## Building new states of matter with polar molecules: a route toward topological order

# Gavin K. Brennen Andrea Micheli <br> Peter Zoller 

Stephen S. Bullock


Center for Computational Sciences, Bowie, Maryland

## Motivation: Let's use ideas from Ql to probe models of the natural world

## Outline

- Surface codes as topological order
- Protected quantum memory
- Abelian anyonic excitations (realization of a $\mathbb{Z}_{d}$ lattice gauge theory)
- Proposed implementation with polar molecules
- Structure of polar molecules
- Engineering spin lattice models
- Constructing a spin model on a honeycomb lattice having topologically protected ground states
- Verification: Measuring anyonic statistics
- Extensions to spin one models
- Conclusions


## I. Topologically protected q. memory

- Idea: Isomorphism between spins and 1-chains (pieces of string) on a surface cellulation $\Gamma=\Gamma(\mathcal{V}, \mathcal{E}, \mathcal{F})$
- e.g. $\mathbf{n}$ qubits on a square lattice

$$
\begin{gathered}
\mathcal{H} \cong\left(\mathbb{C}^{2}\right)^{\otimes n} \cong \mathbb{C}^{C_{1}\left(\Gamma, \mathbb{Z}_{2}\right)} \\
C_{1}\left(\Gamma, \mathbb{Z}_{2}\right)=\operatorname{span}_{\mathbb{Z}_{2}}(\mathcal{E})
\end{gathered}
$$



$$
\begin{array}{ll}
\text { no string (vacuum) } & =0 \\
\text { string } & =1
\end{array}
$$



$$
|\psi\rangle=\mathbf{1} \otimes \cdots \mathbf{1} \otimes X \otimes X \otimes \mathbf{1} \otimes X \otimes X \otimes \mathbf{1} \otimes \cdots \mathbf{1}|v a c\rangle
$$

- States invariant under loop operators in a given homology class are TO


## The stabilizer formulation

- Want a Hamiltonian with vertex and face operators that commute

$$
\begin{gathered}
H=-U\left(\sum_{v \in \mathcal{V}} g_{v}+\sum_{f \in \mathcal{F}} g_{f}\right) \\
g_{v}=\prod_{e \in\{[*, v],[v, *]\}} Z_{e} \quad g_{f}=\prod_{e \in \partial f} X_{e} \quad\left[g_{v}, g_{v^{\prime}}\right]=\left[g_{f}, g_{f^{\prime}}\right]=\left[g_{v}, g_{f}\right]=0
\end{gathered}
$$

- Generators of the stabilizer group G $\quad G=\left\langle\left\{g_{v}, g_{f}\right\}\right\rangle$
- $\quad$ Ground states of H are eigenstates of G with eigenvalue +1
- dimension of this eigenspace

$$
\operatorname{dim} \mathcal{H}^{G}=\operatorname{Trace}\left[\frac{1}{\# G} \sum_{g \in G} g\right]
$$

- Example
- For two qubits, define

$$
G=\left\langle\left\{X_{1} X_{2}, Z_{1} Z_{2}\right\}\right\rangle=\left\{\mathbf{1}_{4}, X_{1} X_{2}, Z_{1} Z_{2},\left(i Y_{1}\right)\left(i Y_{3}\right)\right\}
$$

$$
\operatorname{Trace}\left[\frac{1}{\# G} \sum_{g \in G} g\right]=\frac{4}{4}=1 \quad \mathcal{H}^{G}=\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

## Qubits on a plane*

- Ground state degeneracy for qubits on a p x q plane*

$$
\begin{gathered}
H=-U\left(\sum_{+} Z_{e_{1}} Z_{e_{2}} Z_{e_{3}} Z_{e_{4}}+\sum_{\square} X_{e_{1}} X_{e_{2}} X_{e_{3}} X_{e_{4}}\right) \\
\# \mathcal{V}=(p+1) q \quad \# \mathcal{F}=p(q+1) \quad \# \mathcal{E}=n=p q+(p+1)(q+1)=\# \mathcal{V}+\# \mathcal{F}+1
\end{gathered}
$$

$$
\operatorname{dim} \mathcal{H}_{\mathrm{gr}}=\operatorname{Trace}\left[\frac{1}{\# G} \sum_{g \in G} g\right]=\operatorname{Trace}\left[\frac{1}{2^{n-1}} \sum_{g \in G} g\right]=2 \quad \text { Can encode one qubit }
$$

