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In their proposed compactification of superstring,
Candelas, Horowitz, Strominger and Witten took
the metric product of a maximal symmetric four
dimensional spacetime M with a six dimensional
Calabi-Yau vacua X as the ten dimensional space-
time: they identified the Yang-Mills connection
with the SU(3) connection of the Calabi-Yau met-
ric and set the dilaton to be a constant. To make
this theory compatible with the standard grand
unified field theory, Witten and Horava-Witten
proposed to use higher rank bundles for strong
coupled heterotic string theory so that the gauge
groups can be SU(4) or SU(5). Mathematically,
this approach relies on Uhlenbeck-Yau'’s theorem
on constructing Hermitian-Yang-Mills connections

over stable bundles.



A. Strominger analyzed heterotic superstring
background with spacetime sypersymmetry and
non-zero torsion by allowing a scalar “warp factor”
to multiply the spacetime metric. He considered
a ten dimensional spacetime that is the product
M x X of a maximal symmetric four dimensional
spacetime M and an internal space X; the metric
on M x X takes the form
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The connection on an auxiliary bundle is
Hermitian-Yang-Mills over X :

FAw' =0, F¥=F%=0
B )

Here w is the hermitian form w = /~1g,;dz'dz’.

In this system, the physical relevant quantities are

¢ = élﬂg 121] + @,
and
giy = €[Ql1gy;,
for a constant ¢y. The spacetime supersymmetry

forces D(y) to be the dilaton field.



In order for such ansatze to provide a supersym-
metric configuration, one introduces a Majorana-

Weyl spinor € so that

1 = :
0 _ 700 260 0170 _ 1950y,.0 _
0¢; = Vie + 15 (vjH" — 12h;)e” = 0,
1

SN0 = VO¢pe® + ﬁe%hﬂe“ =0,
6x’ = e?F,;I" e’ = 0,
where 9° is the gravitano, A is the dilatino, y°
is the gluino, ¢ is the dilaton and h is the Kalb-
Ramond filed strength obeying

dh=trtFAF —-trRAR
ﬁﬂﬂvz-z—m_—;%



Write

aun = € °gon
o e—c,u,fzgc.
Wy = e 2 (ﬂf{f . %T?” )\D)
A = eP/2)° B
Tu= egf"ffw,

Then

1
Vme — 1 Hme =0

(X p)e + %Ha — 0.



Then there exist positive and negative chirality
spinors n4 that are H-covariantly constant. (The
three form H sy p defines a connection. Note that
we assume ¢ depends only on K and the compo-
nents of A tangent to the maximally symmetric

spacetime vanish.)

We normalize

’Gl’ﬁ'ﬂ: = 1.

Then
S I

is an almost complex structure.



JI' is H-covariant constant

V-m.J}? — H? J°— H® ]’” = (.

L R 0

It is integrable.
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The Kahler form is
1

w= EJ;gnp dz™ A dx

— ﬁgaﬁ dz® A dz°

and the torsion is

H = g(ﬁ — O)w.



The holomorphic n form is given by

Q = €9 Ta,ag0m— d2° - -+ d2™.
e -
It turns out that

1
b — 3 In ||€2]] is a constant.

_—

Since 0 A =’-£-l-,r
-8V + J, Vi =0

and

S
kd*w —V=1(0—-0)In||©

w=0

and we arrive at the equation of Strominger.
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Two ways to solve

the Strominger system

I. Perturbation method (with Jun Li)

When the vector bundle is direct sum of tangent
bundle plus trivial bundle and the manifold is
Calabi-Yau, the Strominger system can be solved
trivillay. (The hermitian Yang-Mills connection
1s simply the Levi-Civita connection plus trivial

connection.)



Let B be smooth family of holomorphic vector
bandles over X. Let hy be a Hermitian Yang-

Mills connection on E.

Then we like to extend hy to be a smooth family

of Hermitian—Yang Mills connection.
The interesting case is when hy is reducible.

Let (X, wp) be Kahler. Let (E, DY) and (E>, DY)
be degree zero and slope-stable vector bundles.
Let h; and hs be the Hermitian metrics on Ej
and FEy respectively. Then h; & ihg is still a

Hermitian metric corresponds to the connection

VT Y/ I
U_DIEBDQ'
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Suppose we are given a deformation of holomor-
phic structure D” of DJ. Then Kodaira—Spensor
identifies the first order deformation of DY at 0 to

an element

ke H(X, e ®¢)

F .

where € is the sheaf of holomorphic section s of

(E, Dg). Therefore

k€ @ H' (€] 8¢)).
p—
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Theorem Suppose ks and ks, are nonzero.

Then there is a unique t so that for s sufficiently

small ho(t) = h; e’ hy extends to a smooth family

of Hermitian—Yang-Mills metric on (E, D).

