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The cell as a system

Cells are complex entities comprised of organized integrated biochemical pathways
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Integrating omics data — modelling cellular processes

Advances in recent technologies are beginning to generate the data to help us
unravel pathway organization and dynamics
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Need for computational simulations




The need for computational approaches

Even a system with a limited number of components can display
complex - non-intuitive behavior

A classic example is the Lotka-Volterra's predator-prey model :

Prey Predator
dX birth/death rate dy competition
a by G oYW
predation predation

In the model system, as the predator
population is low the prey
population increases and vice-versa.
These dynamics continue in a cycle
of growth and decline.

Time



A single cellular system can imnvolve
many 1000’s of interactions

Boehringer Mannheim view
of metabolism
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Simulating at different levels of resolution

Atomic

Molecular

Mesoscale

Whole cells % = §

Tissues

Organisms
Populations |
Ecosystems |

Quantum mechanics

Molecular dynamics

Mathematical models
- ODE's PDE's
- PI-calculus
- Petr1 Nets

Stochastic simulations
- Cellular automata
- Brownian dynamics

More
accurate /
More time
consuming
/ fewer
entities




Mathematical models of biochemical

pathways

Several methods have been developed that attempt to model biochemical
processes through integrated systems of ordinary and partial differential
equations

e.g. Metabolic pathways
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Changes 1n substrate concentrations are then modelled through iteratively solving
these equations over a series of discrete time steps




E-CELL

One of the first stmulation platforms to adopt this approach 1s

E-CELL - http://www.e-cell.org/ - now in version 3

Features a very nice GUI allowing the ready definition of pathway components
(e.g. substrates and enzymes) and their relationships (e.g. enzyme kinetics,
relative concentrations)

Originally applied to study mycoplasma

(a minimal genome) with 127 genes and

85 small molecules. Output 1s 1n the form
of graphs displaying changes in component
concentration

Using this system, 1t was possible to
simulate effects such as glucose starvation
to reveal conditions under which the cell o = e
could survive.

A major problem was that many enzyme kinetic parameters had to be estimated




Mathematical Models

Over 100 different types of mesoscale cell simulators

While original models were mainly based on ODE's and PDE's
(e.g. E-CELL), now more sophisticated mathematical models are
being developed based on :

pi-calculus Flux analysis
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However these mathematical models treat the system as a well stirred mixture of

components. As a result they fail to capture spatial and stochastic influences



Cells are not homogenously mixed fluid filled bags

Compartmentalization

In addition to intracellular
compartments such as nucleus, ER,
golgi etc. The cytosol may be further
subdivided into compartments by
cytoskeletal elements which can
impact the free diffusion of proteins

Molecular Crowding

Up to 40% of the total volume is
physically occupied by macromolecules.
Crowding can reduce the rate of
diffusion by factors up to 10. It can also
affect the stabilisation of more compact
structures such as protein complexes and
their ability to perform coordinated
functions.



The influence of spatial structure:

A simple signalling pathway

Gene activation

I

How does spatial
organisation affect
___ the behaviour of
biochemical
pathways ?

Unrestricted Restricted
movement movement



Discrete Physical Models

Spatial influences will give rise to local structure and potentially stochastic effects

While mathematical models such as E-CELL can provide spatially defined
structures, they have the following drawbacks

Deterministic: difficult to introduce stochastic behaviour

Not very flexible: very difficult to incorporate spatial factors

To explore spatial influences requires alternative approaches, e.g.:

Cellular Automata Brownian dynamics
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Game of Life, SimCell, Event driven (Stochsim, MesoRD)

CyberCell Real time (MCell, Smoldyn)



Introducing Cell++

Drawbacks of current physical models methods
* Not very flexible - spatial factors not easily implemented
* Due to the restriction to a lattice - cellular automata models can lack accuracy
o Difficult to incorporate large numbers (10%+) of small molecules in Brownian
dynamics methods
 Visualisation often not be well integrated

So we built our own..Cell++

« A flexible modelling environment, written in
C++, aimed at simulating basic cellular
processes accounting for temporal / spatial
factors

» Possesses a graphical mode for visualization
(openGL) and text-only mode for batch
simulations (harvesting of statistical data)

Intracellular signalling / metabolic pathways

Sanford et al., Bioinformatics 2006




Cell++ : A temporal spatial modelling tool

Small molecule diffusion

o ATP, Ca?"etc.

* Concentrations defined at
each lattice site

* Based on Euler method

* At each time step, a % of
molecules move to adjacent
sites

Cellular environments

* Cubic 3D lattice

» Lattice sites user defined
(membrane/ nucleus etc.)

