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The cell as

Cells are complex entities comprised of or
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pathways

Gen
npathways

Signaling
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processes

s a system

T l ti

rganized integrated biochemical pathways

ne regulatory 
networks

Translation
Transcription
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Studying how 

Cell architecture

y g
these pathways 
are coordinated is 
a central theme toCell architecture a central theme to 
understanding 
many aspects of 
biology not leastbiology, not least 
human disease



Integrating ’omics data – m

Advances in recent technologies are begin
unravel pathway organization and dynamiunravel pathway organization and dynami
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The need for compu

Even a system with a limited numb
complex - non-intuitive behavior

A classic example is the Lotka-Vol

P
dx
dt

= αx - βxy

Prey
birth/death rate

dt
predation

utational approaches

ber of components can display 

lterra's predator-prey model :
Predator

dy
dt

= δxy - γy

Predator
competition

dt predation

In the model system, as the predator 
population is low the prey 
population increases and vice-versa.population increases and vice versa. 
These dynamics continue in a cycle 
of growth and decline.



A single cellular sy
many 1000’s o

Boehringer Mannheim view 
of metabolismof metabolism

ystem can involve
of interactions



Simulating at differen
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Mathematical mod
path

Several methods have been developed th
processes through integrated systems of 

Enzyme A En

equations
e.g. Metabolic pathways

Enzyme A En
Substrates 
e.g. glucose

W X
P
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Changes in substrate concentrations are t
these equations over a series of discrete t

dels of biochemical 
hways
hat attempt to model biochemical 
f ordinary and partial differential 
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Y Z

P P P P
action 2 Reaction 3

[Y]/[X]
Keq

[X] [Y]

(1- )
ν=Vmax.

[Y] [Z]/[Y]
KY Keq

[Y] [Z]

(1- )

[X]
KX

[Y]
KY

+
[Y]
KY

[Z]
KZ

1+ +

then modelled through iteratively solving 
time steps



E-CE

One of the first simulation platforms to a
E-CELL - http://www.e-cell.org/ - now i
Features a very nice GUI allowing the re
(e.g. substrates and enzymes) and their r
relative concentrations)

Originally applied to study mycoplasma
(a minimal genome) with 127 genes and( g ) g
85 small molecules. Output is in the form
of graphs displaying changes in compon
concentrationconcentration

Using this system, it was possible to
simulate effects such as glucose starvatiosimulate effects such as glucose starvatio
to reveal conditions under which the cell
could survive.

A major problem was that many enzyme

ELL

adopt this approach is 
in version 3
eady definition of pathway components 
relationships (e.g. enzyme kinetics, 

a
d
m
nent

onon
l

e kinetic parameters had to be estimated



Mathematic

Over 100 different types of mesosca
While original models were mainly bWhile original models were mainly b
(e.g. E-CELL), now more sophistica
being developed based on :

pi-calculus Flux analysi

However these mathematical models trea
components. As a result they fail to ca

al Models

le cell simulators
based on ODE's and PDE'sbased on ODE s and PDE s 

ated mathematical models are 

Petri Nets

s

Petri Nets

at the system as a well stirred mixture of 
apture spatial and stochastic influences



Cells are not homogenous

Compartmentalization
I ddi i i ll lIn addition to intracellular 
compartments such as nucleus, ER, 
golgi etc. The cytosol may be further 

bdi id d i t t t bsubdivided into compartments by 
cytoskeletal elements which can 
impact the free diffusion of proteins

sly mixed fluid filled bags

Molecular Crowdingg
Up to 40% of the total volume is 
physically occupied by macromolecules. 
Crowding can reduce the rate of 
diffusion by factors up to 10. It can also 
affect the stabilisation of more compact 
structures such as protein complexes and 
h i bili f di dtheir ability to perform coordinated 

functions.



