Analysis of QCD via Supergravity

Shigeki Sugimoto (YITP)

based on: T. Sakai and S.S.

hep-th/0412141

hep-th/0507073

What is nice?

- QCD is one of our favorite QFT.
- We can use
 - * knowledge of QCD
 - * experimental data

to test the conjectured gauge/gravity duality.

- A new way to analyze QCD.
 - → application to phenomenology
- Anyway, it is fun!

Outline

1 Construction of QCD

* building blocks

Yang-Mills

D4-brane on S^1 with $\lambda(x^{\mu}, \tau) = -\lambda(x^{\mu}, \tau + 2\pi M_{KK}^{-1})$

 $4 \dim \mathcal{N} = 4 \text{ super YM}$

fermion

4 dim pure YM

Corresponding SUGRA solution is known. [Witten 1998]

quarks

Add probe D8-branes.

cf) KMMW model: D4 + probe D6

[Kruczenski-Mateos-Myers-Winter 2003]

* the brane configuration

		x^0	x^1	x^2	x^3	au	x^5	<i>x</i> ⁶	x^7	x^8	x^9
D4	$\times N_c$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_	_	_	_	_
D8- <u>D8</u>	$ imes N_f$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	D4	D8	D8
	$U(N_c)$	$U(N_f)_L$	$U(N_f)_R$
A_{μ}	adjoint	1	1
$ \psi_L $	N_c	N_f	1
ψ_R	N_c	1	N_f

4 dim $U(N_c)$ QCD with N_f massless quarks

2 Supergravity description

★ Probe approximation

We assume $N_c\gg N_f$

Only D4-brane is replaced with the SUGRA solution. $D8-\overline{D8}$ pairs are treated as probes.

The metric of the corresponding D4 solution is

$$\lambda = g_{\text{YM}}^2 N_c - \lambda l_s^2 \left[\frac{4}{9} M_{\text{KK}}^2 u^{3/2} (\eta_{\mu\nu} dx^\mu dx^\nu + f(u) d\tau^2) \right] + u^{-3/2} \left(\frac{du^2}{f(u)} + u^2 d\Omega_4^2 \right) \right] \qquad (\tau \sim \tau + 2\pi M_{\text{KK}}^{-1})$$
 where
$$f(u) \equiv 1 - 1/u^3 \qquad \text{radial direction, bounded as } u \geq 1$$

3 Exploration

highlights

- Chiral symmetry breaking
- Unification of mesons
- Construction of baryons
- mass & couplings
- vector meson dominance

* Chiral symmetry breaking

We replace D4 with the SUGRA sol.

D8 and D8 must be connected in the D4 background.

interpreted as the chiral symmetry breaking!

$$U(N_f)_L imes U(N_f)_R o U(N_f)_V$$
 \updownarrow
 $D8$ connected $D8$

★ Where are mesons?

closed string → glueballs

→ open string → mesons

The effective theory is a 9 dim $U(N_f)$ gauge theory

$$A_{\mu}(x^{\mu},z, heta^{i}), A_{z}(x^{\mu},z, heta^{i}), A_{i}(x^{\mu},z, heta^{i})$$

* Today, we only consider

the SO(5) singlet states, for simplicity.

(mesons in realistic QCD live in this sector)

reduced to | 5 dim $U(N_f)$ gauge theory $A_{\mu}(x^{\mu},z), A_{z}(x^{\mu},z)$

$$(u^3 = 1 + y^2 + z^2)$$

8-brane action

•
$$S_{D8}^{DBI} \simeq -T \int d^9x \, e^{-\phi} \sqrt{-\det(g_{MN} + 2\pi\alpha' F_{MN})}$$

• $\int d^9x \, e^{-\phi} \sqrt{-g} g^{MN} g^{PQ} F_{MP} F_{NQ} + \cdots$

Inserting the SUGRA solution,

$$S_{\text{D8}}^{\text{DBI}} \sim \kappa \int d^4x dz \operatorname{Tr}\left(\frac{1}{2}K(z)^{-1/3}F_{\mu\nu}^2 + M_{\text{KK}}^2K(z)F_{\mu z}^2\right)$$

$$\kappa \equiv \frac{\lambda N_c}{108\pi^3}$$
 $\sim \int C \wedge {
m Tr} e^{F/2\pi} \sim \int dC_2 \wedge \frac{1}{1000} \omega$