$6 \times 7$ plane


$$
\begin{aligned}
& \left\{\bar{X}_{1}, \bar{Z}_{1}\right\}=0 \\
& {\left[H, \bar{X}_{1}\right]=\left[H, \bar{Z}_{1}\right]=0}
\end{aligned}
$$

*A.Yu. Kitaev, Annals of Physics, 303, 2 (2003); quant-ph/9707021

## Slightly more generic construction using qudits*

- Place a spin on each edge of lattice $\Gamma(\mathcal{V}, \mathcal{E}, \mathcal{V})$ Represent state space of each spin on a lattice by a qudit

$$
\begin{aligned}
& \mathcal{H}(1, d)=\mathbb{C}|0\rangle \oplus \cdots \oplus \mathbb{C}|d-1\rangle \\
& \mathcal{H}(n, d)=\mathcal{H}(1, d)^{\otimes n} \quad n=\# \mathcal{E}
\end{aligned}
$$

$$
\omega=\sum_{e \in \mathcal{E}} n_{e} e \leftrightarrow|\omega\rangle
$$

Computational basis state

- Operator basis

$$
\begin{aligned}
& X|j\rangle=|j+1 \bmod d\rangle \\
& Z|j\rangle=\xi^{j}|j\rangle, \quad \text { for } \xi=\exp (2 \pi i / d) \\
& X^{a} Z^{b}=\xi^{a \cdot b} Z^{b} X^{a}
\end{aligned}
$$

Pauli-group

$$
\mathcal{P}(n, d)=\left\{\xi^{c} X^{\otimes \mathbf{a}} Z^{\otimes \mathbf{b}}, \mathbf{a}, \mathbf{b} \in\left(\mathbb{Z}_{d}\right)^{n}\right\}
$$

- Vertex constraints

$$
\begin{aligned}
& g_{v}=\prod_{e=[*, v]} Z_{e} \prod_{e=[v, *]} Z_{e}^{-1} \\
& H_{v}=-\left(g_{v}+g_{v}^{\dagger}\right)
\end{aligned}
$$

For a lattice of valence $\mathbf{k}$, this is of the form

$$
Z^{\otimes k}+\left(Z^{-1}\right)^{\otimes k}
$$

- Potential term

$$
H_{\partial}=U \sum_{v \in \mathcal{V}} H_{v}, \quad U>0
$$

- Claim. $|\omega\rangle$ is a ground state iff $\partial \omega=0$
- Check: $\quad g_{v}|\omega\rangle=\xi^{c}|\omega\rangle$ where $\partial \omega=c v+\sum_{w \neq v} c_{w} w$
- hence, $|\omega\rangle$ is in the stabilizer $\left\langle\left\{g_{v}\right\}\right\rangle \subseteq \mathcal{P}(n, d)$ iff $|\omega\rangle$ is an eigenstate of each $H_{v}$
- with minimal eigenvalue iff $|\omega\rangle$ is a ground state of $H_{\partial}$


## Construction of TO cont.

- We're not there yet
- The ground states of $H_{\partial}$ are superpositions of cycles, but they are not topologically ordered because the cycle space is not yet a topological invariant. Changing the cellulation changes the degeneracy.
- Face constraints

$$
\begin{aligned}
& g_{f}=X_{e_{1}}^{o_{1}} X_{e_{2}}^{o_{2}} X_{e_{3}}^{o_{3}} \ldots X_{e_{p}}^{o_{p}} \quad \partial f=\sum_{k=1}^{p} o_{k} e_{k} \quad o_{k} \in\{1, d-1\} \quad \text { orientation (+/-) } \\
& H_{f}=-\left(g_{f}+g_{f}^{\dagger}\right)
\end{aligned}
$$

