE$$

|0> vs. |1> as in PRL **91** 237901 (2003)

Thanks to Michael Spanner

Single-cannel PA

Adiabatic solution:

$$b_{1}(T) = \left\langle F_{PA}^{*} \middle| F_{0} \right\rangle_{t} \equiv \int_{-\infty}^{T} F_{PA}(t) F_{0}(t) dt$$

The shape of F_{PA} is controlled by the laser pulses

Pump Rabi frequency, with the phase, easy to control

Photoassociation of "+" vs. "-" in (85)Rb.

 $E \sim 100 \,\mu\text{K}$

 $|1>: v = 4 \text{ of } {}^{1}\Sigma_{g}$

|2>: # 133 of $^{3}\Pi_{u}^{-1}\Sigma_{u}$

pulses: 0.75 μs FWHM, fit for a 100-μk ensemble

 $\lambda_{pump} = 1064 \text{ nm}$

 $I_{pump} = 10^4 \text{ W/cm}^2$

 $\lambda_{dump} = 733 \text{ nm}$

 $I_{dump} = 7*10^3 \text{ W/cm}^2$

Photoassociation of "+" vs. "-" in (85)Rb.

Multi-cannel PA

The incoming wave function is a superposition evolving in several channels

Multi-cannel PA

$$\dot{b}_{1} = i\Omega_{bb}b_{exc}$$

$$\dot{b}_{exc} = i\Omega_{bb}b_{1} + \underline{i\Omega_{1b}^{*}\Omega_{E}F_{0}(t)/\Omega_{bb}} - \underline{\Omega_{1b}^{*}\Gamma b/\Omega_{bb}}$$

Projection of the pumped continuum $\underline{\Omega}_E F_0(t)$ onto the dump Rabi vector $\underline{\Omega}_{1b}^*$

Difficulty in detection:

 $\overline{\underline{\Omega}}_E$ transfers mutually orthogonal $\overline{F}_1,\overline{F}_2$ into non-orthogonal vectors

Optimization:

- tune $\underline{\underline{\Omega}}_E$ such that $\underline{\underline{\Omega}}_E \overline{F}_1 \perp \underline{\underline{\Omega}}_E \overline{F}_2$
- tune $\underline{\Omega}_{1b}^*$ such that \overline{F}_1 is photoassociated, and \overline{F}_2 is not

Multi-cannel PA in real life

/1>: $V = 13 \text{ of } {}^{1}\Sigma_{g}$

/2>: # 107 of ${}^{3}\Pi^{-1}\Sigma$

/3>: # 141 of $^{3}\Pi^{-1}\Sigma$

/4>: V = 54 of $^{1}\Sigma_{g}$

two additional continua at E~1200K

pulses: the pumps come together, the dumps come together

 $\lambda_{E2} = 1065.6 \text{ nm}$ $\lambda_{E3} = 778 \text{ nm}$

 $I_{E2} = 8*10^5 \text{ W/cm}^2$ $I_{E3} = 3.3*106 \text{ W/cm}^2$

 $\pi/2$ phase between the two pump fields

Photoassociating a Gaussian wave packet: $|^{1}\Sigma^{+}\rangle + |^{3}\Sigma^{+}\rangle$ vs. $|^{1}\Sigma^{+}\rangle - |^{3}\Sigma^{+}\rangle$

$$I_{12} = 1.5*10^4 \text{ W/cm}^2$$

 $I_{13} = 2.6*10^4 \text{ W/cm}^2$
 $\phi_{13} = -\pi/12$

$$P_{1-}/P_{1+} = 30$$

$$I_{12} = 0$$

 $I_{13} = 3*10^4 \text{ W/cm}^2$
 $\phi_{13} = -\pi/12$

$$P_{1+}/P_{1-} = 12$$

SUMMARY

- adiabatic photoassociation:
 projection onto a pre-chosen wave packet
- multi-channel: projection onto a pre-chosen multi-channel superposition
- non-unitary pump matrix has to be tuned extra decay terms cause no harm
- coherent controlled adiabatic passage measures the input wave packet by projecting onto a state of our choice

THANKS

Jun Ye, Avi Pe'er JILA

Ioannis Thannopulos UBC