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Facts and Hypothesis

Neurons receive charge in terms of
voltage transfer from many Sources

They change their firing threshold and
spike

This leads to flow of charge in intra- and
extracellular space that propagates

We record this charge as an EC spike

This charge flow/spiking 6ccurs over time




Facts and Hypothesis

The charge flow may be occurring spatially

It may be possible to understand the
dynamics of the charge flow

Using these flux and spike based
spatiotemporal aspects, neurons in
networks store information and
communicate It between each other




T'he task Is not easy

Can we understand the concept of spatial
charge flux and voltage spread that occurs
In space In the network

Along with temporal aspects of spiking
In the context of learning and behaviour

And understand this in terms of
Information encoding within neurons and
networks




Coding in Spikes

Since a spike was considered as a stereotyped
waveiorm, the information was only carried by
the occurrence of AP at particular times

The spike itself is felt to be a passive event that
does not Itselt represent information

Indeed physiologists often reduce the spike to a
discrete scalar event in time and analyze
behavior in the context of spike timing alone




Lets look at the levels of analysis

Fundamental level
- setting the stage within ionic fluxes

Second level
-scalar dimension of the time of spiking

Final level
- groups of neurons encode for complex behavior

- A framework that ties the fundamental

machinery to function Is currently missing




In this context of coding

What does the spike represent?
. Represents information within the spike itself
. Occurs with some timing that allows transfer of information

In order to study the former, charge flux or flow is
possibly an important method

Since multiple charges contribute to this charge flux, in
what may appear a random fashion, concepts of
thermodynamic entropy and mutual dependence of
variables can reveal a better understanding ofi changes
N Information

The temporal occurrence of spikes can be understood as
a transtfer of infermation entropy due to a change in the
thermoedynamic entropy.




What we will talk albout today.

State properties we have described of
charge flow

Show that charge flux during spiking has
iInformation content

The temporal interdependencies that
result between spikes enrich the neuronal
Information network

These and possibly other observations
extend the bandwidih ofi operation of the
neural network




Premise — Information Processing

The thermodynamic entropy of the neurons
determines the informational state of the neuron

A change in the thermodynamic entropy of the
neuron represents information

Between spikes, a neuron is gathering
Information and hence altering; its
thermodynamic entropy

Extracellular charge flow can be analysed in
order to understand these thermodynamic
changes

These changes ofi thermodynamic entropy can
then be related to information entropy




The SPIKE

— Stereotyped
waveform

Signals appear to be
identical to a single
electrode
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Tetrode recordings

Tetrodes are four
channel wires

Are able to grab a
four dimensional
Image of spikes
Spike sorting — four
VIEWS

Spike has 3D spatial
profile




Spike sorting

No need for electrode
movement for spike
sorting

Spike sorting is based on
algorithms (Jog et al J.
Neuroscience Methods
2002 and 2004)

An example of clusters
for waveforms measured
by the four channels of
tetrode




Clustered waveforms
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An example of
clustered waveforms
measured by the four

T T channels of a tetrode

1000
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for two different
neurons




Our first series of papers
looked at flux flow and
directionality




Moving on to Fluxes

The guestions are....
. How do neurons receive and code information

. How do they communicate this information

. What does the spike actually mean?

. Can we perform an analysis over and above
time series analysis?




PREMISE 1

SPIKING AND FLUX FLOW




We started with the basics:
Single charge movement in

space
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lonic flux

[T these charges are
moving in space and it a
conductor 1s 1n the field
the drop of potential in a
length ot conductor can
be computed by:

[(t)Al

Vb(t) _Va(t) — oA



It | were an electrode

watching I'would see...




Artificial Spike and Computed
trajectory

Four view of action
potential;

Linear charge
trajectory (bold red
line)

Computed trajectory
from spike (black
curve)




Multiple charge trajectories

Trajectory of charges
(bold red, magenta
and black lines)

Surprise - Computed
trajectories are not
lines but are curves

Tetrode properties
determine the
curvature




A Problem -- Two references
systems

Avoid unknown; tips
positions;

Rr reference system
for charge movement;

Pr reference system
for trajectory
computation




Now computing
directivity




Computing directivity — singular
value decomposition (SVD)

Example of charge
linear trajectory (bold,
red line)

Computed trajectory

(black trajectory)

Estimated directivity
(blue line) in the
tetrode reference

system.




