Spiral Anchoring Under Full Euclidean Symmetry-Breaking

A dynamical system approach

Patrick Boily, University of Ottawa

April 29, 2006 Fields Insitute

Spirals in Nature

Static occurrences: snail's shell, seeds in the sunflower, falcon's hunting path, etc.

Dynamic occurrences: hurricanes, galaxies, heart tissue, retina, chemical reactions, slime mold aggregates, flame fronts, etc.

(Hendrey, Ott and Antonsen:2000,Ball:1994).

Why study spirals?

Spiral waves have been linked to disruptions of the heart's normal electrical cycle (Winfree:1995, Witkowski *et.al.*:1998). Most such *arrhythmias* are harmless but if they are

re-entrant in nature and [...] occur [in the ventricles] because of the spatial distribution of cardiac tissue (Keener and Sneyd:1998),

they can seriously hamper the pumping mechanism of the heart and lead to death.

Classification of spiral waves

Spiral propagation is classified according to its *tip path*, which is defined by following an arbitrary point on the wave front in time.

RW MRW (in) MTW MRW (out)

(Movies from Sandstede: 2006)

Barkley's RDS

The prototypical RDS

$$u_t = 50u(1 - u)\left(u - \frac{v+b}{a}\right) + \Delta u$$

$$v_t = u - v,$$

where a, b are system parameters.

RDS can sustain rotating waves (RW), modulated rotating waves (MRW) and modulated traveling waves (MTW).

Barkley's ad hoc ODE system

The 5-dimensional system on $\mathbb{C} \times \mathbb{C} \times \mathbb{S}^1$:

$$\dot{p} = v$$
 $\dot{v} = v \left[f(|v|^2, w^2) + iwh(|v|^2, w^2) \right]$
 $\dot{w} = wg(|v|^2, w^2)$

where $f(\xi,\zeta) = -\frac{1}{4} + \alpha_1 \xi + \alpha_2 \zeta - \xi^2$, $g(\xi,\zeta) = \xi - \zeta - 1$ and $h(\xi,\zeta) = \gamma_0$.

(Barkley and Kevrekidis:1994)

Equivariance of vector fields

Let Γ be a group acting linearly on a vector space X. A family of vector fields $f_{\lambda}: X \to X$ is Γ -equivariant if for all λ ,

$$\gamma \cdot f_{\lambda}(x) = f_{\lambda}(\gamma \cdot x), \quad \forall \gamma \in \Gamma, x \in X.$$

Γ-equivariant ODE systems are such that

x(t) is a solution $\iff \gamma \cdot x(t)$ is a solution for all $\gamma \in \Gamma$.

 $\mathbb{SE}(2)$ -equivariance of RDS

 $\mathbb{SE}(2) \cong \mathbb{SO}(2) \dot{+} \mathbb{R}^2$, with

$$(R_1, S_1) \cdot (R_2, S_2) = (R_1 R_2, S_1 + R_2 S_2), \quad \forall (R_j, S_j) \in \mathbb{SE}(2),$$

acts on function spaces via

$$(\gamma \cdot v)(x) = ((R, S) \cdot v)(x) = v(R^{-1}(x - S)).$$

 $\mathbb{SE}(2)$ -equivariance of RDS:

$$(R,S)\cdot (f(\vec{u})+\Delta\vec{u})=f((R,S)\cdot \vec{u})+\Delta((R,S)\cdot \vec{u}),\quad (R,S)\in \mathbb{SE}(2).$$

Barkley's insight

In a RDS, the linearization at a RW at the onset of Hopf bifurcation has five critical eigenvalues:

- 1. $\lambda_R = 0$ (due to rotational symmetry)
- 2. $\lambda_T = \pm i\omega$ (due to translational symmetry)
- 3. $\lambda_B=\pm i\beta_0$ (responsible for the Hopf bifurcation from RW to MRW and vice-versa)

(Barkley:1992,1994)