Subdivided Volume

Molecular interactions
Large molecule * Signal transduction, O
movement enzyme catalysis, o
* Proteins transporters @ @
* Based on * Simulation specific rules Q"
Brownian motion * Deterministic
« Off lattice random (metabolism) P =f (distance (o ,0™))
walks  Probabilistic (signal
transduction)

Available at http://www.compsysbio.org/CellSim



Cell++ - Underlying principles

& -
Subdivided Volume Relative concentration of e.g. Ca®"

In Cell++, larger molecules such as enzymes are individually represented
and move within a continuum.

The continuum 1s superimposed upon a lattice, within which physical
structure (membranes, for example) and concentrations of small molecules
(such as calcium 10ns) are defined.



Cell++ - diffusion of small molecules

3D cubic lattice

Concentrations of small
molecules (substrates, Ca®* etc.)
represented within each lattice
clement

26 nearest neighbours

Diffusion based on the Euler
scheme

At each time step a proportion
of molecules at each lattice site
diffuses to neighbouring sites

While not the most accurate or
fastest — provides a reasonable
approximation

Investigating alternative
methods — Crank-Nicholson




Cell++ - diffusion of large molecules

« Random walks on the lattice
used to approximate Brownian
motion

e (Cell++ uses an off-lattice
model with direction being
determined by a randomly
selected vector

« Distance determined according
to a linear distribution
reflecting the molecules
diffusion coefficient

* Environments may affect
behaviour

Slow
Inaccessible



Cell++ - Molecular interactions

Signal transduction
Interactions may be deterministic O
or probabilistic (based on e.g. .
distance and nature of interacting ‘* P = f (distance (©, @)
components) *

Enzyme activity Membrane transport

m-




Cell++ - Methods overview

Start
Initially the system is defined by a
set of configuration files Molecule
characterising: movement
» environment (cell geography) Check  Update
» number and types of discrete interaction State
components
» concentration of small Check
molecules reaction
o rules of movement and
interaction

Termination state

reached ?

Simulations proceed through a
series of iterations, representing Finish
discrete time steps



Exploring signalling pathways with Cell++
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Effect of altering relative component
concentrations

20-20-20
Frequency of

simulations 10-40-10 (A) (B) (OC)
(1000 f

simulations per
condition)

pAs1010]0 50000 75000 100000

Time of signal transduction (iterations)




Effect of restricting component movement on
time of signal transduction

1000
simulations
performed for
each condition

Colocalization
leads to faster
signal
transduction,
and also
depends on
pathway
architecture
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Modelling metabolic pathways: Glycolysis

Phospho- Phospho- Enolase Pyruvate

glycerate glycerate Kinase

kinase mutase
1, 3 bisphospho- 3 phospho- 2 phospho- phosphoenol- pyruvate
glycerate glycerate glycerate pyruvate (1ImM final)
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Spatial localisation reduces the build up of
substrate intermediates

Enzyme localization
) @
28 %

o @)

[Substrate]

L K

time

The different locales of  The different locales of the
Co-localizing all four

the orange and green blue and green enzymes
CNZymes legds to the enzymes result in result in accumulation of
fast production of the  ;ccymylation of green  blue substrate AND the low
final metabolite substrate equilibrium coefficient

associated with the blue
enzyme results in a slower
reaction



Spatial localisation improves pathway efficiency

Phospho- Phospho- Pyruvate

glycerate glycerate Enolase kinase
kinase mutase

.4-}.4-04-}@ <i><:>

3 phospho- \ 2 phospho- phosphoenol- pyruvate

blsphospho- glycerate glycerate pyruvate (ImM final)
glycerate

Due to its low equilibrium
coefficient, this reaction 1s
mainly from right to left

Co-localizing enolase @ with phosphoglycerate mutase @® allows the rapid
removal of 2 phosphoglycerate O and production of phosphoenolpyruvate O
ensuring the reaction proceeds rapidly from left to right



Spatial localisation permits metabolic channeling

Metabolic channelling originally observed in plants where enzymes form
complexes

May be exploited in industrial contexts / metabolic engineering
Increases pathway efficiency — esp. for reactions with low equilibrium
coefficients

Prevents accumulation of possibly toxic intermediates

AN

i e

May control pathway crosstalk / re-direction of metabolism




Spatial localization as a means of controlling

metabolic flux

Enzyme

Oﬁ@@@

Substrate

’.

Depending upon the localization
of a key enzyme (e.g. through
binding to another protein), a cell
may be able to rapidly switch its
metabolism between pathways




Localization could control pathways
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Advantages of Cell++

* Combines the power of cellular-automata and Brownian dynamics so that both large
quantities of small molecules may be simulated along with a more discrete
representation of larger molecules

» Three dimensional environment allows investigations into the influence of cellular
environments on biochemical processes

 Visualization interface to view dynamic evolution of system under study. Allows
users to gain insights that may otherwise not be intuitive

« Relatively fast — simulations can be performed in real time and may be readily
parallelized allowing 1) assessment of how stochastic a simulation 1s and 11)
parameter scans

 Flexible — Cell++ has been applied to study kinase cascades, metabolic pathways,
calctum waves and lipid raft mediated signalling

BUT....Need more In vivo data: localization, diffusion, kinetic parameters AND...



