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Historical Perspective
Spirals in Nature

Static occurrences: snail's shell, seeds in the sunflower, falcon's
hunting path, etc.

Dynamic occurrences: hurricanes, galaxies, heart tissue, retina, chem-
ical reactions, slime mold aggregates, flame fronts, etc.

(Hendrey, Ott and Antonsen:2000,Ball:1994).
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Historical Perspective
Why study spirals?

Spiral waves have been linked to disruptions of the heart's normal
electrical cycle (Winfree:1995, Witkowski et.al.:1998). Most such arrhythm-
ias are harmless but if they are

re-entrant in nature and [...] occur [in the ventricles] because of
the spatial distribution of cardiac tissue (Keener and Sneyd:1998),

they can seriously hamper the pumping mechanism of the heart and
lead to death.



Historical Perspective
Classification of spiral waves

Spiral propagation is classified according to its tip path, which is de-
fined by following an arbitrary point on the wave front in time.

RW MRW (in) MTW MRW (out)
(Movies from Sandstede:2006)
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The prototypical RDS

Ut =

Vt —

Barkley’s RDS

50u(l —u) (u — ”T_|'b> + Au

u — v,

where a,b are system parameters.

RDS can sustain rotating waves (RW),
rotating waves (MRW) and
modulated traveling waves (MTW).
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5




Historical Perspective
Barkley’'s ad hoc ODE system

The 5—dimensional system on C x C x S!:
p=v o |
o = v |f(|jv]?, w?) + iwh(|v]?, w?)] o.of
b = wg(|v|?, w?)

where f(£,¢) = — 4+ a1 + aal — €2, -

9(&§, Q) =€&—¢—1 and h(&,¢) = o ool
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(Barkley and Kevrekidis:1994)



The Dynamical System Approach

Equivariance of vector fields

Let ' be a group acting linearly on a vector space X. A family of
vector fields f) : X — X is '—equivariant if for all A,

v fiolz) = fin(v-x), Vyerl,rzeX.

[T—equivariant ODE systems are such that

x(t) is a solution <= ~-z(t) is a solution for all y € I".



The Dynamical System Approach
SE(2)—equivariance of RDS

SE(2) £ SO(2)+R2, with
(R1,81) - (R2,S52) = (R1Rp, 81 + R2S2), V(R;,S;) € SE(2),

acts on function spaces via

(v ) (@) = ((R,S) - v)(x) = v(R™(z — 9)).

SE(2)—equivariance of RDS:



The Dynamical System Approach
Barkley’s insight

In a RDS, the linearization at a RW at the onset of Hopf bifurcation
has five critical eigenvalues:

1. Agp = 0 (due to rotational symmetry)
2. Ap = +iw (due to translational symmetry)

3. A\ = +iBg (responsible for the Hopf bifurcation from RW to MRW
and vice-versa)

(Barkley:1992,1994)



The Dynamical System Approach

Essential dynamics for Hopf bifurcation from a 1—armed spiral

The dynamics are described by a 5—dimensional ODE system on the
center bundle V = SE(2) x C:

p = e’ FP(q,7)
¢ = F¥(q,9) (1)
g = F(q,9),

where FY(0) = wrot € R, F9(0) = 0 and DF9(0) = iwper € iR.

RW: q¢g=20
MRW: g—component has a 2w—periodic solution

(Golubitski, LeBlanc and Melbourne:1997)
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The Dynamical System Approach

SE(2)—equivariance of the center bundle equations

SE(2) &£ C+S1, with

(pla Qol) ) (p27 902) — (ei(’olp2 + p1,p1 + 902)7 V(pja 90]) S SE(2)7

acts on the center bundle SE(2) x C via

(z,0) - (D0, q) = (¥9p+ 2,04+ 6,q), V(z,0) € SE(2).

The center bundle system (1) is SE(2)—equivariant under this action.
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The Effects of Forced Euclidean
Symmetry-Breaking

Non-Euclidean media

Physical experiments and Nature are not perfectly
Euclidean. For instance, cardiac tissue is finite,
anisotropic and distributed non-uniformly (Keener
and Sneyd:1998).

‘Far’ from the inhomogeneities, the domain
'looks’ Euclidean. Furthermore, if the anisotropy
ratio is 'slight’, the domain also ‘looks’ Euclidean.

This partly Euclidean structure translates mathe-
matically via forced Euclidean symmetry-breaking (LeBlanc and
(FESB). Wulff:2000)
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The Effects of Forced Euclidean
Symmetry-Breaking

Center of anchoring/repelling

A 2mr—periodic solution p of the p—component of (1) is called a per-
turbed rotating wave of (1).

It is characterized by its center

Pl= o [ P

If p attracts all nearby solutions, [p] is a center of anchoring. If p repels
all nearby solutions, [p] is a center of repelling.
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The Effects of Forced Euclidean
Symmetry-Breaking

What symmetries are allowed?