$$S_{D8}^{CS} \simeq \int_{9} C \wedge \operatorname{Tr}e^{F/2\pi} \sim \int_{9} dC_{3} \wedge \frac{1}{3!(2\pi)^{3}} \omega_{5}(A) + \cdots$$

$$CS 5 - \text{form}$$

$$\frac{1}{2\pi} \int_{S^{4}} dC_{3} = N_{c}$$

$$S_{D8}^{CS} \sim \frac{N_{c}}{24\pi^{2}} \int_{5} \omega_{5}(A)$$

$$CS 5 - \text{form}$$

$$d\omega_{5}(A) = \operatorname{Tr} F^{3}$$

$$\frac{1}{2\pi} \int_{S^4} dC_3 = N_c \qquad \Longrightarrow \qquad S_{D8}^{CS} \sim \frac{N_c}{24\pi^2} \int_5 \omega_5(A)$$

This 5 dim YM-CS theory is considered as the effective theory of mesons.

[cf) Son-Stephanov 2003]

 $K(z) \equiv 1 + z^2$

mode expansion

$$A_{\mu}(x^{\mu},z)=\sum_{n}B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z)$$
 some complete $A_{z}(x^{\mu},z)=\sum_{n}\varphi^{(n)}(x^{\mu})\phi_{n}(z)$ sets

- lacktriangle To diagonalize kinetic & mass terms of $B_{\mu}^{(n)}, arphi^{(n)}$,
 - \star choose $\{\psi_n\}_{n>1}$ as eigen functions satisfying

$$-K^{1/3}\partial_z(K\partial_z\psi_n) = \frac{\lambda_n}{\mu_n}\psi_n, \quad \int dz \, K^{-1/3}\psi_n\psi_m = \delta_{nm}$$

 \bigstar choose $\{\phi_n\}_{n\geq 1}$ as $\phi_n(z)=\partial_z\psi_n(z)$ $(K\equiv 1+z^2)$

In addition, we have one more normalizable mode

$$\phi_0(z) = rac{c}{K(z)} \qquad \left(egin{array}{l} \int dz \, K \phi_0 \phi_n \propto \int dz \, \partial_z \psi_n = 0 \ \int dz \, K \phi_0^2 < \infty \end{array}
ight)$$

Using these, we obtain

massless

In summary,

$$A_{z}(x^{\mu},z) = \varphi^{(0)}(x^{\mu})\phi_{0}(z) + \varphi^{(1)}(x^{\mu})\phi_{1}(z) + \varphi^{(2)}(x^{\mu})\phi_{2}(z) + \cdots$$

$$\downarrow \text{ eaten } \qquad \downarrow \text{ eaten }$$

$$B_{\mu}^{(1)}(x^{\mu})\psi_{1}(z) + B_{\mu}^{(2)}(x^{\mu})\psi_{2}(z) + \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

 π, ρ, a_1, \cdots are unified in the 5 dim gauge field!

\bigstar Comments on J^{PC}

- Parity: $(x^1, x^2, x^3, z) \to (-x^1, -x^2, -x^3, -z)$
- ullet Charge conjugation : $A_M
 ightarrow -A_M^T$ and $oldsymbol{z}
 ightarrow -oldsymbol{z}$

	$\varphi^{(0)}$	$B_{\mu}^{(odd)}$	$B_{\mu}^{(even)}$
J^{PC}	0-+	1	1++
	pseudo-scalar	vector	axial-vector

★ Consistent with our interpretation.

$$\pi \sim \varphi^{(0)}, \quad \rho \sim B^{(1)}, \quad a_1 \sim B^{(2)}, \quad \text{etc.}$$

★ Prediction: vector and axial-vector mesons appear alternately.

 $(\triangle \dots \text{ not established})$

* mass spectrum

The mass of the n-th meson is given by

$$(\text{mass})^2 = \lambda_n M_{\text{KK}}^2$$

where λ_n is the eigen value of the equation

$$-K^{1/3}\partial_z(K\partial_z\psi_n) = \frac{\lambda_n}{\mu_n}\psi_n$$
$$\int dz K^{-1/3}\psi_n\psi_m = \delta_{nm}$$

★ Let us solve this numerically, to see if our model is too bad or not.