17



The fourth equation of Strominger system is equiv-
alent to

d (J|92f.w?) = 0.

bdprcds

Let H(X) be the cone of positive definite Her-
mitian form on X. Let H(F)y be the space of
determinant one Hermitian metric on the bundle
E (i.e., the induced metric on A"E ~ Cyx is the

constant one metric).



We define

L=L® L& Ls:
H(E) x H(X) —
O33(End’E) @ Im v—100 @ Im d,

where

Li(H,w) = V—-1Fy A o

Ly(H,w) = V—190w — trg(Fy A Fy)
+ trp(Rg A Ry)

Lo(H, ) = s (I922)

We shall apply implicit function theorem to L.

in



Fix a determinant one Hermitian metric (, ) on
E. We can write other determinant one Hermi-
tian metric on £ by a unique positive definite
(, )-Hermitian symmetric endomorphism H of E

satistying det H = 1.

Such spaces of H will be denoted by I'(End; E).
Identity I € I'(End; E).

The tangent space at I is I'(End) E) traceless sym-

metric endomorphisms of E.
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0Ly (1, wo)(dh, dw)

D"Dy6h +2Fy A wy A 6w

§Lo(I,wp)(Sh, bw)

V—190(6w) — 2(trgd F1(6h) A Fr)
+trrd Ry (0g) N Ry,

6 L3(I,wp)(dh, dw)

2% (6w) — d((8w, wo)wp).

21



Construction of irreducible solution to Stro-

minger’s system perturbatively.

Start with a Calabi—Yau manifold,
(B,Dp) =0y & Tx,

the metric is identified with I : F — E.

For all ¢ > 0, (I, cwyp) is a solution to L = 0.

22



Let

Wi = Q" (EndyE) 1

-2

Wy = (Im v —109) g, ®(Imdg),

Vo = {A ®alr, | A€ End @T{F_m
are constant matrices such that

A=A trA+3a=0 }
Vi =wp @ V.

Then 4 C' > 0 such that for all ¢ > C,

6L1 (I, Cw.[]) ) 5LQ(I, CLLJ[]) > (SLC',(I C{U{})
F(EndgE)Li & V(X)) — W/ Vi @ W

1s surjective.
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Theorem. Let X be a Calabi-Yau 3-fold with w
a Ricci flat Kéahler form. Let D” be a smooth de-
formation of holomorphic structure D on E =

Cx @ Tx. Suppose the associated cohomology

classes [C9] and [Cay] are non-zero. Then for suf-
ficiently large ¢ there is a family of pairs of Hamil-
tonian metrics and Hamiltonian forms (Hy, w;) for

0 < s < € so that

1. wp = cw and the harmonic part of w, is equal
e——

to cw.

2. The pair (H;,ws) is a solution to Strominger’s
system for the holomorphic vector bundle

(E,D").



Let

D! = D+ As, A, € Q" (End E)
_ Cn Ch 0,1 (..
Ay = (021 022) € " (End E).

We can assume Cj; are D

HY(X,0x)=0,Cn =0.

harmonic.  Since
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In general, we consider the r + 3 holomorphic vec-

tor bundle C%" & Tx. We also have
X X

0 C
DH — ?12
. (Czl fzz)

Cl:}j = (al: 2 :O‘{-}')f = Qﬂ’-l (TX )'S?

Co=(Br,...,0) € QU‘I(Tf)EBj
Cyp € QG’](EHd Tx).

where

Suppose [, ..., [a] € HY(X,T%) are linearly
independent and [31],...,[3] € H'(X,Ty) are
linearly independent. Then the above theorem

holds.



Example

Consider

X={z+ 42 =0} c P

0 0

Here F' is the kernel of Ox(1)%* — Ox(5) and
fill in

0 — Ox — F —TX — 0




The above sequence is a non-split extension.

Making use of this element in Ext!(Ty, Ox) we
can form a deformation of holomorphic structure

D;’ of that O]g # D, C‘g_l 74 0,

Hence we have proved:

Theorem. Let X be a smooth quintic threefold
and w be any Kahler form on X. Then for large
¢ > 0, there is a smooth deformation of Cx &
T’x so that for small s, there are pairs (H,, w,) of
Hermition metrics on E and Hermition forms w.

on X. That solves Strominger’s system.
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For the Calabi-Yau manifold with three genera-

tion that 1 constructed:
X cP’x P’

given by

Zm?:(]
D Yi=0
Ziﬂz"yi=0

quotiented by Zjs. One can also construct irre-

ducible solution to Strominger’s system on 7T°X &

a2
ce2.
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II. Construction method on the non-

Kihler case (with Jixiang Fu)

