# Quantum Communication via Entanglement: Quantum Orienteering & Relativistic Quantum Cryptography

Paul Kwiat













## **Outline**

- 1. Quantum "Orienteering"
- 2. "Relativistic" Quantum Cryptography

#### **PGK Group**

<u>Graduate Students:</u> Joe Altepeter, Julio Barreirro, Onur Hosten, <u>Evan Jeffrey</u>, <u>Nicholas Peters</u>, Radhika Rangarajan, <u>Aaron VanDevender</u>, Joseph Yasi <u>Undergraduates</u>: Kyle Arnold, Gleb Akselrod, Rachel Hillmer, Kevin Uskali <u>Associated Theory Post-Doc:</u> Tzu-Cheih Wei



#### **Two-crystal Polarization-Entangled Source:**



$$|\psi\rangle = \frac{1}{\sqrt{2}} (|H\rangle_1 |H\rangle_2 + e^{i\varphi} |V\rangle_1 |V\rangle_2)$$

**Maximally entangled state** 

**Tune pump polarization:** 

Add decoherence to arms

à Nonmax. entangled states

à (Partially) mixed states

#### Moore's law for entanglement





**Next main limitation: detector saturation** 

#### **Bell-Ineq. Tests**

New source:  $|S_{expt}| = 2.7260 \pm 0.0008$  (216 $\sigma$  in 0.8 s)

 $(S_{LHV} \le 2)$   $|S_{expt}| = 2.7392 \pm 0.00008 (2417<math>\sigma$  in 2 min)

**Optimized**  $|S_{QM, max}| = 2\sqrt{2} = 2.828$ 

Bell test:  $|S_{expt}| = 2.826 \pm 0.005 + 165\sigma$ 

 $\Phi^{(-)} \sim |HH\rangle - |VV\rangle$ 





(Total counting time = 10 s)

Opt. Exp. 13, 8951 (2005)

# Classical Orienteering

Directions can be transmitted classically by sending a spinning object.

The indicated direction can be measured to arbitrary precision.

## Quantum Orienteering

- •Instead of gyroscopes, send individual spin-1/2 particles.
- •Assume a particle is sent in direction  $\hat{n}$  .
- •There is a finite amount of information that can be extracted, depending on Bob's measurement.

# Orienteering with a single spin



Measure in the z-basis

Guess "up" or "down" based on outcome

$$\Rightarrow$$
 F<sub>1 spin</sub> = 2/3 (1/2 without measurement)

Extendable to multiple state copies\*:

For two spins, measure, e.g., z and  $x \Rightarrow F_{LOCC} = 73.6\%$ 

\*Massar, PRA **62**, 040101 (2000)

# Orienteering with 2 identical spins

For 2 or more spins, *local* measurements are <u>not</u> optimal.

If Alice sends two *identical* spins  $|\hat{n},\hat{n}\rangle$  the best measurements\*

have eigenvectors:

$$|\psi_{k}\rangle = \frac{\sqrt{3}}{2}|\hat{n}_{k},\hat{n}_{k}\rangle + \frac{1}{2}|\psi^{(-)}\rangle$$

$$|\psi^{(-)}\rangle \equiv \frac{1}{\sqrt{2}}(|\hat{n}_{k},-\hat{n}_{k}\rangle - |-\hat{n}_{k},\hat{n}_{k}\rangle)^{|0-1\rangle}$$

$$\Rightarrow \mathbf{F} = 3/4$$



(For N qubits: 
$$F = \frac{N+1}{N+2}$$
)

\*Massar & Popescu, PRL **74**, 1259 (1995)

# Optimal orienteering with 2 spins

Surprisingly, even this is not optimal\*...

Alice should flip the second spin and transmit  $|\hat{n}, -\hat{n}\rangle$ 

The optimal measurement states are then\*\*:

$$\left|\psi_{k}\right\rangle = \frac{\sqrt{3}}{2} \frac{\left|\hat{n}_{k}, -\hat{n}_{k}\right\rangle + \left|-\hat{n}_{k}, \hat{n}_{k}\right\rangle}{\sqrt{2}} + \frac{1}{2} \left|\psi^{(-)}\right\rangle$$

$$\Rightarrow$$
 F = 0.789

Why does it help to use anti-parallel spins? They reside in the full Hilbert space, i.e., singlet and triplet; the state  $|\hat{n},\hat{n}\rangle$  does not occupy the singlet sector of the space.

\*Gisin & Popescu, PRL **83**, 432 (1999)

\*\*Terry Rudolph, private comm.

# Orienteering with photons

Photon polarization has no natural embedding in space. However, we can associate real-space directions with particular polarization states (directions on the Poincaré sphere).

Note: This requires using a shared reference frame.



Also, we must be wary -- the operation of wave plates and polarizers are k-vector dependent.

# Conceptual considerations



- States are simple to create
- Measurements are difficult (U is a 2-qubit gate)

Because we have a shared reference frame, we can "move" the transformation\*:



- Separable measurements are easy.
- Precise entangled state synthesis required.

\*T. Rudolph, private communication

# Experimental configuration

Alice can create a wide variety of entangled states; Bob can make arbitrary separable measurements.