Current limitations of Cell++ - 1

Inability to accurately detect collisions (currently have a probability of
interaction not collision). Phenomena such as molecular crowding can
currently only be implemented through the occupation of lattice sites

Restricts accuracy of simulations. A better method would allow molecules to
be treated as hard spheres (or other shapes) and identify collisions

Problem: how to do this efficiently off-lattice for 10,000’s of molecules ?




Current limitations of Cell++ - 11

Accurate modelling of aggregation phenomena (e.g. microtubule assembly;
lipid rafts)

While Cell++ allows the formation of complexes, again since all units are treated
as point particles — the morphology of the complexes are 1gnored

Providing molecules with

shapes allows the formation

of aggregates that reflect

their molecular architecture

(e.g. treating collagen —
molecules as rods leads to

the formation of fibrils)

Problem: how to implement potentially complex rules of aggregation ?



Lipid-rafts

Lipid rafts are subdomains of the plasma membrane rich in cholestrol and
glycosphingolipids first proposed in 1988 and still a contentious issue

| ﬂ‘

Lipid raft rich in
sphingolipids/cholesterol

Certain proteins are thought to partition with lipid rafts:

glucosylphosphatidylinositol (GPI)-anchored proteins
doubly-acylated tyrosine kinases of the Src family

Lipid rafts may therefore help regulate signalling pathways



Cell++ and lipid-rafts
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Modelling aggregation

What drives aggregation ? — for many systems (e.g. assembly of microtubules and
actin filaments) the rules are relatively straightforward due to limited sites of
interaction and precise rules of assembly.

Other systems are more stochastic and may not have such straightforward rules or
may require other components

One useful model is diffusion
limited aggregations which results
in the formation of highly branched
and fractal-like structures

As a new particle 1s
diffusing, it 1s difficult
for it to penetrate deep
within the aggregate
before finding a suitable
site for aggregation




Modelling aggregation

Many biological aggregates do not possess such highly branched structure and
additional constraints control their morphology

¢.g. self-assembly of collagen 1s dependant on entropic effects that attempt to
minimize the surface area of an aggregate exposed to the surrounding solvent
to form a compact fibril

How can mesoscopic models account for these entropic effects ?



Modelling aggregation — minimization of

exposed surface

In accounting for entropic effects, we also need
to account for the reversibility of the
aggregation events. This can be achieved using
Monte-Carlo methods. During aggregation (or
after aggregation) particles may aggregate (or
change positions) with a probability that
reflects the relative change in energy using the
Boltzmann function

p = min (1, ePkT) [1]

This energy term can include both local terms (e.g. number of direct interactions)
and a non-local term reflecting solvation - surface curvature can be used as a good
approximation (related to Gibbs-Thomson effect)

AE = AE, + AE, [2] where R, and R, are terms reflecting the surface

AE.=T(1/R,—1/R)  [3] curvature before and after the particle moves

O @
eq. [3] provides a method for \

minimizing solvent exposed
surface area



Modelling aggregation — minimization of exposed surface

In a simple two dimensional lattice model, we can determine the surface curvature
term through examining the proportion of sites within a certain distance from the
particle.

What 1s the probability  ‘Curvature term’ for ‘Curvature term’ of
that the red particle the old site = 8/18 the new site = 10/18
moves to the designated

. oS AE,=T(10/18 — 8/18
unoccupied lattice site ? ( )

AE, =3 — 1 (number of interactions)



Current limitations of Cell++
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Varying temperature and
surface tension terms can - 3
result in a spectrum of 9§ LIRS '.." e
aggregates being created, | | fiih il
representing crystals,
droplets and vapour

Temperature Factor (T)

Surface Tension (K)

Problem: how do we do this in three dimensions !




Current limitations of Cell++ - II1

Accurate modelling of cellular mechanics — models of tensegrity

Recent models of the cell cytoskeleton suggests that it behaves as a tensegrity
structure with microtubules providing resistance to compression and other
microfilaments providing tension




Current limitations of Cell++ - II1

Cellular tensegrity — championed by Donald Inger 1996 who performed a
series of experiments to show that distorting the morphology of a cell can
impact biochemistry and gene exprssion

-Mechanobiology

http://www.childrenshospital.org/research/ingber/Tensegrity.html

As tension 1s applied to the microfilaments, the microtubules start to buckle
and the cell acquires a less rounded more flattened morphology

Problem: how do we simulate the changing morphology of the simulation

environment ?