We should not be too serious, since the approximation is very crude.

e.
$$\begin{pmatrix} N_c \gg N_f \sim \mathcal{O}(1) \\ E \ll M_{\mathsf{KK}}, \ m_q = 0, \\ \mathsf{etc.} \end{pmatrix}$$

Results:
$$\lambda_n \simeq 0.669, 1.57, 2.87, \cdots$$

$$\frac{\lambda_2}{\lambda_1} \simeq \frac{1.57}{0.669} \simeq 2.35 \qquad \text{(our model)}$$

$$\frac{m_{a_1}^2}{m_{\rho}^2} \simeq \frac{(1230\text{MeV})^2}{(776\text{MeV})^2} \simeq 2.51 \qquad \text{(experiment)}$$

$$\frac{\lambda_3}{\lambda_1} \simeq \frac{2.87}{0.669} \simeq 4.29 \qquad \text{(our model)}$$

$$\frac{m_{\rho(1450)}^2}{m_{\rho}^2} \simeq \frac{(1465\text{MeV})^2}{(776\text{MeV})^2} \simeq 3.56 \qquad \text{(experiment)}$$

* chiral symmetry

We have implicitly assumed

$$A_M(x^{\mu}, z) \rightarrow 0$$
, $(z \rightarrow \pm \infty)$
 $M = 0 \sim 3, z$

Residual gauge symmetry

$$g(x^{\mu},z)\in U(N_f)$$
 s.t. $g(x^{\mu},z) o g_{\pm}$, $(z o \pm \infty)$

This is interpreted as

$$(g_+,g_-) \in U(N_f)_L \times U(N_f)_R$$

If you want to 'gauge' the chiral symmetry,

$$g_{\pm} \longrightarrow g_{\pm}(x^{\mu})$$

the corresponding gauge fields appear as

$$A_{\mu}(x^{\mu},z) \to A_{\pm\mu}(x^{\mu})$$
, $(z \to \pm \infty)$

• Define
$$U(x^{\mu}) \equiv P \exp \left\{-\int_{-\infty}^{\infty} dz' A_z(x^{\mu}, z')\right\}$$

transforms as

$$U(x^{\mu}) \to g_{+}U(x^{\mu})g_{-}^{-1}$$
 $(g_{\pm} \equiv \lim_{z \to \pm \infty} g(x^{\mu}, z))$

interpreted as the pion field

$$U(x^{\mu}) = e^{2i\pi(x^{\mu})/f_{\pi}}$$

It is also useful to define

$$\xi_{\pm}^{-1}(x^{\mu}) \equiv P \exp\left\{-\int_{0}^{\pm \infty} dz' A_{z}(x^{\mu}, z')\right\}$$

$$(U(x^{\mu}) = \xi_{+}^{-1}(x^{\mu})\xi_{-}(x^{\mu}))$$

transforms as

$$\xi_{\pm}(x^{\mu}) \rightarrow \underline{h(x^{\mu})} \xi_{\pm}(x^{\mu}) g_{\pm}^{-1}$$
 ($h(x^{\mu}) \equiv g(x^{\mu}, z = 0)$) "hidden" local symmetry

[Bando-Kugo-Uehara-Yamawaki-Yanagida 1985]

★ Two useful gauge choices

• $A_z \simeq \pi$ gauge (\rightarrow simple interaction)

$$A_z(x^{\mu},z) = \pi(x^{\mu})\phi_0(z)$$
 (higher modes are gauged away.)

$$A_{\mu}(x^{\mu},z) = A_{+\mu}(x^{\mu})\psi_{+}(z) + A_{-\mu}(x^{\mu})\psi_{-}(z) + \sum_{n\geq 1} B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z)$$

• $A_z = 0$ gauge (\rightarrow manifest chiral symmetry)

Pion appears in the boundary condition

$$A_{\mu}(x^{\mu},z) \to A_{\pm\mu}^{\xi\pm}(x^{\mu}) , \quad (z \to \pm \infty) \quad (A_{\mu}^g \equiv gA_{\mu}g^{-1} + g\partial_{\mu}g^{-1})$$

The mode exp. consistent with this b.c. is

$$A_{\mu}(x^{\mu},z) = A_{+\mu}^{\xi_{+}}(x^{\mu})\psi_{+}(z) + A_{-\mu}^{\xi_{-}}(x^{\mu})\psi_{-}(z) + \sum_{n>1} B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z)$$

* effective action

Inserting the mode exp. into the D8-brane action

$$S_{\text{D8}} \simeq S_{\text{D8}}^{\text{DBI}} + S_{\text{D8}}^{\text{CS}}$$

we obtain the effective action for the mesons written in terms of π (or ξ_{\pm}), $B_{\mu}^{(n)}$ and $A_{\pm\mu}$.