The influence of
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NuHow does spatial 
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Discrete Phys
Spatial influences will give rise to local 

While mathematical models such as E-CWhile mathematical models such as E-C
structures, they have the following dra

Deterministic: difficult to introduce stoc
Not very flexible: very difficult to incorpNot very flexible: very difficult to incorp

To explore spatial influences requires alt
Cellular Automata

Game of Life, SimCell, 
CyberCell

sical Models
structure and potentially stochastic effects

CELL can provide spatially definedCELL can provide spatially defined 
awbacks
hastic behaviour
porate spatial factorsporate spatial factors

ternative approaches, e.g.:
Brownian dynamics

Event driven (Stochsim, MesoRD)
Real time (MCell, Smoldyn)



Introducing 

Drawbacks of current physical models met
• Not very flexible - spatial factors not ea

D t th t i ti t l tti ll• Due to the restriction to a lattice - cellu
• Difficult to incorporate large numbers (

dynamics methods
• Visualisation often not be well integrate

So we built our own..Cell++

• A flexible modelling environment, writt
C++, aimed at simulating basic cellular 

i f l /processes accounting for temporal / spat
factors

• Possesses a graphical mode for visualiza
(openGL) and text-only mode for batch 
simulations (harvesting of statistical dat

Intracellular signalling / metabolic pathw

Sanford et al., Bioinformatics 2006

Cell++

thods
asily implemented
l t t d l l kular automata models can lack accuracy
(106+) of small molecules in Brownian 

ed

ten in 

i ltial 

ation 

ta) 

ways



Cell++ : A temporal sp

Cellular environments
• Cubic 3D latticeCubic 3D lattice
• Lattice sites user defined 

(membrane/ nucleus etc.)

Large molecule
movement
• Proteins
• Based on 

Brownian motion
• Off lattice random• Off lattice random 

walks

Available at http://www

patial modelling tool

Small molecule diffusion
• ATP, Ca2+ etc.

i d fi d• Concentrations defined at 
each lattice site

• Based on Euler method
• At each time step a % ofAt each time step, a % of 

molecules move to adjacent 
sites

*

Molecular interactions
• Signal transduction, 

enzyme catalysis, 
*

*
P = f (distance ( ))*

transporters
• Simulation specific rules
• Deterministic 

(metabolism) P = f (distance  (    ,     ))(metabolism)
• Probabilistic (signal 

transduction)

w.compsysbio.org/CellSim



Cell++ - Underly

● In Cell++, larger molecules such as en
and move within a continuumand move within a continuum.

● The continuum is superimposed upon 
structure (membranes, for example) an( , p )
(such as calcium ions) are defined.

ying principles

Relative concentration of e.g. Ca2+

nzymes are individually represented 

a lattice, within which physical 
nd concentrations of small molecules 



Cell++ - diffusion 

• 3D cubic lattice 
• Concentrations of small 

molecules (substrates, Ca2+ etc.) 
represented within each latticerepresented within each lattice 
element

• 26 nearest neighbours
Diff i b d th E l• Diffusion based on the Euler 
scheme

• At each time step a proportion 
of molecules at each lattice site 
diffuses to neighbouring sites

• While not the most accurate or W e ot t e ost accu ate o
fastest – provides a reasonable 
approximation

• Investigating alternative• Investigating alternative 
methods – Crank-Nicholson

of small molecules



Cell++ - diffusionn of large molecules

• Random walks on the lattice 
used to approximate Brownianused to approximate Brownian 
motion

• Cell++ uses an off-lattice 
model with direction being 
determined by a randomly 
selected vector

• Distance determined according 
to a linear distribution 

fl ti th l lreflecting the molecules 
diffusion coefficient

• Environments may affect y
behaviour

Slow
Inaccessible



Cell++ - Molecu

I t ti b d t i i tiInteractions may be deterministic 
or probabilistic (based on e.g. 
distance and nature of interacting 
components)

Enzyme activity

ular interactions

Signal transduction

* P = f (distance  (    ,     ))*

*

Membrane transport



Cell++ - Meth

Initially the system is defined by a 
set of configuration files 
characterising:

environment (cell geography)
number and types of discrete 
componentscomponents
concentration of small 
molecules
rules of movement and 
interaction

Simulations proceed through a 
series of iterations, representing 
discrete time stepsdiscrete time steps

hods overview

Start

Molecule
movement

Check
interaction

Update
state

Check
reaction

Termination state
reached ?reached ?

Finish



Exploring signalling 

*

* Gene a

*

*

pathways with Cell++

activation



Effect of altering 
concen
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Effect of restricting com
time of signalg
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Modelling metabolic

Phospho-
glycerate 
kinase

Phospho-
glycerate 
mutase

Enola

1, 3 bisphospho- 3 phospho- 2 phosph
glycerate glycerate glycerate

c pathways: Glycolysis

ase Pyruvate 
kinase

ho- phosphoenol- pyruvate 
(1 fi )e pyruvate (1mM final)