## Example:

- Kinetic term

$$
\begin{aligned}
g_{v_{0}} & =Z_{\left[v_{6}, v_{0}\right]} Z_{\left[v_{5}, v_{0}\right]} Z_{\left[v_{0}, v_{1}\right]}^{-1} \\
g_{f_{0}} & =\tilde{X}_{\left[v_{0}, v_{1}\right]} X_{\left[v_{1}, v_{9}\right]} X_{\left[v_{8}, v_{9}\right]}^{-1} X_{\left[v_{7}, v_{8}\right]}^{-1} X_{\left[v_{6}, v_{7}\right]}^{-1} X_{\left[v_{6}, v_{0}\right]}
\end{aligned}
$$

$$
H_{\mathrm{KE}}=g \sum_{f \in \mathcal{F}} H_{f}
$$

- Total Hamiltonian $H=H_{\partial}+H_{\mathrm{KE}}$

$$
\operatorname{dim}_{\mathbb{C}}\left(H_{\mathrm{gr}}\right)=\# H_{1}\left(\Gamma, \mathbb{Z}_{d}\right)
$$

- for a compact, connected, orientable surface of genus $\mathbf{g}$,

$$
H_{1}\left(\Gamma, \mathbb{Z}_{d}\right)=\left(\mathbb{Z}_{d}\right)^{2 g}
$$

- ground subspace (code space)

$$
\mathcal{H}_{\mathrm{gr}} \cong\left(\mathbb{C}^{d}\right)^{2 g}
$$



## Example: 2 punctured plane encoding 2 qudits



## Excitations behave according to a $\mathbb{Z}_{d}$ gauge theory

Excitations come in particle anti particle pairs
Each particle a charge-flux dyonic combination Particle mass:

$$
\begin{aligned}
& (a, b) \in \mathbb{Z}_{d} \times \mathbb{Z}_{d} \\
& 2 U\left(1-\operatorname{Re}\left[\xi^{a}\right]\right)+2 h\left(1-\operatorname{Re}\left[\xi^{b}\right]\right) \quad \xi=e^{i 2 \pi / d}
\end{aligned}
$$

Particle creation


Fusion

$|(a, b ;(v, f))\rangle \times\left|\left(a^{\prime}, b^{\prime} ;(v, f)\right)\right\rangle=\left|\left(a+a^{\prime}, b+b^{\prime} ;(v, f)\right)\right\rangle$

## Excitations cont.

Identical Particle exchange


$$
\mathcal{R}^{2}|(a, b)\rangle\left|\left(a^{\prime}, b^{\prime}\right)\right\rangle=\xi^{\left(a^{\prime} b+b^{\prime} a\right)}|(a, b)\rangle\left|\left(a^{\prime}, b^{\prime}\right)\right\rangle
$$

$\mathcal{R}|(a, b ;(v, f))\rangle\left|\left(a, b ;\left(v^{\prime}, f^{\prime}\right)\right)\right\rangle=\xi^{a b}|(a, b ;(v, f))\rangle\left|\left(a, b ;\left(v^{\prime}, f^{\prime}\right)\right)\right\rangle$

## II. Implementation of a qubit surface code

Platform: Polar molecules trapped in an optical lattice

- System: ${ }^{2} \Sigma_{1 / 2}$ hetero-nuclear molecules in electronic-vibrational ground-states
- Alkaline-earth monohalides (CaF,CaCl,MgCI...)
- single electron in outer shell
- Electric dipole moment in superposition
- of rotational states