Computed charge deviation

Dependence between
charge movement
deviation (input angle)
and computed charge
deviation angle
(output angle)

Nonlinear
dependence




Noise errors

SNR and error in
computing deviation
angle.

For high SNR the
error is under 3°




Several charges In movement

Three charges in
movement and
computed directivity

This is similar to what
IS expected when we
register an AP




Real spike trajectory

real spike trajectory -
black curve

computed directivity -
bold blue line

5,5, 5,3, - .
TR ) NEWTON-RAPHSON
ETRODE ALGORITHM




Two different spikes andi their
directivity

Directivity analysis of
the action potentials
from the same neuron
shows preferred

spatial direction for
different spikes




So What did we do?

We analysed spikes from many neurons
during tetrode recordings during free walk
and after training animals on a T-maze
task

We calculated the directionality of charge
flow over time for each neuron recorded
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Multiple spikes from the same
neuron

For four hundred
spikes, in real space
the directionality of
charge flow appears

to be random




Predominance of directivity

In PCA space, the
cosines on the angles
are distributead

Three angles are
generated for each

This is followed by
computation of the
probability density
maitrix for each
distribution for every
angle




Before Learning

Directivity is characterized by
three cosines angle VY2 Vs

A global maximum for each
cosine angle is perceived in
probability distribution
function (pdf) before learning

Only the pdf for cosine angle
V, Is shown




After Learning

A global maximum in
pdi for each cosine
angle

o

Several visible local
maxima are present
after learning
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Can we quantify this in terms of
entropy?

Mean estimated entropy for cosine angle is 4.2
bits bevore learning, while after learning the
entropy decreases substantially around the mean
of 2.7 bits

This implies that the direction of charge flow
becomes much more organized as the change
above is logarithmic




What we observed

The directed charge flow becomes less random with
preferred directions during learning

Every neuron aiter local learning shows a slightly better
“selection” of direction for spike propagation than the
initial “random guessing”

Neurons within a neuronal group will provide their own
preferential directional charge flow for the dataset they
receive

“‘Weak learning” within each neuron while in the network
these are equivalent to “strong learning”




This analysis of charge flow

showed
When charges move in space local
voltage effects are created

These effects can be recorded In
extracellular mediumi as spikes

Spikes are a reflection of the electrical
state of the neighboring neurons

Using tetrodes, spikes appear to have
directivity in space




This analysis of charge flow
showed

During learning spatial directivity organization
(SDO) of charge flow within spikes occurs for
each analyzed neuron

This organization seen in each neuron supports

group’s cooperation that engages neighbor
neurons to generate electrical waves with
preferred directionality sustaining a strong
learning phase that can achieve any level of
performance in the probably approximately
correct sense (Valiant, L. G. 1984).




SO0 what 77277

Does directionality tell us anything more
than that it exists?

Does it really matter?

IS It surprising that ions moving along a
conductor should do this?

It not what else can this mean




We can conclude

lonic fluxes (charges) are responsible for
building this directionality;

Depending on the direction of the AP and hence
the associated ionic fluxes in the extracellular
space, structures are influenced

Therefore each spike, spreading charge in
space In a particular direction, may influence
different neighboring cells.




What can we conclude from this?

Neurons then “see” inputs from many
directions and effectively sum them before

producing their own response.

This method Is an efficient way: of
iInformation gathering and transter




SPIKES, FLUX, ENTROPY

AND INFORMATION




The Charge Flux Hypothesis

That neurons exist in an electrochemical
flux

This flux Is determined by a balance
between the intrinsic condition of the
neuron and the milieus it is functioning In

Information encoding and transmission; IS
a dynamic within this system




Premise 1

Spikes communicate information through
the network directly at the synapse anad
Indirectly through an alteration of the
extracellular space

This charge flow has directivity in
extracellular space

Learning may. be reflected as a change in
the spatiotemporal properties of neuronal
firing and extracellular charge flow




Imagine a milieu




As these fluxes occur, what
happens to the neuron?
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Showed spike-spike variability contributed
by ionic fluxes

Intrinsically represents information
computation
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Entropy within a neuron

Entropy Is @ measure of randomness

It Is determined by the existing state
of the component processes within
the system and Its input/output

Changes In entropy can be viewed as
a method of altering “information”




Variability oft Neuron's Entropy

Entropy changes equal to the sum of:

. entropy transier by heat;

. entropy transter by mass flow;

. entropy generated by irreversible processes.