• Using the $A_z = 0$ gauge, the effective action of the pion field is obtained as

$$S_{\text{D8}}^{\text{DBI}} \simeq \int d^4x \left[\frac{f_{\pi}^2}{4} \text{Tr} (U^{-1} \partial_{\mu} U)^2 + \frac{1}{32 e_S^2} \text{Tr} [U^{-1} \partial_{\mu} U, U^{-1} \partial_{\nu} U]^2 \right] + \cdots$$
$$f_{\pi}^2 = \frac{4\kappa}{\pi} M_{\text{KK}}^2 \quad e_S^{-2} \simeq 2.51 \cdot \kappa \quad \left(\kappa \equiv \frac{\lambda N_c}{108 \pi^3} \right)$$

This is the Skyrme model action.

The coefficients are consistent with the experimental data, if we set $~\kappa \sim 0.007,~M_{\rm KK} \sim 1~{\rm GeV}$

```
* Baryon
```

Skyrme proposed [Skyrme 1961]

Baryon \simeq Soliton in Skyrme model (Skyrmion)

Baryons in the AdS/CFT context is constructed as wrapped D-branes. [Witten 1998]

In our case,

Baryon \simeq D4-brane wrapped on S^4

 In our case, a Skyrmion can be lifted to an instanton in the 5 dim YM theory, and the instanton on the D8 is equivalent the wrapped D4.

Skyrmion \simeq instanton on D8 \simeq Wrapped D4

★ KSRF relation

lacktriangle Working in the $A_z \simeq \pi$ gauge , the 3 pt coupling

$$S_{\text{D8}}^{\text{DBI}} \sim \int dx^4 \left[\cdots + 2g_{\rho\pi\pi} \text{Tr}(\rho_{\mu}[\pi, \partial^{\mu}\pi]) + \cdots \right] \quad (\rho_{\mu} \equiv B_{\mu}^{(1)})$$

is calculated as
$$g_{\rho\pi\pi} \simeq 0.415 \cdot \kappa^{-1/2}$$

$$ightharpoonup rac{2g_{
ho\pi\pi}^2 f_\pi^2}{m_
ho^2} \simeq 0.654$$
 (our model) $\simeq 1.02$ (experiment) $\simeq 1$ (KSRF) [Kawarabayashi-Suzuki 1966] [Riazuddin-Fayyazddin 1966]

Note:
$$\sum_{n=1}^{\infty} \frac{2g_{\rho^n \pi \pi}^2 f_{\pi}^2}{m_{\rho^n}^2} = \frac{2}{3} \qquad \left(\rho_{\mu}^n \equiv B_{\mu}^{(2n-1)} \right)$$

[cf) Da Rold-Pomarol 2005]

★ including photon

ullet ele-mag gauge field $A_{\mu}^{
m em}$ is introduced by setting

$$V_{\mu} \equiv \frac{1}{2}(A_{+\mu} + A_{-\mu}) = e Q A_{\mu}^{\text{em}}$$

$$Q = \frac{1}{3}\begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
for $N_f = 2$

We obtain

$$S_{\text{D8}}^{\text{DBI}} \sim \int dx^4 \left[\cdots + 2g_{\rho\pi\pi} \text{Tr}(\rho_{\mu}[\pi, \partial^{\mu}\pi]) - 2g_{\rho} \text{Tr}(\rho_{\mu} \mathcal{V}^{\mu}) + \cdots \right]$$

with
$$g_{\rho} \simeq 2.11 \cdot \kappa^{1/2} M_{\rm KK}^2$$

$$rac{g_
ho g_
ho \pi \pi}{m_
ho^2} \simeq 1.31$$
 (our model) $\simeq 1.20$ (experiment)

Note:
$$\sum_{n=1}^{\infty} \frac{g_{\rho^n} g_{\rho^n \pi \pi}}{m_{\rho^n}^2} = 1$$
 [cf) Son-Stephanov 2003]

★ pion form factor

pion form factor is computed as

$$\pi \longrightarrow F_{\pi}(k^2) = \sum_{n \ge 1} \frac{g_{\rho^n} g_{\rho^n \pi \pi}}{k^2 + m_{\rho^n}^2}$$