Energy scales:

talks to microwave radiation
... as rotations on $\mathbf{\sim} \mathbf{2 0} \mathbf{~ G H z}$

| $\gamma / \hbar \sim 100 \mathrm{MHz}$ | Spin-rotational coupling |
| :---: | :---: |
| $B / \hbar \sim 10 \mathrm{GHz}$ | Rotational constant |
| $\begin{aligned} \omega_{o s c} \sim & 100 \mathrm{kHz} \\ & -1 \mathrm{MHz} \end{aligned}$ | Lattice trap spacing |
| $\Gamma / \hbar \sim 10^{-3} \mathrm{~Hz}$ | Black-body scattering rate |
| $\Gamma_{\text {scat }} / \hbar \sim 10^{-1} \mathrm{~Hz}$ | Spontaneous emission |

Spin-rotational coupling
Rotational constant

Lattice trap spacing

Black-body scattering rate
$\Gamma_{\text {scat }} / \hbar \sim 10^{-1} \mathrm{~Hz}$
Spontaneous emission

## Rotational spectra of a single molecule

- rigid rotor
$H=B N^{2}$
$\left|N, M_{N}\right\rangle$
$E_{N}=B N(N+1)$

rotational ground state ...
- add spin-rotation coupling

$$
\begin{aligned}
& \mathrm{H}=\mathrm{B} \mathbf{N}^{2}+\gamma \mathbf{N} \cdot \mathrm{S} \\
& \left|\mathrm{~N}, \mathrm{~J}, \mathrm{M}_{\mathrm{J}}\right\rangle \quad(\mathrm{J}=|\mathrm{N} \pm 1 / 2|) \\
& \mathrm{E}_{\mathrm{N}, \mathrm{~J}=\mathrm{N} \pm 1 / 2}=\mathrm{BN}(\mathrm{~N}+1)+\left\{\begin{array}{l}
+\gamma \mathrm{N} / 2 \\
-\gamma(\mathrm{N}+1) / 2
\end{array}\right.
\end{aligned}
$$



... as spin-1/2-system

## Two polar molecules: dipole-dipole interactions

- interactions of two polar molecules

$$
V_{\mathrm{dd}}=\frac{\vec{d}_{1} \cdot \vec{d}_{2}-3\left(\vec{d}_{1} \cdot \vec{e}_{b}\right)\left(\vec{e}_{b} \cdot \vec{d}_{2}\right)}{r^{3}}
$$

features of dipole-dipole interaction:

- long range $\sim 1 / r^{3}$
- angular dependence (anisotropic)
vs

attraction
- include spin-rotation coupling in adiabatic potentials for molecular dimers

- At typical optical lattice spacing: $\lambda / 2 \sim r_{\gamma}=\left(2 \mathrm{~d}^{2} / \gamma\right)^{1 / 3}$
- rotation of dimers strongly coupled to spins
- Hunds case (c) excited states, $\quad\left\{|\mathrm{Y}|_{\mathrm{g}, \mathrm{u}} \pm(\mathrm{r})\right\} \quad\left(\mathrm{Y}=\Sigma_{\mathrm{i}=1,2} \mathrm{M}_{\mathrm{N}, \mathrm{i}}+\mathrm{M}_{\mathrm{S}, \mathrm{i}}\right)$
- solvable in closed form due to symmetries


## Microwave coupling with tunable spin patterns

$$
\begin{aligned}
H_{\mathrm{eff}}(r)=\sum_{i, f} \sum_{\lambda(r)} \frac{\left\langle g_{f}\right| H_{\mathrm{mf}}|\lambda(r)\rangle\langle\lambda(r)| H_{\mathrm{mf}}\left|g_{i}\right\rangle}{\hbar \omega_{F}-E(\lambda(r))}\left|g_{f}\right\rangle\left\langle g_{i}\right| & \\
H_{\mathrm{spin}} & =\left\langle H_{\mathrm{eff}}(r)\right\rangle_{\mathrm{rel}} \\
& =\sum_{\alpha, \beta} A_{\alpha, \beta} \sigma^{\alpha} \sigma^{\beta}
\end{aligned}
$$



- Feature 1: Tuning close to a resonance one select a specific spin pattern, e.g.