Let £ € C. In SE(2) = C+S?!, the group of rotations around ¢ is

SO(2)¢ = {(£,0) - (0,6) - (=€,0) | 6 € S'} < SE(2)

The symmetry-breaking lattice in the TSB case:

SE(2)
|
SO(2),
|
{1}
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T he Effects of Forced Euclidean
Symmetry-Breaking

Perturbations of the center bundle equations

Let [T be an element of the symmetry-breaking lattice. A I'—equivariant
perturbation of (1) is a system of ODE of the form

p = e |FP(q,9) + e (p, D, ¢, 4,3, )|
¢ = F¥(q,q9) + ¢F*(p, D, ¥,q,q,¢) (2)
g = Fi(q,q) + cFP(p, D, ¥, 9,4, €),

where F is sufficiently smooth, uniformly bounded and commutes with
the IN'—restricted SE(2)—action on the center bundle.

The perturbation F is not completely arbitrary: the symmetry group

[T plays a role.
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The Effects of Forced Euclidean
Symmetry-Breaking
1 TSB perturbation — RW

WLOG, assume I = SO(2)g. Them, (2) is equivalent to

b= e'|v+ AH(pe ", pe’?, )] 3)
p=1

where v € C, A € R is small and H is sufficiently smooth and uniformly
bounded in p, p.

Theorem 1 (LeBlanc, Wulff:2000)

Set a = Re [DlH(—iv,iﬁ, O)}. If a # 0, then for all X % 0 small enough,
(3) has a unique family of perturbed rotating waves py with [p,] =0,
whose stability is exactly determined by the sign al.
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The Effects of Forced Euclidean
Symmetry-Breaking

2 simultaneous TSB perturbations — RW

Let 0 = &1 # &5 be the centers of the perturbations: the center bundle
equations reduce to
p=e?|v+ A H1(pe™", 5, A1) + Ao Ho((p — £2)e ™, (B — £2)€'%, \2) |

=1
(4)

where v € C, A\ € R? is small and Hj is sufficiently smooth and uniformly
bounded in p, p, =1, 2.
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T he Effects of Forced Euclidean

Symmetry-Breaking

2 simultaneous TSB perturbations — RW

Theorem 2 (Boily:2005)

Letk € {1,2}. Seta;, = Re [Dlﬂk(—z'v,w,O)].
If a;, = O, there is a wedge-shaped region of
the form

Wi = {X€R? | |\j| < Wy \l, 4 # Kk},

A2

where Wk,j > 0 and A, is small, such that
for all 0 = X € Wy, (4) has a unique family
of perturbed rotating waves S¥, where [S}] is
generically aways from &, and whose stability
is exactly determined by the sign of ap).
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T he Effects of Forced Euclidean
Symmetry-Breaking

2 simultaneous TSB perturbations — Proof (I)

WLOG, assume k= 1.

Shift the point of view to z = p — &1 + ie'lw.

Set Ao = Ajeo, A\ # O.

(4) rewrites as 2 = \e" K (ze ™, ze™ t,\1,e0).

Set a3 = Re|DyHi(—iv,i,0)).

Near (z,A1,e2) = (0,0,0) the time 2r—map of the above system is

P(2,Z,M1,60) = 2 + 27\ [alz +0 (|z|2) + O (M\1,e5) + h.o. t.}
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T he Effects of Forced Euclidean
Symmetry-Breaking

2 simultaneous TSB perturbations — Proof (II)

7. By the IFT, there is a unique family z(\1,e2) # 0 of fixed points of
P with 2z(0,0) = 0.

8. Eigenvalues n1 o of DP(z()\1,€2),A1,¢2) satisfy

m1,2(A1,€2)] = 1+ 4mazd; 4+ O (A7, e2) .
9. If a1 # 0, the fixed points are hyperbolic, with stability ai 1.

10. Each fixed point z(\1,e5) of P corresponds to a perturbed rotating
wave Sy, », of (4).

11. [Sy, 2] = &1+ 0(1) as Ay — 0 and Ay # 0.
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Numerical Simulations
Perturbed FHN with 2 TSB terms

Consider the perturbed FHN system of
equations:

w=2(u"%=v)+¢1+Au

v = 0.3(u 4+ 0.6 — 0.5v — ¢o),
with
¢;(x) = +/2c0s(0.057)0.12f(z — ¢;), for
j = 1,2, and f(z) = exp(—0.00086||z||2),
c1 = (9,0), ¢co = (—10,5V3).
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Numerical Simulations
Perturbed FHN with 4 TSB terms

0e

Consider the perturbed FHN system of equa- & 2 z S
tions:

