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@ adaptive femtosecond pulse shaping
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- liquid phase: selective excitation and photoisomerization
- surface: bond-forming catalytic reactions

@ optimal control of electron dynamics
- high harmonic generation

A. Assion, T. Baumert, T. Brixner, N. Damrauer, G. Krampert, P. Niklaus, P. Nuernberger,
V. Seyfried, T. Pfeifer, G. Vogt, D. Walter, C. Winterfeldt, D. Wolpert

DFG: SFB 347 and SPP “Femtosecond Spectroscopy*
EU-Network on Coherence and Control (COCOMO)
Fonds der Chemischen Industrie, BASF AG




chemical reaction

Depar}}ﬁé}{r of Physics, University of Wiirzburg, Germany




Optical control

selectivity?
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Electric control field E(t)

Which one to use?
How to generate it?




Optimal laser control

optimal control theory (OCT) optimal control experiment (OCE)
"electric field design" "teaching lasers to control molecules”
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Tannor and Rice: JCP 83, 5013 (1985)
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Kosloff et al.: CP 139, 201 (1989) Phys. Rev. Lett. 68, 1500 (1992)




Adaptive pulse shaping
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modified laser pulse

T. Baumer, T. Brixner, V. Seyined, M. Strehle and G. Gerber: Appi. Phys. B 65, 779 (1897) D Yelin et al: Opt. Lett. 22 1793 (1987}
igea of feadback: R.5. Judson and H. Rabitz: Phys. Rev. Lett. 68, 1500 (1392) C.J Bardeen el al.: CPL 280, 151 {1987}




Femtosecond pulse shaping




Learning loop with feedback
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laser pulse
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suggestion: Rabitz: PRL 68, 1500 (1992) initial exp. (tech.): APB 65, 779 (1997)
(gas): Science 282, 919 (1998)
(liquid): Nature 414, 57 (2001)




A laser-controlled molecule

reactant products product yields
@l

optimized electric field optimized electric field
(maximum product ratio) (minimum product ratio)

Fully automated control Science 282, 919 (1998)
cited >500x




Adaptive gas-phase control

Fe(CO); general fitness Ca double ionization
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JPC A 103, 10381 (1999)

Chem. Phys. Lett. 408, 65 (2005)

CpFe(CO),X, X=ClI,Br CH,CIBr bond selectivity

reactant products product yields

Fe cl < I
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optimized electric field optimized electric field
(maximum product ratio) (minimum product ratio) ) 0.6

Science 282, 919 (1998) SHG yield
Chem. Phys. 267, 241 (2001)  Eur. Phys. J. D 20, 71 (2002)
J. Org.met. Chem. 661, 199 (2002)
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NnMﬂm_ Quantum control in the liquid phase
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-

E(t)

Synthetic motivation g 4

@ If control of photochemistry is to become useful to chemists,
it must be viable in solution

Physical motivation

@ Can photochemical control be achieved in the presence of
solvent/solute interactions?

@ Can control results provide insight into solution-phase dynamics?
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Photophysical Emission for Feedback
ﬂAMWN Control of Molecules in Solution
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e Emission yield provides

E(t) _\K“\_ information about excited-
. state population.
1 hv,,—feedback o (jsed as a teedback
| signal for control of
excitation.
—— absorption in methanol
—— emission in methanol
S s B
= LR
2 £ &
.{% @
5 400 500 600 700 : ;
[Fiu(dpb)a] * wavelength / nm reaction coordinate

dpb = 4,4'-diphenyl-2,2'-bipyridine
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NMMM- Optimization of emission/SHG ratio

Department of Physics, University of Wiirzburg, Germany

2.0

1.0 +

emission / SHG

0.0

maximize ratio

0,00 o0° e® o
.o * oo ®e00 ° . .

°
2
°

o oe0® °
°

unshaped pulses

W

(o]
00 o
saoes ©900006600000000000600600°

minimize ratio

ratio as feedback
removes dominant
intensity dependence

provides sensitivity to
molecular properties

generation

. , ;
10 20 30 40

J.Chem.Phys. 118, 3692 (2003)
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Optimized Electric Fields for Maximization
and Minimization of Emission/SHG for [Ru(dpb)_.]**
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Optimized electric fields in husimi representation:
maximization minimization

2.37

231
-2 0 2 -2 0 2
t/ps t/ps
° Result shows selectivity between excitation pathways has been achieved

J.Chem.Phys. 118, 3692 (2003)
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m cis-trans Isomerization in rhodopsin
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0 (170) s D
S. Hahn and G. Stock

J. Phys. Chem. B, 104, 1146 (2000)
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MMMA 3,3 diethyl-2,2 thiacyanine iodide - NK88
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Experimental setup
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Evolution

feedback

LCD

BS ”"W’“ ‘ ”"'“WM'“W

pulse shaper

sapphire

white light

signal

16



le _ NK88 — transient absorption, 370nm to 500nm
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absorption cis
stimulated emission (produced isomer)
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NKS88 - optimization results
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NK88 - control of photoisomerization
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Retinal in bacteriorhodopsin

Primary step of vision:
cis-trans isomerization

11-cis-retinal all-trans-retinal

°
:.p'.