Essential dynamics for Hopf bifurcation from a 1-armed spiral

The dynamics are described by a 5-dimensional ODE system on the center bundle $V = \mathbb{SE}(2) \times \mathbb{C}$:

$$\dot{p} = e^{i\varphi} F^p(q, \overline{q})
\dot{\varphi} = F^{\varphi}(q, \overline{q})
\dot{q} = F^q(q, \overline{q}),$$
(1)

where $F^{\varphi}(0) = \omega_{\text{rot}} \in \mathbb{R}$, $F^{q}(0) = 0$ and $DF^{q}(0) = i\omega_{\text{per}} \in i\mathbb{R}$.

RW: q = 0

MRW: q-component has a 2π -periodic solution

(Golubitski, LeBlanc and Melbourne:1997)

 $\mathbb{SE}(2)$ -equivariance of the center bundle equations

 $\mathbb{SE}(2) \cong \mathbb{C} \dot{+} \mathbb{S}^1$, with

$$(p_1,\varphi_1)\cdot(p_2,\varphi_2)=(e^{i\varphi_1}p_2+p_1,\varphi_1+\varphi_2),\quad \forall (p_j,\varphi_j)\in\mathbb{SE}(2),$$
 acts on the center bundle $\mathbb{SE}(2)\times\mathbb{C}$ via

$$(x,\theta)\cdot(p,\varphi,q)=(e^{i\theta}p+x,\varphi+\theta,q),\quad \forall (x,\theta)\in\mathbb{SE}(2).$$

The center bundle system (1) is $\mathbb{SE}(2)$ -equivariant under this action.

Non-Euclidean media

Physical experiments and Nature are not perfectly Euclidean. For instance, cardiac tissue is finite, anisotropic and distributed non-uniformly (Keener and Sneyd:1998).

'Far' from the inhomogeneities, the domain 'looks' Euclidean. Furthermore, if the anisotropy ratio is 'slight', the domain also 'looks' Euclidean.

This partly Euclidean structure translates mathematically via forced Euclidean symmetry-breaking (FESB).

(LeBlanc and Wulff:2000)

Center of anchoring/repelling

A 2π -periodic solution \tilde{p} of the p-component of (1) is called a *perturbed rotating wave of* (1).

It is characterized by its center

$$[\tilde{p}] = \frac{1}{2\pi} \int_0^{2\pi} \tilde{p}(t) dt.$$

If \tilde{p} attracts all nearby solutions, $[\tilde{p}]$ is a center of anchoring. If \tilde{p} repels all nearby solutions, $[\tilde{p}]$ is a center of repelling.

What symmetries are allowed?

Let
$$\xi \in \mathbb{C}$$
. In $\mathbb{SE}(2) = \mathbb{C} \dotplus \mathbb{S}^1$, the group of rotations around ξ is
$$\mathbb{SO}(2)_{\xi} = \{(\xi,0) \cdot (0,\theta) \cdot (-\xi,0) \mid \theta \in \mathbb{S}^1\} < \mathbb{SE}(2)$$

The symmetry-breaking lattice in the TSB case:

Perturbations of the center bundle equations

Let Γ be an element of the symmetry-breaking lattice. A Γ -equivariant perturbation of (1) is a system of ODE of the form

$$\dot{p} = e^{i\varphi} \Big[F^p(q, \overline{q}) + \varepsilon \mathcal{F}^p(p, \overline{p}, \varphi, q, \overline{q}, \varepsilon) \Big]
\dot{\varphi} = F^{\varphi}(q, \overline{q}) + \varepsilon \mathcal{F}^{\varphi}(p, \overline{p}, \varphi, q, \overline{q}, \varepsilon)
\dot{q} = F^q(q, \overline{q}) + \varepsilon \mathcal{F}^p(p, \overline{p}, \varphi, q, \overline{q}, \varepsilon),$$
(2)

where \mathcal{F} is sufficiently smooth, uniformly bounded and commutes with the Γ -restricted $\mathbb{SE}(2)$ -action on the center bundle.

