Free fermions and BPS geometries

H. Lin, O. Lunin and J.M., hep-th/0409174 H. Lin and J. M., to appear

Emergent space

- Matrix quantum mechanics \rightarrow free fermions (Brezin, Itzykson, Parisi, Zuber '78)

- Low energy $1+0 \rightarrow 1+1$ dimensions: ripples on the fermi sea
- Geometry of fermi sea \sim space-time geometry
- Large $N \sim$ classical limit

Outline

- Example \subset AdS $/$ CFT as $1 / 2$ BPS configurations
- Other theories with $R \times S O(4) \times S O$ (4) symmetry
- Solutions with $\widetilde{S U}(2 \mid 4)$ supergroup and associated theories

Free fermions from SYM

- Pick J in $\mathrm{SO}(6)$, rotates

$$
Z=\phi_{1}+i \phi_{2}
$$

- Select states with $E=J$ or $\Delta=J$.
- Only the zero mode of the field Z survives. Theory on $R \times S^{3} \rightarrow$ harmonic oscillator for Z.

Corley, Jevicki, Ramgoolam; D. Berenstein

Phase space

Gravity Solutions

Symmetries:

$$
\begin{aligned}
&(E-J)+S O(4)_{S^{3}}+S O(4)_{S O(6)}+16 \text { SUSY } \\
& \\
& d s^{2}=-*(d t+V)^{2}+*\left(d y^{2}+d x_{1}^{2}+d x_{2}^{2}\right)+ \\
& * d \Omega_{3}^{2}+* d \Omega_{3}^{2}
\end{aligned}
$$

The solution is specified by z

$$
\partial_{1}^{2} z+\partial_{2}^{2} z+y \partial_{y}\left(\frac{\partial_{y} z}{y}\right)=0
$$

- $y \geq 0$
- 2 types of boundary conditions at $y=0$

$$
\begin{array}{ll}
z=\frac{1}{2}, & S^{3} \rightarrow 0 \\
z=-\frac{1}{2}, &
\end{array}
$$

- $y=0$ plane \leftrightarrow Fermion phase space

- ripples \rightarrow gravitons
- single fermions \rightarrow giant gravitons $S^{3} \subset A d S_{5}$
- single holes \rightarrow giant gravitons $S^{3} \subset S^{5}$
D. Berenstein

- Geometric transitions S^{3} that branes wrap \rightarrow contractible
- Fermion/hole number $\rightarrow F_{5}$ flux on 5-sphere
- Topology of solution \rightarrow topology of droplets

Quantum Foam

Small topological fluctuations \rightarrow already included as gravitons
(Boson $=$ fermion $) \leftrightarrow($ Graviton $=$ Foam $)$

If density $0<\rho<1 \rightarrow$ null singularity

If density $\rho<0$ or $1<\rho \rightarrow$ closed timelike curves

Milanesi, O'Laughlin

- $1 / 2$ BPS excitations on the IIB plane wave \rightarrow relativistic fermion.

Compact x_{1}

(a)

(b)

- (a) D4 brane on $R \times S^{1} \times S^{3}$. SUSY vacua $=$ states of 2 d QCD on a cylinder.
- (b) M2 brane theory with a mass deformation. Pope, Warner ; Bena, Warner

Compact x_{1}, x_{2}

- Little string theory with
$R \times T^{2} \times S^{3}{ }_{K} \times S^{3}{ }_{N}$ boundary.
Itzhaki, Kutasov, Seiberg
- Low energies $S U(N)_{K}$ or $S U(K)_{N}$ Chern Simons theory on $R \times T^{2}$.
- Droplet configurations \rightarrow different vacua

Poincare susy algebra in $1+1$ or $2+1$

$$
\{Q, Q\}=p_{\mu}+J_{S U(2)}+J_{S U(2)}
$$

non-central charges. Possible in $d \leq 3$.

Theories with $\widetilde{S U}(2 \mid 4)$ symmetry

All have $S O(6)$ symmetry

Gravity solutions

View the system in IIA.

$$
\begin{align*}
d s^{2}= & -*(d t+\omega)^{2}+*\left(d \rho^{2}+d \eta^{2}\right)+ \\
& +* d \Omega_{5}^{2}+* d \Omega_{2}^{2} \tag{1}
\end{align*}
$$

Single function

$$
\frac{1}{\rho} \partial_{\rho}\left(\rho \partial_{\rho} V\right)+\partial_{\eta}^{2} V=0
$$

Electrostatic problem

- Charge on disks: D2 charge
- Separation: NS-5 charge
- Different configurations of disks \rightarrow different vacua
- Study $1 / 2$ BPS states on these geometries with $E=J, J \subset S O(6)$
- We can study near BPS states (ppwave limit)
- These states live near the tip of the disks

Near BPS states for D2 on S^{2}

Single disk \rightarrow IIA pp wave

$$
d s^{2}=-2 d x^{+} d x^{-}-\left(\vec{r}^{2}+4 \vec{y}^{2}\right)\left(d x^{+}\right)^{2}+d \vec{r}^{2}+d \vec{y}^{2}
$$

Hyun, Shin
Bosons: masses 1 and 2. Universal result.
Near BPS:

$$
(E-J)_{n}=\sqrt{1+\left(g_{Y M}^{2} N\right)^{\frac{2}{3}} \frac{n^{2}}{J^{2}}}
$$

Coefficient is not universal.
Weak coupling:

$$
(E-J)_{n}=1+\left(g_{Y M}^{2} N\right) \frac{n^{2}}{J^{2}}+\cdots
$$

Solutions dual to the BMN matrix model

- Conducting plane at $\eta=0$
- Vacua of BMN matrix model \rightarrow dimension N SU(2) representations \longrightarrow
configurations of disks with fixed total dipole moment.

Near BPS states in the BMN matrix model

- IIA pp wave $+N_{5} \mathrm{NS}$-5-branes.
- Lighcone worldsheet $\rightarrow(4,4)$ supersymmetric theory.
- (linear dilaton) $\times S U(2)_{N_{5}} \mathrm{WZW}+$ potential

Near BPS, large N_{5}

$$
(E-J)_{n}=\sqrt{1+\left(g_{Y M}^{2} N_{2}\right)^{\frac{1}{2}} \frac{n^{2}}{J^{2}}}
$$

$N=N_{2} N_{5}$

Weak coupling $N_{5}=1$:

$$
\begin{aligned}
(E-J)_{n} & =1+f(x) \frac{n^{2}}{J^{2}}+\cdots \\
f(x) & =x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots \\
x & =g_{Y M}^{2} N
\end{aligned}
$$

Klose, Plefka ; Fischbacher, Klose, Plefka
We cannot do $N_{5}=1$

Conclusions

- Precise matching between field theories with large number of vacua, $e^{\sqrt{N}}$ and supergravity
- Unified gravity description for all theories with $\widetilde{S U}(2 \mid 4)$ supergroup.
- Interesting strong coupling results for many spin chains. Close relation to $\mathcal{N}=4$ SYM.

