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Definition and Examples of Multistability

Multistability in a dynamical system referees to the coexistence of multiple
stable patterns such as equilibria and periodic orbits.
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Considering a delay differential equation

dx(t)

dt
= −αx(t) + F (x(t − τ))

F (x) =







c if x ∈ [x1, x2];

0 otherwise (x < x1 or x > x2),
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Background and Examples of Multistability

Losson found four coexisting attracting periodic solutionsa

For Mackey-Glass delay differential equation

dx(t)

dt
= −αx(t) +

βx(t − τ)

1 + x(t − τ)10

There exist four coexisting attracting periodic solutionsb

S.Richard Taylor PhD thesis
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Recurrent Inhibitory Loops

Recurrent Inhibitory loop is the simplest neural network composed of two
neurons: excitatory E and inhibitory I.

Neuron E excites neuron I.

In turn, neuron I delivers an inhibition to neuron E.

There is a time lag τ .
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Recurrent inhibitory loop models

Conductance-based models: Hodgkin-Huxley model (HH)

Cx′(t) = −gNam3h(x(t) − ENa) − gKn4(x(t) − Ek) − gL(x(t) − EL) − F (x(t − τ)) + Is(t),














m′(t) = αm(x)(1 − m) − βm(x)m,

n′(t) = αn(x)(1 − n) − βn(x)n,

h′(t) = αh(x)(1 − h) − βh(x)h .















αn = 0.1−0.01x
exp(1−0.1x)−1

, βn = 0.125
exp(x/80)

,

αm = 2.5−0.1x
exp(2.5−0.1x)−1

, βm = 4
exp(x/18)

,

αh = 1
exp(3−0.1x)+1

, βh = 0.07
exp(x/20)

.

Multistability in Spiking Neuron Models of Delayed Recurrent Inhibitory Loops – p. 5/17



Recurrent inhibitory loop models

Phenomenological spiking neuron models : Integrate-and-fire models

Linear integrate-and-fire model (LIF)

dx(t)

dt
= −βx − F (x(t − τ)) + Is(t)

Quadratic integrate-and-fire model (QIF)

dx(t)

dt
= β(x − µ)(x − γ) − F (x(t − τ)) + Is(t)
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Comparison of three models

Hodgkin-Huxley model (HH)

Cx′(t) = −gNam3h(x − ENa) − gKn4(x − Ek) − gL(x − EL) − F (x(t − τ)) + Is(t)

Linear integrate-and-fire model (LIF)

dx(t)

dt
= −βx − F (x(t − τ)) + Is(t)

Quadratic integrate-and-fire model (QIF)

dx(t)

dt
= β(x − µ)(x − γ) − F (x(t − τ)) + Is(t)

Our Objectives

Find the multiple attracting periodic solutions using Hodgkin-Huxley model (HH)

Explain why integrate-and-fire models fail to generate the multistability

Provide effective mechanisms for integrate-and-fire models to achieve multistability
and increase the capacity of such two-neuron loop
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Model Analysis and Simulation Results

Feedback function is a monotonic function

F (x) =







a if x ≥ ϑ1(threshold);

0 otherwise (x < ϑ1).

For Hodgkin-Huxley model (HH) and Is = 10, there exist four attracting periodic solutions.
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Linear integrate-and-fire model (LIF)

Linear integrate-and-fire model (LIF)

dx(t)

dt
= −βx − F (x(t − τ)) + Is(t)

When multistability happens, there are two necessary conditions

F (x) must be nonmonotonic.

τ is longer than the intrinsic time scale of the control mechanism, i.e. τ > α−1.

Reason of loss of multistability for LIF model

Model is too simple

Some biological functions and features of neurons can not be captured

Action potential (firing procedure)

Absolute refractory period

Rebound spike procedure

To solve the problem

Incorporate the firing and rebound mechanisms as well as the absolute refractory
period to linear integrate-and-fire model
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Three biological functions and features of neurons

Firing procedure

Stimulus Is causes the membrane potential to increase and approach its equilibrium.

−10 0 10 20 30 40 50
−1

0

1

2

3

4

5

6

stimulus

TIME

x(t)
I=1.0

Multistability in Spiking Neuron Models of Delayed Recurrent Inhibitory Loops – p. 9/17



Three biological functions and features of neurons

Firing procedure

Stimulus Is causes the membrane potential to increases and approach its equilibrium.