The perturbation \mathcal{F} is not completely arbitrary: the symmetry group Γ plays a role.

1 TSB perturbation – RW

WLOG, assume $\Gamma = \mathbb{SO}(2)_0$. Them, (2) is equivalent to

$$\dot{p} = e^{i\varphi} \left[v + \lambda H(pe^{-i\varphi}, \overline{p}e^{i\varphi}, \lambda) \right]$$

$$\dot{\varphi} = 1$$
(3)

where $v \in \mathbb{C}$, $\lambda \in \mathbb{R}$ is small and H is sufficiently smooth and uniformly bounded in p, \overline{p} .

Theorem 1 (LeBlanc, Wulff:2000)

Set $a=\text{Re}\left[D_1H(-iv,i\overline{v},0)\right]$. If $a\neq 0$, then for all $\lambda\neq 0$ small enough, (3) has a unique family of perturbed rotating waves p_λ with $[p_\lambda]=0$, whose stability is exactly determined by the sign $a\lambda$.

2 simultaneous TSB perturbations – RW

Let $0 = \xi_1 \neq \xi_2$ be the centers of the perturbations: the center bundle equations reduce to

$$\dot{p} = e^{i\varphi} \left[v + \lambda_1 H_1(pe^{-i\varphi}, \overline{p}e^{i\varphi}, \lambda_1) + \lambda_2 H_2((p - \xi_2)e^{-i\varphi}, (\overline{p} - \overline{\xi}_2)e^{i\varphi}, \lambda_2) \right]$$

$$\dot{\varphi} = 1$$
(4)

where $v \in \mathbb{C}$, $\lambda \in \mathbb{R}^2$ is small and H_j is sufficiently smooth and uniformly bounded in p, \overline{p} , j=1,2.

2 simultaneous TSB perturbations – RW

Theorem 2 (Boily:2005)

Let $k \in \{1,2\}$. Set $a_k = \text{Re}\left[D_1H_k(-iv,i\overline{v},0)\right]$. If $a_k \neq 0$, there is a wedge-shaped region of the form

$$\mathcal{W}_k = \{ \lambda \in \mathbb{R}^2 \mid |\lambda_j| < W_{k,j} |\lambda_k|, \ j \neq k \},$$

where $W_{k,j} > 0$ and λ_k is small, such that for all $0 \neq \lambda \in \mathcal{W}_k$, (4) has a unique family of perturbed rotating waves \mathcal{S}^k_{λ} , where $[\mathcal{S}^k_{\lambda}]$ is generically aways from ξ_k , and whose stability is exactly determined by the sign of $a_k \lambda_k$.

2 simultaneous TSB perturbations - Proof (I)

- 1. WLOG, assume k = 1.
- 2. Shift the point of view to $z = p \xi_1 + ie^{it}v$.
- 3. Set $\lambda_2 = \lambda_1 \varepsilon_2$, $\lambda_1 \neq 0$.
- 4. (4) rewrites as $\dot{z} = \lambda_1 e^{it} K(ze^{-it}, \overline{z}e^{it}, t, \lambda_1, \varepsilon_2)$.
- 5. Set $a_1 = \operatorname{Re} \left[D_1 H_1(-iv, i\overline{v}, 0) \right]$.
- 6. Near $(z, \lambda_1, \varepsilon_2) = (0, 0, 0)$ the time 2π -map of the above system is

$$P(z,\overline{z},\lambda_1,\varepsilon_2) = z + 2\pi\lambda_1 \left[a_1 z + O\left(|z|^2\right) + O\left(\lambda_1,\varepsilon_2\right) + \text{h.o.t.} \right]$$

2 simultaneous TSB perturbations - Proof (II)