Femtosecond spectroscopy:

C. Shank: Science 240, 777 (1988)

R.M. Hochstrasser: Chem. Phys. Lett. 261, 389 (1996)

D. Oesterhelt: Annu. Rev. Biophys. Biomol. Struct. 28, 367 (1999)

C. Shank: Science 254, 412 (1991) S. Ruhman: J. Phys. Chem B. 103, 5122 (1999)

R. Henderson: J. Mol. Biol. 259, 393 (1996) M.A. El-Sayed: PNAS 98, 8675 (2001)
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Learning from optimal control

400 nm 800 nm 660 nm probe
pump shaped dump

Al . A

few 100 fs-scale 150 ps lime

What is the most efficient dump pulse?

— Information on S, wave packet and PES
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Reverse control

unconstrained
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@ [ps] @” [103 fs2] generation

optimum de-excitation: short NIR pulse at 200 fs delay

— compact S; wave packet
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NMM Optimal Control Experiments
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- molecular gas phase photodissociation
(selective bond-cleavage)

- selective excitation of complex molecules
in the liquid phase

- photoisomerization of complex molecules
in the liquid phase

o selective bond-forming reactions
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Femtosecond Laser-Assisted
Catalytic Surface Reactions of Syngas (CO+H,)
and their Optimization by Tailored Laser Pulses

Patrick Nuernberger?!, Daniel Wolpert', Horst Weiss?, and Gustav Gerber?
1 Physikalisches Institut, Universitat Wirzburg, Am Hubland, 97074 Wirzburg, Germany
2 BASF AG, Polymer Research Division, 67056 Ludwigshafen, Germany
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Bond Cleavage Bond Formation
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AMM bond-forming catalytic surface reaction
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catalytic surface reactions

isted b TOF mass
assisted by spectrometer
femtosecond laser pulses

product ions, e.qg.

o o "

bond-formation: e % CH,
. . » & .
- ions with C-H bond and % & H,CO

- jons with O-H bond Ay &, HO"

syngas
mixture

Pd(100)
single crystal

nozzle skimmer
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W\MM syngas stream onto the Pd surface
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syngas stream onto the Pd surface

A
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different syngas stochiometries
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AMM bond-forming catalytic surface reaction
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catalytic surface reactions

TOF mass
steered by spectrometer
shaped femtosecond laser pulses

% o product ions, e.g.
control over the ratio of o # CH,’
* 48, ’

- ions with C-H bond and
- ions with O-H bond H,0"

syngas
mixture

Pd(100)
single crystal

nozzle skimmer

28



experimental setup

unmodulated
laser pulse
=

— fs-Laser
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NMM optimization of different reaction channels
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closed-loop optimal control experiment:
ratio CH*/ H,O* as fitness function

* H,O~ signal initially
is higher than CH+*

reversed with optimal
laser pulse shape

* overall signal drops
due to smaller peak
intensity

but intensity variation
fails to achieve an
optimization effect

selectivity over different
reaction channels

intensity

C+
— unmodulated pulse
— optimal pulse

— optimal pulse, rescaled
so that C* peaks match

Hco*

CH* H,0* Cco*: H,co*

3,5

40 45 5,0 55 6,0 6,5
time of flight [us]
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AMM optimization of different reaction channels
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closed-loop optimal control experiment:
ratio CH*/ H,O* as fitness function

* equal syngas mixture

* ratio is greatly increased
with modulated laser pulse

ratio CH+/H>O+ [arb.u.]
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«MWM peak shape analysis
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mass peaks of hydrogenated CO
., HCO~

co

* data indicates three
underlying signals

* Gaussian fit matches
well with data set

intensity

* peak positions from fit
coincide well with mass
calibration

« 3 contributing species:
CO+, HCO* and H,CO+ —_— : :
56 57 58 59 6,0 6,1 6,2 6,3 6,4

time of flight [us]
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Summary
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Laser-assisted surface chemistry:
* successful catalytic reaction of syngas
on a Pd single crystal surface

* synthesis of species for whose formation

= TOF mass
spectrometer

product ions, e.g.
» CH;
& H,co”
& HO

v o i~
syngas W M
mixture

, e
o w» Pd(100)

two or more particles have to meet

e.g. CH;*, H;0* or H,CO~*

Closed-loop femtosecond optimal control:
* selective manipulation of different

product ion ratios

* reaction channels comprise

formation, not only cleavage

intensity

bond

single crystal

~n . ed
S Yl
o -

v,
nozzle skimmer

cr
— unmodulated pulse
— optimal pulse

— optimal pulse, rescaled
so that C*+ peaks match

CH* H,0*
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Adaptive
Quantum Control

evolutionary optimization

'f..

gas-phase control »

light-polarization control

femtosecond pulse shaping

selectivity

.".- ‘>

liquid-phase control

27
D 21 19

electron-dynamics control
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W Applications of adaptive pulse shaping
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