AH :z% FH(xmh —xsmh )+ AH

A change in entropy by an alteration of these
variables couldlbe seen as an alteration of
information (Shannon Infermation)




Entropy and Fluxes

lonic fluxes represent the random
variables

These ionic fluxes, that appear to have
directionality induce signals by the motion
ofi charges at the tetrode tips

This eqguates to what Is seen by neurons
at their membrane




We next studied the HH moadel

Can we compute information content from
the entropy of charge flow: Itself?

How does this compare to the information
that is flowing through the spike?

Are we looking at a temporally shiited
slower learning process?

Can we understand it?




Estimation of |(Na+, K+) from
Hodgkin Huxley model

Estimated values of
mutual information I,
across amplitudes and
frequencies for
sinusoidal stimulus I
(WA/cm2) computed
over 30 ms




Estimated information in spike,
based on membrane potential

The 3D dependence
of estimated | over
l.im freguency and
amplitude for Hodgkin
Huxley model




Simulation

We then used the HH model to generate
simulations to look at

. How much information is carried by the spike
as an event

. How much information is buried inside the
charge fluxes themselves.




Low Information values

Theoretical estimations based on spike
timing for the fly H1 visual cells predicted a
value of 1.80 bits/spike (Strong et al.,
1998).

Panzeri S. showed recently that neurons
INn somatosensory cortex of rat are
transmitting on average 1.59 % 0.1
bits/spike.




High Information Value

The maximum value of Ml per spike attained lg ;.= 3.5 £
0.2 bits while the maximum values for |, fluxes IS 7 =
0.2 bits based on HH model.

Mutual information between input signal and sodium flux
IS about two times that between input signal and output
spikes during each spike within a millisecond-level time
domain

This higher transter of information provided by ionic
fluxes extends the working frequency domain of neural
cells beyond those accessible to information transter
within spikes alone




What does it mean?

lonic fluxes provide richer information and
spatial directivity

Information stands at another level above
that has been mainly studied in the last
Sixty years

Information is encoded within ionic fluxes




Physical Representation; of
Information

Information in neurons can thus e shown to
have physical representation, and Is related to
charge flow during electrochemical events

This charge flow is influenced by synaptic and
non-synaptic events

The changes in the constituents within the
neuron that result from these fluxes may cause
an entropy change or gradient that represents
Information




Going back to the entropy

For removing 1bit of information entropy In
each neuron an ionic efflux of
required Is:

xmh

kB

For adding 1bit of information entropy an
lonic Influx of Is hecessary. :

Zmihi
k

B




But ionic fluxes are linked

We can now analyze the dependencies in
Information entropies of several ionic
fluxes--a way to find the encoding
iInformation in spike

Different ionic fluxes convey information
mutually because they are correlated.

Several related fluxes of Na*, K*,Ca*, or
Cl- Ions are contributing In changing the
Information entropy during AP




In This Context

Example:

I[(Na*, K¥) measures the reduction in uncertainty
about the Na* flux due to the knowledge K+ flux.

I(Na*, K*)=H(Na*)- H (Na*/ K*)




Using multiple charges

Equivalence




Quantized Information in Spike

lonic fluxes are
correlated therefore
they convey
iInformation mutually

Our estimation is
based on ICA
components




Simulated ions trajectory

Trajectory based on
ICA and Newton-

Raphson for a single
charge in movement

Noise was added to
simulate recorded
signals from
measurements




Actual Ionic trajectories

Neuron electrical image Is
constructed based on the
points that represent the
position of charges In
movement during the AP

Bending is caused by
several factors including
the nonlinearity of the
recorded spike.




3-D spike representation

De-bended image of
spike. Electrical image Is
constructed based on the
points that represent the
position of group of
charges inimovement.

Each division on the axes
IS approximately 20

microns