• 500 nm cubic lattice500 nm cubic lattice
• Four enzyme species (1000 of 

each)
• Five metabolites• Five metabolites
• Reactions follow Michaelis-

Menten kinetics
• P t bt i d ith• Parameters obtained with 

reference to literature (Km, 
Vmax, diffusion coefficients)

iff l li i• Different localization 
conditions



Spatial localisation re
substrate in

Enzyme

]
[S

ub
st

ra
te

]
[

time

Co-localizing all four 
enzymes leads to the 
f t d ti f th

The different
the orange an
enzymes resu

fast production of the 
final metabolite

accumulation
substrate

educes the build up of 
ntermediates

localization

t locales of 
nd green 
ult in 

The different locales of the 
blue and green enzymes 
result in accumulation of 

n of green blue substrate AND the low 
equilibrium coefficient 
associated with the blue 
enzyme results in a slower 
reaction



Spatial localisation impro
Phospho-
glycerate 
kinase

Phospho-
glycerate 
mutase

1, 3 
bisphospho-
glycerate

3 phospho-
glycerate

2 phospho
glycerate

Due to its low e
coefficient, this 

i l f i

g y

mainly from rig

Co-localizing enolase with phosphogl
removal of 2 phosphoglycerate and 

ensuring the reaction proceeds rapidly f

oves pathway efficiency

Enolase
Pyruvate 
kinase

o- phosphoenol-
pyruvate

pyruvate 
(1mM final)

equilibrium 
reaction is 
h l fght to left 

lycerate mutase allows the rapid 
production of phosphoenolpyruvate

from left to right



Spatial localisation perm

Metabolic channelling originally obs
complexescomplexes

May be exploited in industrial contex
I h ffi i fIncreases pathway efficiency – esp. f
coefficients
Prevents accumulation of possibly top y

May control pathway crosstalk / r

mits metabolic channeling

erved in plants where enzymes form 

xts / metabolic engineering 
f i i h l ilib ifor reactions with low equilibrium 

oxic intermediates

re-direction of metabolism



Spatial localization as 
metabo

Enzyme

Substrate

++

a means of controlling 
lic flux

Depending upon the localization p g p
of a key enzyme (e.g. through 
binding to another protein), a cell 
may be able to rapidly switch itsmay be able to rapidly switch its 
metabolism between pathways



Localization could

Pyruvate kinase

d control pathways

The spatial relationship of
pyruvate kinase together with
enzymes that directly act on
pyruvate (in addition to thepyruvate (in addition to the
diffusability of pyruvate and
the various enzyme kinetics)
will determine which pathway
has access to pyruvate

Propoanoate metabolism

C5-Branched dibasic acid metabolism

Butanoate metabolismButanoate metabolism
Pantothenate and CoA biosynthesis

Alanine and aspartate metabolism

D-Alanine metabolism

Tyrosine metabolism



Advantages

• Combines the power of cellular-automata
quantities of small molecules may be sim

t ti f l l lrepresentation of larger molecules

• Three dimensional environment allows in
i bi h i lenvironments on biochemical processes

• Visualization interface to view dynamic e
users to gain insights that may otherwise 

• Relatively fast – simulations can be perfoy p
parallelized allowing i) assessment of how
parameter scans  

• Flexible – Cell++ has been applied to stu
calcium waves and lipid raft mediated sig

BUT....Need more in vivo data: localizatio

s of Cell++

a and Brownian dynamics so that both large 
mulated along with a more discrete 

nvestigations into the influence of cellular 

evolution of system under study. Allows 
not be intuitive

ormed in real time and may be readily y y
w stochastic a simulation is and ii) 

udy kinase cascades, metabolic pathways, 
gnalling

n, diffusion, kinetic parameters AND...



Current limitatio

Inability to accurately detect collisi
interaction not collision). Phenom
currently only be implemented th

Restricts accuracy of simulations. A bey
be treated as hard spheres (or other s

Problem: how to do this efficiently off-

ons of Cell++ - I

ions (currently have a probability of 
mena such as molecular crowding can 
hrough the occupation of lattice sites

etter method would allow molecules to 
shapes) and identify collisions

-lattice for 10,000’s of molecules ?



Current limitation

Accurate modelling of aggregation ph
lipid rafts)

While Cell++ allows the formation of com
as point particles – the morphology of the

lipid rafts)

as point particles – the morphology of the 

Providing molecules with 
shapes allows the formation 
of aggregates that reflect 
their molecular architecturetheir molecular architecture 
(e.g. treating collagen 
molecules as rods leads to 
h f i f fib il )the formation of fibrils)

Problem: how to implement potentially

ns of Cell++ - II

henomena (e.g. microtubule assembly; 

mplexes, again since all units are treated 
complexes are ignoredcomplexes are ignored

y complex rules of aggregation ?