The most common examples of non-Kaehler mamni-
folds X are some T bundles over Calabi-Yau vari-
eties by K.Berk, M.Berk, K.Dasgupta, P.5.Green,
E.Sharpe, G.L.Cardoso, G.Curio, G.Dall’Agata,
E.Goldestein, S.Prokushkin, S.Gurrieri, J.Lious,
A Micu, D.Waldram, S.Kachru, M.B.Schulz,
P.K.Tripathy. Because internal six manifold
X is a complex manifold with a non-vanishing
holomorphic three form €, at first we may comsid-
erthe T2 bundles (X, w, Q) over complex surfaces
(S, ws, s) with non-vanishing holomorphic 2-
form Qg. According to the classification of
complex surfaces by Enriques and Kodaira, such

surfaces include K3 surface and complex torus

30



(Calabi-Yau) and Kodaira surface (non-Kahler).

If (X, w, ) satisfies the Strominger’s equation (4),
then the above Lemma tells us that d(|| || w?) =
0. If we let W' =|| ||% w, then dw” = 0. Michel-
son called w’ balanced metric. Because holomor-
phic submersion 7 from X to complex surface S is
proper, Michelson proved that S is also balanced
(actually m,w™ is the balanced metric). Note that
when dim¢ = 2, the conditions of being balanced
and Kaehler are equivalent. So S is Kaehler. Then
there is no solution to Strominger’s equation on
T bundles over Kodaira surfaces (which is not
Kahler) and we should only consider the case of

K3 surface and complex torus.
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We construct this solution on some torus bun-

dles over K3 surface or complex torus provided

by Goldstein and Prokushkin. Let (S, wg, 2g) be

a K3 surface or complex torus with Kahler form
wg and a non-vanishing holomorphic (2,0) form
Q. Let;_u:rl and wy are anti-self-dual (1,1) forms
on (S, wg) such that 51 and 52 represent integral
cohomology classes. Using these two forms, Gold-
stein and Prokushkin constructed the non-Kahler
manifold X such that # : X — S is a holo-
morphic T fibration over S with hermitian form
Wy = Trwg + @9 A 0 and holomorphic 3 form
Q = Qg A0, where 6 = 0, ++/—16,, (6,,6,) is the

r_
connection on the principal toric bundle X over S

such that df; = T wj.

32



Goldestein and Prokushkin have studied the coho-

mology of this non-Kahler manifold X :
AYO(X) = W1(S),
KM (X) = M) + 1.
In particular
(X)) = AMO(X) + 1.
Moreover,

bi(X) = bi(S)+ 1, when wy = nwy,
bi(X) = bu(S),  when w; # nwy;
bo(X) = bo(S) — 1, when we = nwy,
bo(X) = ba(S) — 2, when wy # nw,

and

ba(X) = 0.
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Let Ly and Ly be holomorphic line bundles over S
such that their first Chern class are ¢;(L,;) = [—3]
and cz(La) = [—52] respectively. Then we can
choose hermitian metrics by and hy on Ly and Lo

such that their curvature forms are /—1lw; and

AV 1(.4.)2. Let

E=Li® LTS

and

Hﬂ == (hl'.l hﬂa UJS).
Then
FHﬂ = diag(v —lwl, vV —Iwg, RS)

Let u be any smooth function on S and let

[wu =" (e“wg) + 7_19 A6 !

T —

Then (V = n*E, Fxp,, X, w,) satisfies the Stro-

minger’s equation (1), (2) and (4). So we should
“
only need to consider the equation (3).
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Because w; and ws are harmonic, locally we can

write

wy = O¢ = O(p1dzy + dadzs)

wy = O = O(Pdz, + Podz)

where (z1, z2) is the local coordinate on S. Let

A= (oI
b2 + V=11,

Using matrix A we can calculate the curvature R,

of metric w, and R, A\ R,,.

35



Theorem (V = 7*E, Fspg,, X,w,) is the so-
lution of Strominger’s system if and only if the

function u of S satisfies the equation

2

a.e“'%+85(e‘%r(5AAaA*-g‘l))+8§ma§u =

e

where ¢ is the metric corresponding to Kahler
form wg. In particular, when wy = nwy, n € Z,
(V, Frepgg, X,wy) is the solution to Strominger’s

system if and only if smooth function u on S sat-

isfies the following equation:

36



Actually we can prove that
—v/—1tr(GA A DA™ - QE])

is a well-defined real (1,1)-form on S. In particu-
lar, when ws = nwy, n € Z,

. 14 n? c
—V/—1tr(0A N DA* - g5') = 1 | wr lI5g ws.