The larger Is, the higher the membrane potential.
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Three biological functions and features of neurons

Firing procedure

Stimulus Is causes the membrane potential to increases and approach its equilibrium.

As Is increases, the membrane potential increases.

If the potential reaches certain threshold, the neuron fires and creates an action
potential(spike). After firing, the membrane potential is reset to certain value.
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Three biological functions and features of neurons

Time course of firing procedure is approximated by a continuous linear function or a
continuous exponential function

xf (t) = x̂1(t) =







ϑ1 + c−ϑ1
s1−tf

(t − tf ) if t ∈ [tf , s1);

Vr + c−Vr
s2−s1

(s2 − t) if t ∈ [s1, s2],

xf (t) = x̂2(t) =











ϑ1eα1(t−tf ) if t ∈ [tf , s1];

e−α2(s2−t)

[

Vr
s2−s1

(t − s1) + c eα2(s2−s1)

s2−s1
(s2 − t)

]

if t ∈ (s1, s2],
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Three biological functions and features

Absolute refractory period

After the firing of a spike, there is a short period called absolute refractoriness during
which the neuron is not affected by any input at all.

The membrane potential is described by

dx
dt

= −βx, or xabs(t) = Vre−β(t−s2),
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Three biological functions and features of neurons

Rebound procedure

An inhibitory input causes the membrane potential to decrease

The larger inhibitory input, the lower the membrane potential

If the membrane potential is less than its rebound thresholds, once the input is
switched off, an inhibitory rebound spike is generated.

Time course of rebound spike is approximated by a continuous linear function

xb(t) = x̃1(t) = xtb
+

ϑ1 − xtb

db
(t − tb)
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LIF model with three biological functions

In summary, linear integrate-and-fire model (LIF) with the special time courses

dx(t)

dt
= −βx − F (x(t − τ)) + Is(t)

x(t) =







xf (t) + xabs(t) if x(t) ≥ ϑ1;

xb(t) if x(tb) ≤ ϑ2, input is switched off.

When Is = 0, the simulation results
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Model Analysis and Simulation Results

When Is = 0.38, the numerical results show

Generate a large number of attracting periodic solutions

Increase the capacity of the stable patterns

Two-neuron recurrent inhibitory loop exhibits the multistability
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Disadvantage: The constructed linear time course of rebound spike does not seem to be

consistent with the real path of rebound spike.
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Quadratic integrate-and-fire model (QIF)

Reasons of using the quadratic integrate-and-fire model (QIF)

Quadratic integrate-and-fire model solve the rebound spike problem by introducing a
rebound equation.

The relationship of the equilibrium state and applied stimulus is a quadratic function
rather than a linear function.

There is the similar relationship for the inhibitory input.

−10 0 10 20 30 40 50
−1

0

1

2

3

4

5

6

stimulus

x(t)

TIME

I=1.0
I=1.5
I=2.0

Multistability in Spiking Neuron Models of Delayed Recurrent Inhibitory Loops – p. 14/17



Quadratic integrate-and-fire model (QIF)

Quadratic integrate-and-fire model (QIF)

Original equation

x′(t) = β(x − xrest)(x − xF ) + Is(t)

Rebound equation

x′(t) = β(x − xI)(x − xF ) + Is(t)

Quadratic integrate-and-fire model (QIF) for recurrent inhibitory loops

x′(t) = β(x − µ)(x − γ) − F (x(t − τ)) + Is

µ =







xI if x(t) < ϑ2,input is switched off;

xrest = 0 otherwise.

Once firing, the membrane potential is described by

x(t) = xf (t) + xabs(t),

dxabs(t)

dt
= β(xabs − xrest)(xabs − γ), t ∈ [t2, t2 + dabs]
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QIF model and Simulation Results

For Is = 0.38, the simulation results show

Generate a large number of attracting periodic solutions

Increase the capacity of the stable patterns

Two-neuron recurrent inhibitory loop exhibits the multistability
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Conclusion

Focus on the asymptotic behavior of the excitatory neuron in a
recurrent inhibitory loop

Emphasis on the capability of such a single loop to generate multiple
stable patterns

The key to multistability in phenomenological neuron model is the
incorporation of the firing and rebound mechanisms as well as the
absolute refractory period.

Both simulation and analysis show that a recurrent inhibitory loop
based on the quadratic integrate-and-fire model exhibits coexisting
multiple attracting periodic solutions.
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