- 7. By the IFT, there is a unique family $z(\lambda_1, \varepsilon_2) \not\equiv 0$ of fixed points of P with z(0,0)=0.
- 8. Eigenvalues $\eta_{1,2}$ of $DP(z(\lambda_1, \varepsilon_2), \lambda_1, \varepsilon_2)$ satisfy

$$|\eta_{1,2}(\lambda_1,\varepsilon_2)| = 1 + 4\pi a_1 \lambda_1 + O\left(\lambda_1^2,\varepsilon_2\right).$$

- 9. If $a_1 \neq 0$, the fixed points are hyperbolic, with stability $a_1 \lambda_1$.
- 10. Each fixed point $z(\lambda_1, \varepsilon_2)$ of P corresponds to a perturbed rotating wave S_{λ_1, λ_2} of (4).
- 11. $[S_{\lambda_1,\lambda_2}] = \xi_1 + O(1)$ as $\lambda_1 \to 0$ and $\lambda_2 \neq 0$.

Perturbed FHN with 2 TSB terms

Consider the perturbed FHN system of equations:

$$u_t = \frac{10}{3} \left(u - \frac{u^3}{3} - v \right) + \phi_1 + \Delta u$$

$$v_t = 0.3(u + 0.6 - 0.5v - \phi_2),$$

with

$$\phi_j(x) = \sqrt{2}\cos(0.05\pi)0.12f(x-c_j)$$
, for $j=1,2,$ and $f(x)=\exp(-0.00086||x||^2)$, $c_1=(9,0)$, $c_2=(-10,5\sqrt{3})$.

Perturbed FHN with 4 TSB terms

Consider the perturbed FHN system of equations:

$$u_t = \frac{10}{3} \left(u - \frac{u^3}{3} - v \right) + \phi_1 + \Delta u$$

$$v_t = 0.3(u + 0.6 - 0.5v - \phi_2),$$

with

$$\phi_1(x) = 0.12f_1(x - c_1) - 0.10f_2(x - c_2)$$

$$\phi_2(x) = -0.12f_1(x - c_3) + 0.08f_3(x - c_4),$$

$$f_j(x) = \exp(a_j||x||^2), \ j = 1, 2, 3,$$

$$a_1 = -0.00086, \ a_{2,3} = -0.0008, \ c_1 = (9, 0),$$

$$c_2 = (-1, 10), \ c_3 = (-10, 5\sqrt{3}), \ c_4 = (10, 10).$$

Homotopy/Hysteresis in a modified Oregonator (I)

Consider the modified Oregonator:

$$u_t = 20 \left(u - u^2 - (1.4v + \phi) \frac{u - 0.002}{u + 0.002} \right) + \Delta u$$

$$v_t = u - v + 0.6 \Delta v,$$
(5)

with

$$\phi(x) = \sum_{j=1}^{2} \alpha_j \exp(-\|x - c_j\|^2),$$

where $\alpha_j, \in \mathbb{R}$, $c_1 = (15, 15)$ and $c_2 = (18.75, 15)$.

Homotopy/Hysteresis in a modified Oregonator (II)

Along $\alpha(\tau) = \gamma_1(t) = 0.01(\cos(\tau), \sin(\tau))$ in parameter space, (5) undergoes homotopy of perturbed rotating waves.

Along the path $\alpha(\tau) = \gamma_2(t) = \frac{1}{10}\gamma_1(\tau)$ in parameter space, (5) undergoes hysteresis of perturbed rotating waves.

Homotopy/Hysteresis in a modified Oregonator (III)

Characterization of Spiral Anchoring The set-up

Let n = 2, $0 \neq \xi \in \mathbb{R}^2$, $\eta \in \{0, \xi\}$, $\Lambda_0 = \{(\lambda_1, 0)\}, \Lambda_{\xi} = \{(0, \lambda_2)\}$ and $P : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ be a real analytic map with:

- (P1) $P(x,0) \equiv x$ and $DP(x,0) \equiv I$;
- (P2) $\exists \omega_* > 0$ such that $P(\eta, \Lambda_{\eta}) \equiv \eta$ for all $||\Lambda_{\eta}|| < \omega_*$;
- (P3) η has the same stability for all $0<\|\Lambda_\eta\|<\omega_*$, and ...