Lipid

Lipid rafts are subdomains of the plasma 
glycosphingolipids first proposed in 1988

Lipid raft rich in 
sphingolipids/cholesterol

Certain proteins are thought to partition w

glucosylphosphatidylinositol (GPI)-ancho
doubly-acylated tyrosine kinases of the S

Lipid rafts may therefore help regulate si

d-rafts

membrane rich in cholestrol and 
8 and still a contentious issue

with lipid rafts:

ored proteins
Src family 

gnalling pathways



Cell++ andd lipid-rafts



Modelling a

What drives aggregation ? – for many sys
actin filaments) the rules are relatively str
interaction and precise rules of assembly.

Other systems are more stochastic and ma
may require other componentsmay require other components

One useful model is diffusion 
limited aggregations which results gg g
in the formation of highly branched 
and fractal-like structures

As a new particle is 
diffusing, it is difficult 
for it to penetrate deep 
within the aggregate 
before finding a suitable 
site for aggregation

aggregation

stems (e.g. assembly of microtubules and 
raightforward due to limited sites of 

ay not have such straightforward rules or 



Modelling a

Many biological aggregates do not posse
additional constraints control their morpp

e.g. self-assembly of collagen is depend
minimize the surface area of an aggrega
to form a compact fibril

How can mesoscopic models acc

aggregation

ess such highly branched structure and 
phology p gy

dant on entropic effects that attempt to 
ate exposed to the surrounding solvent 

count for these entropic effects ?



Modelling aggregatio
exposed 

In accounting for entropic effects, we also 
to account for the reversibility of the 
aggregation events. This can be achieved u
Monte-Carlo methods. During aggregation
after aggregation) particles may aggregate
change positions) with a probability that 
reflects the relative change in energy using
Boltzmann function

This energy term can include both local ter
and a non-local term reflecting solvation -

ΔE = ΔEl + ΔEc [2]

approximation (related to Gibbs-Thomson

ΔE Γ(1/R 1/R ) [3]
where Ri a
curvatureΔEc = Γ(1/Ri – 1/Rd) [3] curvature 

eq. [3] provides a method for 
minimizing solvent exposed 
surface area

on – minimization of 
surface 
need 

using 
n (or 
e (or 

g the p = min (1, e-ΔE/kT) [1]

rms (e.g. number of direct interactions) 
surface curvature can be used as a good 

n effect)

and Rd are terms reflecting the surface 
before and after the particle movesbefore and after the particle moves



Modelling aggregation – min

In a simple two dimensional lattice model
term through examining the proportion of
particle. 

What is the probability 
that the red particle 
moves to the designated

‘Curvature ter
the old site = 

moves to the designated 
unoccupied lattice site ?

p = min (1, e-(2+

nimization of exposed surface 

l, we can determine the surface curvature 
f sites within a certain distance from the 

rm’ for 
8/18

‘Curvature term’ of 
the new site = 10/18

ΔE Γ(10/18 8/18)ΔEc = Γ(10/18 – 8/18)

ΔEb = 3 – 1 (number of interactions)

+Γ/9)/kT)



Current limitati

Varying temperature andVarying temperature and 
surface tension terms can 
result in a spectrum of 

t b i t daggregates being created, 
representing crystals, 
droplets and vapour

Problem: how do we do 

ions of Cell++

this in three dimensions !



Current limitation

R t d l f th ll t k l t

Accurate modelling of cellular m

Recent models of the cell cytoskeleton 
structure with microtubules providing r
microfilaments providing tension

ns of Cell++ - III

t th t it b h t it

mechanics – models of tensegrity

suggests that it behaves as a tensegrity
resistance to compression and other 



Current limitation

Cellular tensegrity – championed by Do
series of experiments to show that distor
impact biochemistry and gene exprssion
-Mechanobiology

A i i li d h i fil

http://www.childrenshospital.org/

As tension is applied to the microfilame
and the cell acquires a less rounded mor

Problem: how do we simulate the ch
enviro

ns of Cell++ - III

onald Inger 1996 who performed a 
rting the morphology of a cell can 
n

h i b l b kl

/research/ingber/Tensegrity.html

ents, the microtubules start to buckle 
re flattened morphology

hanging morphology of the simulation 
onment ?