#### Directions sent







All states had > 98% state fidelity with the target state

E. R. Jeffrey, J. B. Altepeter, M. Colci, and P. G. Kwiat, Phys. Rev. Lett. 96, 150503 (2006)

# Summary of average fidelities

| Direction | Separable |
|-----------|-----------|
| set       | (Th/Exp)  |
| all       | 73.6/73.2 |

• Because photon spin is not "pointing in real space, Alice and Bob require a shared reference frame.

#### Entangled-Photon Quantum Cryptography



- Alice & Bob randomly measure polarization in the (HV) or the (45 45) basis.
- Discuss via a "public channel" which bases they used, but not the results.
- Discard cases (50%) where they used different bases à uncorrelated results.
- Keep cases where they used the same basis à perfectly correlated results!
- Define  $H \equiv "0" \equiv 45$ ,  $V \equiv "1" \equiv -45$ . They now share a secret key.

## Advantages of Entanglement

- In principle perfect correlations between
   Alice and Bob ⇒ well, not really perfect...
- Automatic randomness of key
- Longer distances accessible (since Bob can know when to look for a photon) [But decoy states...]
- Established methods to verify security of key
- Source can be automatically verified (even if "sold" by Evesdropper!)

#### **Experimental Realization of Six-State QKD Protocol**



# Bit yield, after Error Detection & Privacy Amplification



# Bit yield, after Error Detection & Privacy Amplification



#### The Trouble with Sifting



Eliminating the sifting ⇒ double efficiency of BB84 ⇒ triple efficiency of SSP

- In principle, every photon contributes to key!
- SSP is always advantageous

How can we eliminate sifting...

#### "Relativistic" Quantum Cryptography



Bob stores each photon until Alice tells him which basis to use à net efficiency is increased to 100% (in principle)

à same security as BB84 (Eve's ρ cannot depend on Bob)

#### QKD and Special Relativity



- These two light cones must not overlap
- A<sub>2</sub> may be before B<sub>1</sub> in some reference frames
- Alice and Bob must know their space-time coordinates

#### "Relativistic" Quantum Cryptography



#### Special components

- à fast classical modulation system
- à quantum memory
- à simpler 6-state analysis system

#### **Modulation System**

The classical basis information must be sent over a low-latency communication channel (since Bob can only store the photon for  $\sim 1~\mu s$ ).

We implement a finite state machine using fast programmable logic (CPLD) to drive a diode laser:



Clock rate = 80 MHz

Total latency < 120 ns

#### **Photon Storage Cavity**





#### **Non-degenerate** Polarization-entanglement



$$|\psi\rangle = \frac{1}{\sqrt{2}}(|H\rangle|H\rangle + e^{i\varphi}|V\rangle|V\rangle)$$





 $F_{with HH+VV} = 0.968$ 

Linear entropy = 0.027

Tangle = 0.957

#### **Six-State Polarization Analysis**

- Measuring in three bases typically requires two electro-optic devices
- We desire a "Minimum parts-count analyzer"

Try rotating about the {1,1,1} axis on Poincaré sphere



Use fixed waveplates plus one Pockels cell (with *three* voltages: 0, ±V)



In fact, because of polarization entanglement, Alice can set the bases by which measurements *she* uses (c.f., Remote State Preparation)

#### Incorporate entangled photon source

Non-degenerate polarization-entangled state (351 nm  $\rightarrow$  670 nm + 737 nm)



Alice

BB84, 30 mW pump power 94 sifted bits/second 2.5% error rate

→ 65.5 secret bits/second

BB84, 90 mW pump power 214 bits/second 3.1% error rate

- → 136 secret bits/second
- → yield enhancement = 1.3

SSP, 90 mW pump power 371 bits/second 2.7% error rate

- → 251 bits/second
- → yield enhancement = 2.1

Wednesday night data (= "preliminary")



- Cavity loss (~33%) prevents yield from exceeding 1/2.
- Rate is ...non-optimal (~50-100/s).
- Six-state protocol now advantageous if BER > ~4%.

#### Relativistic QKD: Summary

- By allowing photon-storage, Bob can use the correct basis for every measurement ⇒ enhanced yield by 2 (BB84) or 3 (6-state)
- Security constraint = "why it's relativistic"
  - –non-overlapping light cones of Bob's receipt of photon and Alice's classical basis transmission
  - –Alice and Bob must know their relative space-time coordinates!
- New technologies
  - -Twisted cylindrical-mirror cavity (450ns with T = 67%) [CLEAN mirrors!]
  - -Low latency classical modulation sender/receiver (CPLD logic, < 120 ns).
  - -3-basis analysis with single Pockel cell (three voltages: 0, ±V).
- Non-degenerate polarization-entangled source
  - -Preliminary yield enhancements of ~1.3 (BB84) and ~2.1 (SSP)
  - -Mirror cleaning may/should improve this (up to 1.6 [BB84] and 2.6 [SSP])
- First demo. of Überquantum advantage, i.e., QM + SR > QM
  - –Next steps: rates, stability, eavesdropping...