Let f = Hn) | wy ||? and let

g£j=(€u—ft’3' gﬁj Tj ?9

F

then we can rewrite the equation (7) as
det g;}
det g;;

— (e"— fe™™)* + 2(e" + fe ™) | vu |7

26" Af—detgu-yf

a7



Zeroth order estimate

The estimate of inf u can be derived from elliptic
condition and normalization. Timing elliptic con-

dition e* — fe™ > Awu by pe 7" and integrating
[Ivetps? [
s 4 .Js
Using Moser iteration and Poincare inequality,
exp(—infu) =|| e™ o< Co || €7 ||7

where

B=TJt-2
B=1

349



The estimate sup u can be derived from the equa-

tion. Define the elliptic operator P = 2¢' ?f};?j

We have two methods to calculate

Aok o
/ (:%E'F‘%'r')————(let % wi.
IS det g;; 2!

Combining, we can get that for all p > 2,

/S | v(e")? PP< COP/SE(P—ZJH

Then using the Moser iteration and Poincare in-

equality, we can get the estimate of sup u.
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Gradient estimate

Let

i}('u,} s e4slipu—2u_.r EZu.m-is.upu.

We compute

det g;j

det g;5

P(n | vu |* +Inv(u))

at the point g where In | S7u |* + Inv(u) achieves

its maxiumum. Then we can get

4supu—2inf u 2inf u—4supu
; é + e
| vu [°< 01( )

(82 supu | e—2sup u)
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Second order estimate

By elliptic condition, (" — fe™)g,; — 4u,; is pos-
itive definite. So to get a second order estimate of
u it sufficient to have an upper bound estimate of
e'—fe "—Au. At the point where e*— fe ™™ —Au

achieves its maximum, we have
!
det 95

det g,
> (b)) — Ay —Cx

Pe" — fe ™ — Au)

Then inf Au follows.
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Third order estimate

Let
T = gﬁgﬂuﬁuﬁ
U = ¢" g ¢ ugjtins
() = g;z‘jgfkfgrpquikpuﬁq
W = gm’j gfk.!_ gfpg Qfﬁuz'l_pru}kéjs
Y = g™ g™ g w54
Let

Z = (k1 — Au)U + ka(m — Au)T

+K3 | /U |2 T + FL4T

where all x; are positive constants and m is a fixed

constant such that k1 —Au > 1 and m—Au > 0.
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At the point where Z achieves the maximum, we

get,

P(Z) >

ma_ .o -

ity B O Gy ¢
4 3
my g

—f—?kzﬁ-ng + 7&1@ s C3

Mo

2

where kg = pny e AL denote constant which de-

pend on f, S and u up to second order derivations.

Above inequality gives the estimates of the quan-

tity supg U and supg7’. This in turn gives the

estimates of u;;;, and u;.
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Because deg L; = 0 and T'S is slope stable with

respect to the Hodge class wg, we can prove

There is a family D7 of deformations of holo-
morphic structures of E so that its k-th order
for £ < m Kodaira-Spencer class x all vanish
while its m-th order Kodaira-Spencer class has
non-vanishing summands in H'(LY ® T'S) and

HYTSY @ L;).
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Fix the metric Hy as the reference metric on F
over S. Then for any hermitian metric H on E,

we can define a smooth endomorphism h on E by

(8,t)n = (s-h,t)m,.

Under this isomorphism, we define H(E')y be the
space of all hermitian metric on £ whose cor-
responding endomorphism has determinant one.
Let C(ws) = {ews} be the space of all hermi-

tian metrics on S which are conformal to wg. Let

Ho(S) = {wir | [sva =0},

46



We define the operator

Ls=Lsy ®Lsa: Ho(E) x Cws)
— Qp(End’E) & Ho(9)

by

Le1(h, e®ws) = e?h2F, 4h% A wg

Ls 2(h, e®ws) = v/ —100(e* %wg)
+00(e " %tr(0A A DA* - g:))
+88(u + ) A 80(u + ¢)

1
—E(tI‘FS’h -‘/\ FS,h o trFS:Hﬂ /\ FS'IIU)



If (h,e%ws) € ker Lg, then

\

5

24

)

| —1 ~
(V = ‘?T*E; TT*D::;’& ?T*h’} W*(Eul-{1¢wr5r) 5l fﬁ Ay :

/

is the solution of Strominger’s system. Because

V =n*E, n*D{, n* Hy, w,) is our reducible solu-
y 0> ’

tion, (I, wgs) € ker Lyg.



Using the perturbation method, we can prove

Theorem Let (E, Hy, S, ws) be as before. Fix
its holomorphic structure Df. Then there is a
smooth deformation D” of (E, D) so that there
are hermitian metric H, on £ and hermitian met-

ric e¥t%sws on S such that

" o= i}
(V—W*E,?T*D” 7 H,, ("™ wg) + 3 h )

are the irreducible solutions to strominger’s system
on X and so that lim,_.g¢; = 0 and im,_.o H;is a
regular reducible hermitian Yang-Mills connection

on E=Li® L, dTS.
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