| Polarization | Resonance | Spin pattern |
| :---: | :---: | :---: |
| $\hat{x}$ | $2_{g}$ | $\sigma^{z} \sigma^{z}$ |
| $\hat{z}$ | $0_{u}^{+}$ | $\vec{\sigma} \cdot \vec{\sigma}$ |
| $\hat{z}$ | $0_{g}^{-}$ | $\sigma^{x} \sigma^{x}+\sigma^{y} \sigma^{y}-\sigma^{z} \sigma^{z}$ |
| $\hat{y}$ | $0_{g}^{-}$ | $\sigma^{x} \sigma^{x}-\sigma^{y} \sigma^{y}+\sigma^{z} \sigma^{z}$ |
| $\hat{y}$ | $0_{g}^{+}$ | $-\sigma^{x} \sigma^{x}+\sigma^{y} \sigma^{y}+\sigma^{z} \sigma^{z}$ |
| $(\hat{y}-\hat{x}) / \sqrt{2}$ | $0_{g}^{+}$ | $-\sigma^{x} \sigma^{y}-\sigma^{y} \sigma^{x}+\sigma^{z} \sigma^{z}$ |
| polarization rel. to body axis, here set $\vec{e}_{b}=\hat{z}$ |  |  |

## Lattice Spin Models using multiple fields

- Feature 2: for a multifrequency field spin textures are additive => toolbox
- 1D XYZ model

$H=\sum_{<i, j>} J_{x} \sigma_{i}^{x} \sigma_{j}^{x}+J_{y} \sigma_{i}^{y} \sigma_{j}^{y}+J_{z} \sigma_{i}^{z} \sigma_{j}^{z}$
- 2D Ising model

$$
H=\sum_{<i, j>} J \sigma_{i}^{z} \sigma_{j}^{z}
$$



- 3D Heisenberg model

$$
H=\sum_{<i, j>} J \overrightarrow{\sigma_{i}} \cdot \overrightarrow{\sigma_{j}}
$$



- Typical coupling strengths: $|J| \sim 10-100 \mathrm{kHz}$

| Polarization | Resonance |
| :---: | :---: |
| $\hat{z}$ | $0_{u}^{+}$ |
| $\hat{y}$ | $0_{g}^{-}$ |
| $\hat{y}$ | $0_{g}^{+}$ |
| $\hat{x}$ | $2_{g}$ |
| $\hat{x}$ | $0_{u}^{+}$ |
| $\hat{z}$ | $0_{g}^{-}$ |
|  |  |
| $\hat{z}$ | $0_{u}^{+}$ |
| $\hat{x}$ | $1_{u}$ |
|  |  |

sign adjustable by tuning above or below given resonance

- Feature 3: Can choose the range of the interaction for a given spin texture


## TO from 2-body interactions

- Spin-1/2 particles on a honeycomb lattice*
*A.Yu. Kitaev, Annals of Physics, 321,2 (2006)

$$
H=J_{\perp} \sum_{x-\text { links }} \sigma_{j}^{x} \sigma_{k}^{x}+J_{\perp} \sum_{y-\text { links }} \sigma_{j}^{y} \sigma_{k}^{y}+J_{z} \sum_{z-\text { links }} \sigma_{j}^{z} \sigma_{k}^{z} .
$$

## - Exactly solvable



- In the limit, $\left|J_{z}\right| \gg\left|J_{\perp}\right|$, pairs of spins along z-links are mapped to a qubit
- New spin operators on each z-link:

$$
\begin{aligned}
& \mathbf{1}_{2(1)} \otimes \sigma_{2}^{z} \rightarrow Z \quad \sigma_{1}^{y} \otimes \sigma_{2}^{x} \rightarrow Y \quad \sigma_{1}^{x} \otimes \sigma_{2}^{x} \rightarrow X \\
& H_{\text {eff }}=-J_{\text {eff }} \sum_{\diamond} Y_{\text {left }} Z_{\text {up }} Y_{\text {right }} Z_{\text {down }} \\
& \text { Unitary transformation: } \\
& \prod_{j \ni \text { white }} e^{i X_{j} \pi / 4} \\
& H_{\mathrm{eff}} \overline{\bar{f}}-J_{\mathrm{eff}}\left(\sum_{+} Z_{e_{1}} Z_{e_{2}} Z_{e_{3}} Z_{e_{4}}+\sum_{\square} X_{e_{1}} X_{e_{2}} X_{e_{3}} X_{e_{4}}\right) \\
& J_{\mathrm{eff}}=\frac{J_{\perp}^{4}\left|J_{z}\right|}{16 J_{z}^{4}} \\
& \text { - Protected q. memory }
\end{aligned}
$$

## Construction in an optical lattice

Bichromatic trapping beams in 2D, with relative phase shift

One triangular lattice
staggered on top of another

Q*bert lattice with nearest neighbor honeycomb graph. Edges connecting nearest neighbors form orthogonal triads


## Construction in an optical lattice

PLAYER 1
0000 150
CHALIEE TR

LEVEL: 1 ROLPIP:

Q*bert lattice with nearest neighbor honeycomb graph. Edges connecting nearest neighbors form orthogonal triads


## Results for system of 12 spins

- Realization with 3 fields. Several field choices possible, e.g. all polarized along $\hat{z}$ tuned to $1_{g}, 0_{g}^{-}, 2_{g}$

Coupling Graph


| Spin pattern | Residual long range <br> coupling strengths$\left\|J_{l r}\right\|$ |  |
| :--- | :--- | :--- |
|  | $\sigma^{z} \sigma^{z}$ |  |
| $\sigma^{x} \sigma^{x}$ |  |  |
|  | $\sigma^{y} \sigma^{y}$ | $-\cdots-\cdots$ |

Operator fidelity (on a 4 spin configuration)

$$
\sup \left[\left|\left|H_{\mathrm{spin}}-H_{\mathrm{spin}}^{(\mathrm{II})}\right| \psi\right\rangle \|_{2} ;\langle\psi \mid \psi\rangle=1\right]=10^{-4}\left|J_{z}\right|
$$

For realistic parameters

$$
\left|J_{z}\right|=100 \mathrm{kHz} \Rightarrow J_{e f f} \sim 167 \mathrm{~Hz}
$$

A. Micheli, GKB, P. Zoller, Nature Physics, 2, 341 (2006)

## Quasi-particle statistics

Excitations induced by single spin flips (along a z-link) represented by particle pairs

- Consider translationally invariant 4-local interaction along diamonds with vertices on z-links

$$
H_{\mathrm{eff}}=-J_{\mathrm{eff}} \sum_{\diamond} Y_{\mathrm{left}} Z_{\mathrm{up}} Y_{\text {right }} Z_{\mathrm{down}}
$$

- Four superselection sectors: vacuum (no particles), $\mathbf{Z}$ particles $\square$ ) on the left and right of a $Z$ flipped spin, Y particles ( $\diamond$ ) above and below a $Y$ flipped spin, bound state of a $Z$ particle and an $Y$ particle ( $\square \diamond$ ) flanking an $X$ flipped spin.
- Fusion rules (as obtained from the action of the Pauli operators):$\times \square$$=1$
$\diamond x \diamond=1$$\diamond \times \square \diamond=1$$\times \diamond=\square \diamond$$\times \square$
$\diamond=\diamond$
$\diamond \times$$\square \diamond=$
- Relative statistics under braiding:

| Particles | Statistical phase |
| :---: | :---: |
| $\square \square$ | 0 |
| $\diamond \diamond$ | 0 |
| $\square \diamond$ | $\pi$ |
| $\square \diamond \square \diamond$ | 0 |