The set-up (II)

(P4) ... around each axis Λ_{η} , there is a parameter wedge region w_{η} in which P has a (locally) unique fixed point-manifold $x_{\eta}(\lambda)$ such that, for all $0 \neq \lambda \in w_{\eta}$,

(ii)
$$x_{\eta}(\lambda) \rightarrow \eta$$
 as $\lambda \rightarrow \Lambda_{\eta} - \{0\}$, and

(iii) $x_{\eta}(\lambda)$ shares its stability with η , in (P3).

The general mapping

The time 2π -map appearing in the proof of theorem 2 has the form

$$\mathcal{P}(x,\lambda) = x + 2\pi \left[\lambda_1 \mathcal{F}_0(x,\lambda_1) + \lambda_1 \lambda_2 \mathcal{J}(x,\lambda) + \lambda_2 \mathcal{G}_{\xi}(x,\lambda_2) \right],$$

where $0 \neq \xi \in \mathbb{R}^2$,

$$D_x \mathcal{F}_0(x, \lambda_1) = \begin{pmatrix} a(\lambda_1) & -b(\lambda_1) \\ b(\lambda_1) & a(\lambda_1) \end{pmatrix} \quad \text{and} \quad D_x \mathcal{G}_{\xi}(x, \lambda_2) = \begin{pmatrix} c(\lambda_2) & -d(\lambda_2) \\ c(\lambda_2) & d(\lambda_2). \end{pmatrix}$$

Proposition 3 If \mathcal{F}_0 , \mathcal{J} , \mathcal{G}_{ξ} are real-analytic, and if $a(0), c(0) \neq 0$, then \mathcal{P} satisfies (P1) - (P4).

The specific mapping

Proposition 3 also holds for the truncated map

$$P(x,\lambda) = x + 2\pi \left[\lambda_1 \mathcal{F}_0(x,0) + \lambda_2 \mathcal{G}_{\xi}(x,0) \right]$$
$$= x + 2\pi \left[\lambda_1 F_0(x) + \lambda_2 G_{\xi}(x) \right].$$

Let ho>0 and define the map $P_{
ho}:\mathbb{R}^2 imes [0,2\pi] o \mathbb{R}^2$ by

$$P_{\rho}(x,s) = x + 2\pi\rho \Big[\cos(s)F_0(x) + \sin(s)G_{\xi}(x)\Big].$$

Analysis of the specific mapping

The fixed point branches in the bifurcation diagram of P_{ρ} are in one-to-one correspondence with the curves in the zero set

$$\mathcal{Z}_{\mathbb{R}^2}\left(\det[F_0(x) \ G_{\xi}(x)]\right) = \mathcal{C}_{\mathsf{B}} \sqcup \mathcal{C}_{\infty}$$

 C_0 : fixed point branch through the origin

 C_{ξ} : fixed point branch through ξ

Two types of catastrophes: fold and ∞

Bifurcation diagrams

Bifurcation diagrams of P_{ρ} are 2π -periodic in s.

Elements of \mathcal{C}_B are loops and elements of \mathcal{C}_∞ give rise to two $\infty-$ catastrophes.

The number of fold catastrophes on any $C \in \mathcal{C}_{B}$ is even.

Catastrophes cannot occur at $0, \xi$.

Catastrophes persist under small perturbations.

The bifurcation diagrams of the general mapping and the specific mapping are (locally) topologically equivalent.

Some bifurcation diagrams $-C_0 = C_{\xi}$

Conjectures and Related Work Publications

Spiral anchoring under n TSB perturbations, with LeBlanc and Matsui, submitted to J. Nonlin. Sci. (2006).

Spiral anchoring under combined TSB and RSB perturbations, submitted to *Nonlinearity* (2006).

Epicyclic drifting, submitted to SIADS (2006).

Higher codimension phenomena, waiting for numerical confirmation.

Modified bidomain experiments: with Ethier, not yet submitted.