Free fermions and BPS geometries

- H. Lin, O. Lunin and J.M., hep-th/0409174
- H. Lin and J. M., to appear

Emergent space

 Matrix quantum mechanics → free fermions (Brezin, Itzykson, Parisi, Zuber '78)

- ullet Low energy 1+0 \to 1+1 dimensions: ripples on the fermi sea
- ullet Geometry of fermi sea \sim space-time geometry

ullet Large $N\sim$ classical limit

Outline

 Example ⊂ AdS/CFT as 1/2 BPS configurations

• Other theories with $R \times SO(4) \times SO(4)$ symmetry

ullet Solutions with $\widetilde{SU}(2|4)$ supergroup and associated theories

Free fermions from SYM

 \bullet Pick J in SO(6), rotates

$$Z = \phi_1 + i\phi_2$$

• Select states with E = J or $\Delta = J$.

ullet Only the zero mode of the field Z survives. Theory on $R \times S^3 \to \text{harmonic oscillator for } Z.$

Corley, Jevicki, Ramgoolam; D. Berenstein

Phase space

Gravity Solutions

Symmetries:

$$(E-J) + SO(4)_{S^3} + SO(4)_{SO(6)} + 16 SUSY$$

$$ds^{2} = -*(dt + V)^{2} + *(dy^{2} + dx_{1}^{2} + dx_{2}^{2}) + *d\Omega_{3}^{2} + *d\Omega_{3}^{2}$$

The solution is specified by z

$$\partial_1^2 z + \partial_2^2 z + y \partial_y \left(\frac{\partial_y z}{y} \right) = 0$$

• 2 types of boundary conditions at y = 0

$$z = \frac{1}{2}, \qquad S^3 \to 0$$

$$z = -\frac{1}{2}, \qquad S^3 \to 0$$

• y = 0 plane \leftrightarrow Fermion phase space

ullet ripples o gravitons

• single fermions \rightarrow giant gravitons $S^3 \subset AdS_5$

ullet single holes o giant gravitons $S^{oldsymbol{3}}\subset S^{oldsymbol{5}}$

D. Berenstein

- ullet Geometric transitions S^3 that branes wrap ullet contractible
- ullet Fermion/hole number $o F_5$ flux on 5-sphere

Topology of solution → topology of droplets

Quantum Foam

Small topological fluctuations \rightarrow already included as gravitons

 $(Boson = fermion) \leftrightarrow (Graviton = Foam)$

If density 0 < ho < 1 ightarrow null singularity

If density $\rho <$ 0 or 1 $< \rho \rightarrow$ closed time-like curves

Milanesi, O'Laughlin

• 1/2 BPS excitations on the IIB plane wave \rightarrow relativistic fermion.

Compact x_1

- (a) D4 brane on $R \times S^1 \times S^3$. SUSY vacua = states of 2d QCD on a cylinder.
- (b) M2 brane theory with a mass deformation. Pope, Warner; Bena, Warner

Compact x_1, x_2

- Little string theory with $R\times T^2\times S^3_K\times S^3_N \ \ \text{boundary}.$ Itzhaki, Kutasov, Seiberg
- Low energies $SU(N)_K$ or $SU(K)_N$ Chern Simons theory on $R \times T^2$.
- ◆ Droplet configurations → different vacua

Poincare susy algebra in 1+1 or 2+1

$$\{Q,Q\} = p_{\mu} + J_{SU(2)} + J_{SU(2)}$$

non-central charges. Possible in $d \leq 3$.

Theories with $\widetilde{SU}(2|4)$ symmetry

 $Z_k \subset U(1) \subset SU(2)_L \subset SO(4) \subset SO(2,4)$

All have SO(6) symmetry

Gravity solutions

View the system in IIA.

$$ds^{2} = -*(dt + \omega)^{2} + *(d\rho^{2} + d\eta^{2}) + + *d\Omega_{5}^{2} + *d\Omega_{2}^{2}$$
(1)

Single function

$$\frac{1}{\rho}\partial_{\rho}(\rho\partial_{\rho}V) + \partial_{\eta}^{2}V = 0$$

Electrostatic problem

Charge on disks: D2 charge

Separation: NS-5 charge

 ◆ Different configurations of disks → different vacua

• Study 1/2 BPS states on these geometries with E=J, $J\subset SO(6)$

 We can study near BPS states (ppwave limit)

These states live near the tip of the disks

Near BPS states for D2 on S^2

Single disk → IIA pp wave

$$ds^{2} = -2dx^{+}dx^{-} - (\vec{r}^{2} + 4\vec{y}^{2})(dx^{+})^{2} + d\vec{r}^{2} + d\vec{y}^{2}$$

Hyun, Shin

Bosons: masses 1 and 2. Universal result.

Near BPS:

$$(E-J)_n = \sqrt{1 + (g_{YM}^2 N)^{\frac{2}{3}} \frac{n^2}{J^2}}$$

Coefficient is not universal.

Weak coupling:

$$(E-J)_n = 1 + (g_{YM}^2 N) \frac{n^2}{J^2} + \cdots$$

Solutions dual to the BMN matrix model

- Conducting plane at $\eta = 0$
- ullet Vacua of BMN matrix model ullet dimension N SU(2) representations ullet

configurations of disks with fixed total dipole moment.

Near BPS states in the BMN matrix model

• IIA pp wave $+ N_5$ NS-5-branes.

• Lighcone worldsheet \rightarrow (4,4) supersymmetric theory.

ullet (linear dilaton) x $SU(2)_{N_5}$ WZW + potential

Near BPS, large N_5

$$(E-J)_n = \sqrt{1 + (g_{YM}^2 N_2)^{\frac{1}{2}} \frac{n^2}{J^2}}$$

$$N = N_2 N_5$$

Weak coupling $N_5 = 1$:

$$(E - J)_n = 1 + f(x)\frac{n^2}{J^2} + \cdots$$

$$f(x) = x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \cdots$$

$$x = g_{YM}^2 N$$

Klose, Plefka; Fischbacher, Klose, Plefka

We cannot do $N_5 = 1$

Conclusions

 \bullet Precise matching between field theories with large number of vacua, $e^{\sqrt{N}}$ and supergravity

- Unified gravity description for all theories with $\widetilde{SU}(2|4)$ supergroup.
- Interesting strong coupling results for many spin chains. Close relation to $\mathcal{N}=4$ SYM.