$\bullet \Psi(1)\rangle=S_{A}^{Y} S_{B}^{Z}\left|\lambda_{g}\right\rangle$
Braiding
$|\Psi(2)\rangle=e^{-i S_{I}^{Z} \pi / 4}|\Psi(1)\rangle=\frac{1}{\sqrt{2}}\left(|\Psi(1)\rangle-i S_{I}^{Z}|\Psi(1)\rangle\right)$

- Adiabatically drag $\mathbf{0}$ left

$$
H^{\prime}(t)=H+\sum_{e \in P a t h} \delta J_{e}(t)\left(\sigma_{1}^{z} \sigma_{2}^{z}\right)_{e}+\kappa(t) Z_{e}(t)
$$



$$
|\Psi(3)\rangle=\frac{1}{\sqrt{2}}\left(|\Psi(1)\rangle-i S_{B^{\prime} \cup I}^{Z}|\Psi(1)\rangle\right)
$$

- Adiabatically drag $\diamond$ CCW around $\square$
$|\Psi(4)\rangle=\frac{1}{\sqrt{2}}\left(O|\Psi(1)\rangle-i O S_{B^{\prime} \cup I}^{Z}|\Psi(1)\rangle\right)$
- Adiabatically drag oright

$$
\begin{aligned}
|\Psi(5)\rangle & =\frac{1}{\sqrt{2}}\left(O|\Psi(1)\rangle-i e^{i \beta}\left(Z_{k} Y_{k} Z_{k}\right) Y_{k} O S_{I}^{Z} \Psi(1)\right\rangle \\
& =\frac{1}{\sqrt{2}}\left(|\Psi(1)\rangle+i e^{i \beta} S_{I}^{Z}|\Psi(1)\rangle\right. \\
|\Psi(6)\rangle & =e^{i S_{I}^{Z} \pi / 4}|\Psi(5)\rangle \\
& =\frac{1}{2}\left(\left(1+e^{i \beta}\right) i S_{I}^{Z}|\Psi(1)\rangle+\left(1-e^{i \beta}\right)|\Psi(1)\rangle\right)
\end{aligned}
$$

- Measure location of $\square$

$$
\left.\left\langle S_{I}^{Z}\right\rangle=\sin (\beta)+\pi\right) \quad \begin{aligned}
& \text { Dynamical+Berry } \\
& \text { phases } \\
& \text { Statistical phase }
\end{aligned}
$$

For trivial braid use same steps but in different order

- Adiabatically drag $\diamond$ CCW around $\square$
- Adiabatically drag left
- Adiabatically drag right
- Measure location of

$$
\left\langle S_{I}^{Z}\right\rangle=\sin (\beta)
$$



## III. Higher spin models using hyperfine levels



$$
H_{\mathrm{m}}=B \mathbf{N}^{2}+\gamma \mathbf{N} \cdot \mathbf{S}+b \mathbf{I} \cdot \mathbf{S}+c I^{z} S^{2}+e e_{\text {Dermi contact }}^{e q \frac{3 I^{z 2}-I(I+1)}{4 I(2 I-1)}}
$$



Encode here

## hyperfine cont.



Asymptotic couplings exactly solvable
Can't build generic two body Hamiltonians but can build a large class
Example Hamiltonian in terms of spin-1 rep of su(2), built with 8 microwave fields:

$$
H_{\beta}=U\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}-\beta\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)^{2}\right)
$$

For $\beta=-1 / 3$ system is gapped with valence bond ground state: spin 2 rep of $1 \otimes 1=0 \oplus 1 \oplus 2$

## Summary \& Outlook

- Recipe for building a class of Hamiltonians with topologically ordered ground states
- We can design spin-spin interactions with polar molecules
- Tunable range and anisotropy
- Large coherence to decoherence ratio Q~800-10000 for reasonable trapping parameters
- Examples of Lattice Spin Model with TO
- The Kitaev Model
- Gapped system with abelian excitations
- Feasible technique for measuring quasiparticle statistics
- Can we increase the effective coupling (increase the gap)? Possible with self assembled lattices---->closer lattice spacings
- Building three body interactions