"vector meson dominance"

charge radius

$$F_{\pi}(k^2) \simeq 1 - \frac{1}{6} \langle r^2 \rangle^{\pi^{\pm}} k^2 + \cdots$$

[Gell-Mann -Zachariasen 1961]

[Sakurai 1969]

$$\langle r^2 \rangle^{\pi^{\pm}} = 6 \sum_{n>1} \frac{g_{\rho^n} g_{\rho^n \pi \pi}}{m_{\rho^n}^4} \simeq 11.0 \, M_{\rm KK}^{-2}$$

If we fix $M_{\rm KK}$ by fitting the $\,\rho\,$ meson mass, we obtain

$$\langle r^2 \rangle^{\pi^{\pm}} \simeq (0.690 \text{ fm})^2$$
 (our model)
 $\simeq (0.672 \text{ fm})^2$ (experiment)

★ WZW term

 We can calculate the intrinsic parity violating interactions from the CS-term.

Working in the $A_z = 0$ gauge, we obtain

$$S_{\text{D8}}^{\text{CS}} \simeq -\frac{N_c}{48\pi^2} \int_4 Z - \frac{N_c}{240\pi^2} \int_5 \text{Tr}(gdg^{-1})^5 + \mathcal{O}\left(B^{(n)}\right)$$

$$Z = \text{Tr}[(A_-dA_- + dA_-A_- + A_-^3)(U^{-1}A_+U + U^{-1}dU) - \text{p.c.}] + \text{Tr}[dA_-dU^{-1}A_+U - \text{p.c.}] + \text{Tr}[A_-(dU^{-1}U)^3 - \text{p.c.}] + \frac{1}{2}\text{Tr}[(A_-dU^{-1}U)^2 - \text{p.c.}] + \text{Tr}[UA_-U^{-1}A_+dUdU^{-1} - \text{p.c.}] - \text{Tr}[A_-dU^{-1}UA_-U^{-1}A_+U - \text{p.c.}] + \frac{1}{2}\text{Tr}[(A_-U^{-1}A_+U)^2]$$

reproduces the well-known formula. [Witten 1983]

* including vector mesons in WZW term

Working in the $A_z \simeq \pi$ gauge, we obtain

$$S_{ extsf{D8}}^{ extsf{CS}} \simeq rac{N_c}{4\pi^2 f_\pi^2} \int_4 extsf{Tr} \left[\pi \, dB^{(n)} dB^{(m)} c_{nm} + \mathcal{O}\left((B_\mu^{(n)})^3
ight),
ight]$$
 with $c_{nm} = rac{1}{\pi} \int dz \, K^{-1} \psi_n \psi_m$

Moreover, one can show

- ullet All the terms including A_+ are cancelled. (complete vector meson dominance)
- Terms with more than one pion field vanish.

$$\star$$
 $\omega \to \pi^0 \gamma$ and $\omega \to \pi^0 \pi^+ \pi^-$

The relevant diagrams for these decay are

Exactly the same as the GSW model!

[Gell-Mann -Sharp-Wagner 1962]

Furthermore, we find

$$\Gamma(\omega \to \pi^0 \gamma) = \frac{N_c^2}{3} \frac{\alpha}{64\pi^4 f_\pi^2} \left(\sum_{n=1}^{\infty} \frac{c_{1,2n-1}g_{\rho^n}}{m_{\rho^n}^2} \right)^2 |\mathbf{p}_{\pi}|^3 = \frac{N_c^2}{3} \frac{\alpha}{64\pi^4 f_\pi^2} \frac{g_{\rho\pi\pi}^2}{g_{\rho\pi\pi}^2} |\mathbf{p}_{\pi}|^3$$

reproduces the proposal given by Fujiwara et al!

[Fujiwara-Kugo-Terao-Uehara-Yamawaki 1985]

Summary

String theory

$$S_{\rm D8} \sim \kappa \int d^4x dz {\rm Tr} \left(\frac{1}{2} K^{-1/3} F_{\mu\nu}^2 + K F_{\mu z}^2 \right) + \frac{N_c}{24\pi^2} \int_5 \omega_5(A)$$

QCD

$$\mathcal{L} = -\frac{1}{4g^2} \operatorname{Tr} F_{\mu\nu}^2 + i \overline{\psi}_i \mathcal{D} \psi^i$$

Hadron physics

$$\pi, \rho, a_1, \cdots p, n, \cdots$$

$$p, n, \cdots$$