0Z-
T

utzlg’—o(u—u;—v>+¢1+Au
vt = 0.3(u~+ 0.6 — 0.5v — ¢2),

0l-

with

$1(x) = 0.12f1(x —c1) — 0.10f2(x — c2)
¢2(z) = —0.12f1(x — c3) + 0.08f3(x — c4),
fj(z) = exp(a,llz]|?), j =1,2,3,
a; = —0.00086, ap3 = —0.0008, ¢; = (9,0),
co = (—1,10), c3 = (—10,5v/3), ¢4 = (10, 10).

ol

0C
T
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Numerical Simulations
Homotopy/Hysteresis in a modified Oregonator (I)

Consider the modified Oregonator:

ur = 20 (u —u?— (1.4v+ qb)w) + Au

u—+0.002 (5)
vy =u— v+ 0.6Av,
with
2 2
p(z) =3 ajexp (—|lz —¢;|1?),
j=1

where aj, € R, ¢1 = (15,15) and ¢ = (18.75,15).
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Numerical Simulations
Homotopy/Hysteresis in a modified Oregonator (II)

Along a(7) = v1(t) = 0.01(cos(71),sin(71))
in parameter space, (5) undergoes homo-
topy of perturbed rotating waves.

Along the path a(r) = v2(t) = {5v1(7) in
parameter space, (5) undergoes hysteresis
of perturbed rotating waves.
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Numerical Simulations

Along ~v1(7)

Homotopy/Hysteresis in a modified Oregonator (III)

Along ~v>(7)
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Characterization of Spiral Anchoring
The set-up

Let n =2, 0% £ € R?, n € {0,£}, Ao = {(A1,0)},A¢ = {(0,A2)} and
P :R2 x R2 - R? be a real analytic map with:

(P1) P(z,0) =z and DP(z,0) = I;

(P2) Jwsx > 0 such that P(n,A\y) =n for all ||Ag] < ws;

(P3) n has the same stability for all 0 < |[|Ay|| < wx, and ...
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Characterization of Spiral Anchoring
The set-up (II)

A2 |
(P4) ... around each axis Ay, there is a param- ’ "
eter wedge region wy in which P has a (locally) i
unique fixed point-manifold z,()\) such that, for )
all 0 £ X € wy,
(i) P(zg(X),A) = zy(N); A
(i) zy(A) = n as X = Ay — {0}, and Wy
(iii) xn(X) shares its stability with n, in (P3).
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Characterization of Spiral Anchoring
The general mapping
The time 20r—map appearing in the proof of theorem 2 has the form
P(z,\) =z + 27 A1 Fo(z, A1) + AMAaT (2, A) 4+ Aabe (2, A2)]
where 0 # ¢ € R?,

D= (1603 Gy) e et = (2 )

Proposition 3 If Fy,J,G, are real-analytic, and if a(0),c(0) # O, then
P satisfies (P1) — (P4).
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Characterization of Spiral Anchoring
The specific mapping

Proposition 3 also holds for the truncated map Ao

P(z,)) = z + 2r | A1 Fo(z,0) + A2G¢ (=, 0)]
— x4+ QW[AlFO(w) + ,\QGg(x)}.

Let p > 0 and define the map P, : R? x [0, 27] — R?
by

Py(z,s) =z + QWp[COS(S)FO(a:) + Sin(s)Gg(:c)}.
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Characterization of Spiral Anchoring
Analysis of the specific mapping

The fixed point branches in the bifurcation
diagram of P, are in one-to-one correspon-
dence with the curves in the zero set

Zpo (det[Fo(z) Ge(2)]) = Cg U Coo

Cp: fixed point branch through the origin
C¢: fixed point branch through &

Two types of catastrophes: fold and oo

sl
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A
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Characterization of Spiral Anchoring
Bifurcation diagrams

Bifurcation diagrams of P, are 2w —periodic in s.

Elements of Cg are loops and elements of C give rise to two co—catastrophes.
The number of fold catastrophes on any C € Cr is even.

Catastrophes cannot occur at 0,&.

Catastrophes persist under small perturbations.

The bifurcation diagrams of the general mapping and the specific map-
ping are (locally) topologically equivalent.
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Characterization of Spiral Anchoring
Some bifurcation diagrams — Cp = C;

‘ Ch=ll H Bifurcation Diagram ‘

]

]
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Conjectures and Related Work
Publications

Spiral anchoring under n TSB perturbations, with LeBlanc and Mat-
sui, submitted to J. Nonlin. Sci. (2006).

Spiral anchoring under combined TSB and RSB perturbations, sub-
mitted to Nonlinearity (2006).

Epicyclic drifting, submitted to SIADS (2006).
Higher codimension phenomena, waiting for numerical confirmation.

Modified bidomain experiments: with Ethier, not yet submitted.
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